

Конечное среднее колебание в теории отображений

Андрей А. Игнатьев и Владимир И. Рязанов

(Представлена В. Я. Гутлянским)

Аннотация. Мы говорим, что функция Q(x) имеет конечное среднее колебание в точке, если ее среднее отклонение от среднего значения ограничено по всем шарам с центрами в этой точке с достаточно малыми радиусами, другими словами, если дисперсия по всем малым шарам с центром в данной точке ограничена. Показано, что изолированная сингулярность устранима для Q-гомеоморфизмов при условии, что Q(x) имеет конечное среднее колебание в точке. Доказан также аналог известной теоремы Пенлеве для аналитических функций при условии, что Q(x) имеет конечное среднее колебание на сингулярном множестве нулевой длины. Результаты применимы ко многим классам отображений с конечным искажением.

2000 MSC. 30C65, 30C75.

Ключевые слова и фразы. Отображения с конечным искажением, *Q*-гомеоморфизмы, классы Соболева, конечное среднее колебание, изолированная сингулярность, устранимость, множества длины нуль, аналог теоремы Пенлеве.

1. Введение

В последнее десятилетие интенсивно изучаются различные отображения с конечным искажением, естественным образом обобщающие конформные, квазиконформные и квазирегулярные отображения, см., напр., [4, 13, 14, 17–21, 23, 29–31, 33, 51, 52]. Исторически им также предшествовали так называемые отображения, квазиконформные в среднем, см., напр., [6, 26–28, 32, 34–39, 53–55, 66–69, 76, 77]. Во всех этих обобщениях, как и в классической теории, модульная техника играет ключевую роль. Имея ввиду эту роль, профессор Олли Мартио предложил следующую общую концепцию, см. [43–46].

Статья поступила в редакцию 12.06.2004

Пусть D — область в $\mathbb{R}^n,\ n\geq 2,$ и пусть $Q:D\to [1,\infty]$ — измеримая функция. Гомеоморфизм $f:D\to \overline{\mathbb{R}^n}=\mathbb{R}^n\bigcup\{\infty\}$ называется Q-гомеоморфизмом, если

$$M(f\Gamma) \le \int_{D} Q(x) \cdot \rho^{n}(x) \ dm(x)$$
 (1.1)

для любого семейства Γ путей в D и любой допустимой функции ρ для Γ . Здесь непрерывность отображений понимается относительно сферической (хордальной) метрики.

Напомним, что борелевская функция $\rho: \mathbb{R}^n \to [0,\infty]$ называется допустимой для семейства кривых Γ в \mathbb{R}^n , пишем $\rho \in \operatorname{adm} \Gamma$, если

$$\int_{\gamma} \rho(x) |dx| \ge 1 \tag{1.2}$$

для всех $\gamma \in \Gamma$. Модуль семейства Γ определяется равенством

$$M(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_{D} \rho^{n}(x) \, dm(x) \,. \tag{1.3}$$

Основной целью теории Q-гомеоморфизмов является изучение взаимосвязей свойств отображения f со свойствами мажоранты Q(x) в определяющем соотношении (1.1). Основы теории Q-гомеоморфизмов были заложены в работах [43-45], а в работе [46] концепция Q-гомеоморфизмов была распространена на отображения с ветвлением, так называемые Q-отображения. Высокий уровень абстракции теории Q-отображений позволяет применять эту теорию ко всем современным классам отображений, где удается установить оценку модуля типа (1.1) с подходящей мажорантой Q(x), связанной с теми или иными характеристиками (дилатациями) отображений, в том числе, к различным классам отображений с конечным искажением и отображениям, квазиконформным в среднем, см., напр., [31,46,66].

В работах [43–45] теория Q-гомеоморфизмов развивалась в основном для случая, когда мажоранта Q принадлежала известному пространству ВМО. В настоящей работе теория Q-гомеоморфизмов развивается, прежде всего, применительно к случаю, когда Q(x) имеет конечное среднее колебание в соответствующих граничных точках. Одновременно, в работе развивается метод сингулярных функциональных параметров, выбор которых позволяет получать и многие другие критерии непрерывной и гомеоморфной продолжимости Q-гомеоморфизмов на границу.

Напомним некоторые определения. Пусть отображение $f:D\to \mathbb{R}^n$ имеет первые частные производные в точке $x\in D$. Тогда *внешняя* дилатация отображения f в точке x определяется равенством

$$K_O(x,f) = \begin{cases} \frac{|f'(x)|^n}{|J(x,f)|}, & J(x,f) \neq 0, \\ 1, & f'(x) = 0, \end{cases}$$
(1.4)

и $K_O(x,f) = \infty$ в остальных случаях. Аналогично, внутренняя дилатация отображения f в точке x определяется равенством

$$K_I(x,f) = \begin{cases} \frac{|J(x,f)|}{l(f'(x))^n}, & J(x,f) \neq 0, \\ 1, & f'(x) = 0, \end{cases}$$
 (1.5)

и $K_I(x,f) = \infty$ в остальных случаях. Максимальная дилатация, или просто дилатация, отображения f в точке x есть величина

$$K(x, f) = \max(K_O(x), K_I(x)).$$
 (1.6)

Как обычно, f'(x) — якобиева матрица отображения f, J(x,f) = det f'(x) — его якобиан, |f'(x)| — операторная норма f'(x), т.е.

$$|f'(x)| = \max\{|f'(x)h|: h \in \mathbb{R}^n, |h| = 1\}$$

И

$$l(f'(x)) = \min\{|f'(x)h| : h \in \mathbb{R}^n, |h| = 1\}.$$

Отметим, что

$$K_I(x,f) \le K_O^{n-1}(x,f), \quad K_O(x,f) \le K_I^{n-1}(x,f),$$
 (1.7)

см., напр., [59], и, в частности, $K_O(x,f), K_I(x,f)$ и K(x,f) одновременно конечны или бесконечны. Неравенство $K(x,f) < \infty$ эквивалентно условию, что det $f'(x) \neq 0$ или f'(x) = 0.

Отображение $f:D\to\mathbb{R}^n$ называется отображением с конечным искажением, если $f\in W^{1,n}_{loc},\ J(x,f)\geq 0$ и $K_O(x,f)<\infty$ п.в. Иногда в литературе условие $f\in W^{1,n}_{loc}$ заменяется на более слабое условие $f\in W^{1,1}_{loc}$, ср., напр., [4,13,17-21,23,29-31]. Если к тому же дилатация $K_O(x,f)$ ограничена константой п.в., то мы получаем отображения с ограниченным искажением, см. [59], или, как в других работах, квазирегулярные отображения, ср. [48]. Для заданной функции $Q:D\to[1,\infty]$, будем говорить, что гомеоморфизм $f:D\to\mathbb{R}^n$ с конечным искажением называется Q(x)-квазиконформным, пишем Q(x)-кк, если $K(x,f)\leq Q(x)$ п.в. Также будем говорить, что гомеоморфизм f с конечным искажением является BMO-квазиконформным, пишем BMO-кк, если $K(x,f)\leq Q(x)\in BMO$. Как известно,

Q(x)-кк отображение с условием $Q \in L^{n-1}_{loc}$ является Q-гомеоморфизмом, см. [43–45]. Напомним, что ВМО функции связаны во многих отношениях с квазиконформными и квазирегулярными отображениями, см., напр., [2,3,11,24,25,47,57–59].

2. О функциях конечного среднего колебания

Пусть D область в \mathbb{R}^n , $n \geq 1$. Будем говорить, что функция $\varphi : D \to \mathbb{R}$ имеет конечное среднее колебание в точке $x_0 \in \overline{D}$, пишем $\varphi \in FMO$ в x_0 , если

$$\overline{\lim_{\varepsilon \to 0}} \int_{D(x_0,\varepsilon)} |\varphi(x) - \overline{\varphi}_{\varepsilon}(x_0)| \, dm(x) < \infty , \qquad (2.1)$$

где для малых $\varepsilon > 0$

$$\overline{\varphi}_{\varepsilon}(x_0) = \int\limits_{D(x_0,\varepsilon)} \varphi(x) \, dm(x) = \frac{1}{|D(x_0,\varepsilon)|} \int\limits_{D(x_0,\varepsilon)} \varphi(x) \, dm(x) - (2.2)$$

среднее значение функции $\varphi(x)$ по множеству

$$D(x_0, \varepsilon) = D \bigcap B(x_0, \varepsilon), \qquad (2.3)$$

где

$$B(x_0, \varepsilon) = \{ x \in \mathbb{R}^n : |x - x_0| < \varepsilon \}$$

и предполагается, что $\varphi(x)$ интегрируема по множеству $D(x_0,\varepsilon)$ для малых $\varepsilon>0$. Заметим, что при выполнении условия (2.1) возможна ситуация, когда $\overline{\varphi_{\varepsilon}}(x_0)\to\infty$ при $\varepsilon\to0$, см. пример в конце параграфа.

Также будем говорить, что $\varphi:D\to\mathbb{R}$ — функция конечного среднего колебания в области D, пишем $\varphi\in FMO(D)$, или просто $\varphi\in FMO$, если φ имеет конечное среднее колебание в каждой точке $x\in D$. Наконец, будем говорить, что функция $\varphi:D\to\mathbb{R}$ — конечного среднего колебания в замыкании D, пишем $\varphi\in FMO(\overline{D})$, если φ имеет конечное среднее колебание в каждой точке $x\in \overline{D}$.

Предложение 2.1. *Если для некоторого набора чисел* $\varphi_{\varepsilon} \in \mathbb{R}$, $\varepsilon \in (0, \varepsilon_0]$,

$$\overline{\lim_{\varepsilon \to 0}} \int_{D(x_0,\varepsilon)} |\varphi(x) - \varphi_{\varepsilon}| \, dm(x) < \infty, \tag{2.4}$$

то φ имеет конечное среднее колебание в точке x_0 .

Доказательство. Действительно, по неравенству треугольника

$$\int_{D(x_0,\varepsilon)} |\varphi(x) - \overline{\varphi}_{\varepsilon}(x_0)| \, dm(x) \leq
\leq \int_{D(x_0,\varepsilon)} |\varphi(x) - \varphi_{\varepsilon}| \, dm(x) + |\varphi_{\varepsilon} - \overline{\varphi}_{\varepsilon}(x_0)| \leq
\leq 2 \int_{D(x_0,\varepsilon)} |\varphi(x) - \varphi_{\varepsilon}| \, dm(x) .$$

Следствие 2.1. Если для точки $x_0 \in \overline{D}$

$$\overline{\lim_{\varepsilon \to 0}} \int_{D(x_0, \varepsilon)} |\varphi(x)| \, dm(x) < \infty, \tag{2.5}$$

то φ имеет конечное среднее колебание в точке x_0 .

Точка $x_0 \in D$ называется точкой Лебега функции $\varphi: D \to \mathbb{R}$, если φ интегрируема в окрестности точки x_0 и

$$\lim_{\varepsilon \to 0} \int_{B(x_0,\varepsilon)} |\varphi(x) - \varphi(x_0)| \, dm(x) = 0. \tag{2.6}$$

Известно, что для каждой функции $\varphi \in L^1(D)$ почти все точки D являются ее точками Лебега .

Следствие 2.2. Любая локально интегрируемая функция $\varphi: D \to \mathbb{R}$ имеет конечное среднее колебание для почти всех точек D

Будем говорить, что область $D \subset \mathbb{R}^n$, $n \geq 2$, удовлетворяет условию удвоения меры (Лебега) в точке $x_0 \in \overline{D}$, если

$$|B(x_0, 2\varepsilon) \cap D| \le c \cdot |B(x_0, \varepsilon) \cap D| \tag{2.7}$$

для некоторого c>0 и для всех достаточно малых $\varepsilon>0$. Заметим, что условию удвоения меры во всех граничных точках удовлетворяют, в частности, области с гладкими границами, а также ограниченные выпуклые области.

Версии следующей леммы были впервые доказаны во внутренних точках для класса ВМО на плоскости в [63, 64], ср. следствие 2.3 ниже, и в пространстве в [43]. Впервые FMO введено и изучалось в препринте [22].

Лемма 2.1. Пусть область $D \subset \mathbb{R}^n$, $n \geq 3$, удовлетворяет условию удвоения меры в $0 \in \overline{D}$. Если неотрицательная функция $\varphi : D \to \mathbb{R}$ имеет конечное среднее колебание в 0, то

$$\int_{D(0,\varepsilon_0)} \frac{\varphi(x) \, dm(x)}{\left(|x| log \frac{1}{|x|}\right)^n} < \infty , \qquad (2.8)$$

т.е. сингулярный интеграл сходится при некотором $\varepsilon_0 > 0$.

Доказательство. Выберем $\varepsilon_0 \in (0, 2^{-1})$, такое, что φ интегрируема в $D_1 = D \cap B$, где $B = B(0, \varepsilon_0)$, и

$$\delta = \sup_{r \in (0, \varepsilon_0)} \int_{D(r)} |\varphi(x) - \overline{\varphi_r}(0)| \, dm(x) < \infty,$$

где $D(r) = D \cap B(r), B(r) = B(0,r) = \{x \in \mathbb{R}^n : |x| < r\}$. Пусть далее, $\varepsilon < 2^{-1}\varepsilon_0, \ \varepsilon_k = 2^{-k}\varepsilon_0, \ A_k = \{x \in \mathbb{R}^n : \varepsilon_{k+1} \le |x| < \varepsilon_k\}, \ B_k = B(\varepsilon_k)$ и пусть φ_k — среднее значение $\varphi(x)$ в $D_k = D \cap B_k, \ k = 1, 2 \dots$ Выберем натуральное число N так, что $\varepsilon \in [\varepsilon_{N+1}, \varepsilon_N)$, и обозначим $\alpha(t) = (t \log_2 1/t)^{-n}$. Тогда $D \cap A(\varepsilon, \varepsilon_0) \subset \Delta(\varepsilon) = \bigcup_{k=1}^N \Delta_k$, где $\Delta_k = D \cap A_k$ и

$$\eta(\varepsilon) = \int_{\Delta(\varepsilon)} \varphi(x) \ \alpha(|x|) dm(x) \le |S_1| + S_2,$$

где

$$S_1(\varepsilon) = \sum_{k=1}^N \int_{\Delta_k} (\varphi(x) - \varphi_k) \ \alpha(|x|) \ dm(x) ,$$
$$S_2(\varepsilon) = \sum_{k=1}^N \varphi_k \int_{\Delta_k} \alpha(|x|) \ dm(x) .$$

Так как $\Delta_k \subset D_k \subset B_k$, $|x|^{-n} \leq \Omega_n 2^n/|D_k|$ для $x \in \Delta_k$, где Ω_n — объем единичного шара в \mathbb{R}^n , а $\log_2 \frac{1}{|x|} > k$ в Δ_k , то

$$|S_1| \le \delta \Omega_n e^n \sum_{k=1}^N \frac{1}{k^n} < \delta \Omega_n 2^{n+1},$$

поскольку

$$\sum_{k=2}^{\infty} \frac{1}{k^n} < \int_{1}^{\infty} \frac{dt}{t^n} = \frac{1}{n-1} \le 1.$$

Далее,

$$\int_{\Delta_k} \alpha(|x|) \, dm(x) \le \frac{1}{k^n} \int_{A_k} \frac{dm(x)}{|x|^n} \le \frac{\omega_{n-1}}{k^n},$$

где ω_{n-1} — гиперплощадь единичной сферы в \mathbb{R}^n . Кроме того,

$$\begin{aligned} |\varphi_k - \varphi_{k-1}| &= \frac{1}{|D_k|} \left| \int\limits_{D_k} (\varphi(x) - \varphi_{k-1}) \, dm(x) \right| \leq \\ &\leq \frac{c}{|D_{k-1}|} \int\limits_{D_{k-1}} |(\varphi(x) - \varphi_{k-1})| \, dm(x) \leq \delta c, \end{aligned}$$

где c — константа из условия удвоения меры, и по неравенству треугольника

$$\varphi_k = |\varphi_k| \le \varphi_1 + \sum_{l=1}^k |\varphi_l - \varphi_{l-1}| \le \varphi_1 + k\delta c.$$

Поэтому

$$S_2 = |S_2| \le \omega_{n-1} \sum_{k=1}^{N} \frac{\varphi_k}{k^n} \le 2\varphi_1 \omega_{n-1} + \delta \omega_{n-1} c \sum_{k=1}^{N} \frac{1}{k^{(n-1)}}$$

и вместе с оценкой

$$\sum_{k=2}^{\infty} \frac{1}{k^{(n-1)}} < \int_{1}^{\infty} \frac{dt}{t^{n-1}} = \frac{1}{n-2} \le 1$$

для $n \ge 3$ доказательство леммы 2.4 завершено.

Так как

$$\sum_{k=2}^{N} \frac{1}{k} < \int_{1}^{N} \frac{dt}{t} = \log N < \log_2 N$$

и, для $\varepsilon_0 \in (0, 2^{-1})$ и $\varepsilon < \varepsilon_N$,

$$N < N + \log_2 \left(\frac{1}{2\varepsilon_0}\right) = \log_2 \frac{1}{\varepsilon_N} < \log_2 \frac{1}{\varepsilon},$$

то для $n \geq 2$,

$$\sum_{k=1}^{N} \frac{1}{k^{(n-1)}} \le \sum_{k=1}^{N} \frac{1}{k} < 1 + \log_2 \log_2 \frac{1}{\varepsilon},$$

и мы имеем следующее утверждение.

Следствие 2.3. В условиях леммы 2.4, для $n \ge 2$,

$$\int_{D \cap A(\varepsilon, \varepsilon_0)} \frac{\varphi(x) \, dm(x)}{\left(|x| \log \frac{1}{|x|}\right)^n} = O\left(\log \log \frac{1}{\varepsilon}\right)$$
 (2.9)

 $npu \varepsilon \to 0$ и некотором $\varepsilon_0 > 0$, г ∂e

$$A(\varepsilon, \varepsilon_0) = \{ x \in \mathbb{R}^n : \varepsilon < |x| < \varepsilon_0 \}.$$
 (2.10)

3. Примеры Q-гомеоморфизмов

В этой секции мы будем изучать супер Q-гомеоморфизмы, т.е. такие Q-гомеоморфизмы $f:D\to\mathbb{R}^n,\ n\ge 2$, для которых неравенство (1.1) выполняется не только для семейств Γ непрерывных путей $\gamma:(0,1)\to D$, но и для umpuxobux линий $\gamma:\Delta\to D$, где отображение γ непрерывно на произвольном открытом подмножестве Δ вещественной оси \mathbb{R} (состоящем из счетной последовательности интервалов $\Delta_i\subset\mathbb{R},\ i=1,2,\ldots$). Будем говорить, что семейство штриховых линий Γ минорируется другим таким семейством Γ^* , и писать $\Gamma \geq \Gamma^*$, если для любой линии $\gamma \in \Gamma,\ \gamma:\Delta\to\mathbb{R}^n$ найдется линия $\gamma^*\in\Gamma^*,\ \gamma^*:\Delta^*\to\mathbb{R}^n$, которая является сужением γ , т.е. $\Delta^*\subset\Delta$ и $\gamma^*=\gamma|_{\Delta^*}$. В дальнейшем важно следующее свойство, см. теорему Γ 0, в Γ 10, с. 178.

Предложение 3.1. Пусть Γ и Γ^* — семейства штриховых линий в \mathbb{R}^n . Если $\Gamma \geq \Gamma^*$, то $M(\Gamma) \leq M(\Gamma^*)$.

Будем говорить, что свойство P имеет место для noumu scex (n.s.) штриховых линий γ в семействе Γ , если модуль подсемейства всех линий γ в Γ , для которых P не имеет места, равен нулю. В частности, почти все штриховые линии в \mathbb{R}^n спрямляемы. Все определения модуля, спрямляемости и так далее для штриховых линий совершенно аналогичны соответствующим определениям для непрерывных путей и потому опускаются. Для более общих рассмотрений систем мер, см. [10].

Предложение 3.2. Пусть $f:D\to \mathbb{R}^n$ — гомеоморфизм класса $W^{1,n}_{loc}$. Тогда f дифференцируемо n.в. и удовлетворяет свойству Лузина (N). Если также f^{-1} принадлежит классу $W^{1,n}_{loc}$, то

$$J_f(x) \neq 0 \quad n.s. \tag{3.1}$$

Утверждение следует из результатов Решетняка для $W_{loc}^{1,n}$ гомеоморфизмов, см. [60] и [61], и эквивалентности (N^{-1}) -свойства свойству (3.1) для п.в. дифференцируемых отображений f, см. теорему 1 в [56].

Теорема 3.1. Пусть отображение $f:D\to \mathbb{R}^n$ — гомеоморфизм класса $W^{1,n}_{loc}$ с $f^{-1}\in W^{1,n}_{loc}$. Тогда f является супер Q-гомеоморфизмом $c\ Q(x)=K_I(x,f)$.

По истории вопроса смотри замечание 3.1 в конце секции.

Доказательство. Во-первых, $f^{-1} \in ACL^n_{loc}$, см., напр., [42, с. 8]. Следовательно, по теореме Фугледе модуль семейства всех локально спрямляемых путей в f(D), которые имеют хотя бы один замкнутый подпуть, где отображение f^{-1} не является абсолютно непрерывным, равен нулю, см., напр., [10] и [70]. Это семейство путей минорирует соответствующее семейство штриховых линий и, таким образом, по предложению 3.1 последнее семейство также имеет нулевой модуль. Пусть Γ — произвольное семейство штриховых линий в D. Обозначим через Γ^* семейство всех штриховых линий $\gamma^* \in f\Gamma$, для которых f^{-1} абсолютно непрерывно на всяком замкнутом подпути γ^* . Тогда $M(f\Gamma) = M(\Gamma^*)$.

Для $\rho \in \operatorname{adm} \Gamma$, полагаем $\rho^*(y) = \rho(f^{-1}(y)) \cdot |(f^{-1})'(y)|$, если f^{-1} дифференцируемо в точке $y \in f(D)$, и $\rho^*(y) = \infty$ в противом случае при $y \in f(D)$, а также $\rho^*(y) = 0$ вне f(D). Тогда

$$\int_{\gamma^*} \rho^* ds^* \ge \int_{f^{-1} \circ \gamma^*} \rho \, ds \ge 1 \tag{3.2}$$

для всех $\gamma^* \in \Gamma^*$, т.е. $\rho^* \in \operatorname{adm} \Gamma^*$.

По предложению 3.1, f^{-1} обладает свойством (N) и дифференцируемо с $J(y, f^{-1}) \neq 0$ п.в. Следовательно, используя замену переменных, см., напр., теорему 6.4 в статье [50], имеем

$$M(f\Gamma) = M(\Gamma^*) \le \int_{f(D)} \rho^*(y)^n dm(y) =$$

$$= \int_{f(D)} \rho(f^{-1}(y))^n K_O(y, f^{-1}) J(y, f^{-1}) dm(y) =$$

$$= \int_{D} \rho(x)^n K_I(x, f) dm(x),$$

т.е., действительно, f — супер Q-гомеоморфизм с $Q(x) = K_I(x,f)$.

Известно, что гомеоморфизм класса $W_{loc}^{1,n}$ с $K_I \in L_{loc}^1$ имеет обратное отображение f^{-1} в том же классе, см. следствие 2.3 в [31]. Таким образом, мы имеем следующее утверждение.

Следствие 3.1. Пусть $f:D\to\mathbb{R}^n$ — гомеоморфизм класса $W^{1,n}_{loc}$ с $K_I\in L^1_{loc}$. Тогда f— супер Q-гомеоморфизм с $Q(x)=K_I(x,f)$.

Так как $K_I(x,f) \leq K_O^{n-1}(x,f)$, имеем также следующее утверждение.

Следствие 3.2. При условиях теоремы 3.1, f является супер Q-гомеоморфизмом $c\ Q(x)=K_O^{n-1}(x,f).$

Теорема 3.1 показывает, что супер Q-гомеоморфизмы образуют широкий подкласс Q-гомеоморфизмов, включающий многие отображения с конечным искажением.

Замечание 3.1. По-видимому, впервые неравенство типа (1.1) с $Q(x) = K_I(x,f)$ для гомеоморфизмов $f \in ACL^n$ с $f^{-1} \in ACL^n$ было установлено в работе [66], на которую внимание авторов обратил рецензент. Указанное неравенство при n=2 встречалось ранее в рамках теории квазиконформных отображений, см., напр., V(6.6) в [41], и использовалось при исследовании так называемых ВМО-квазиконформных отображений в [62–64]. Это неравенство доказано также для различных классов отображений с конечным искажением, см., напр., [31,46]. Этот список примеров Q-гомеоморфизмов в будущем может быть продолжен.

4. Устранимость изолированных особенностей

Как показывает следующая лемма, для устранимости изолированных особенностей Q-гомеоморфизмов достаточно потребовать интегрируемость Q(x) с подходящим весом.

Лемма 4.1. Пусть $f: \mathbb{B}^n \backslash \{0\} \to \mathbb{R}^n$, $n \geq 2$, — Q-гомеоморфизм. Если при $\varepsilon \to 0$

$$\int_{\varepsilon < |x| < 1} Q(x) \cdot \psi^n(|x|) \, dm(x) = o(I(\varepsilon)^n), \qquad (4.1)$$

еде $\psi(t)$ — неотрицательная измеримая функция на $(0,\infty)$, такая что

$$0 < I(\varepsilon) = \int_{\varepsilon}^{1} \psi(t) dt < \infty \qquad \varepsilon \in (0, 1), \qquad (4.2)$$

то f имеет непрерывное продолжение на \mathbb{B}^n , которое является Q-гомеоморфизмом.

Отметим, что условия (4.1)–(4.2) всегда влекут, что $I(\varepsilon) \to \infty$ при $\varepsilon \to 0$. Это следует непосредственно рассуждением от противного.

Замечание 4.1. Отметим также, что (4.1) выполняется, в частности, если

$$\int_{\mathbb{R}^n} Q(x) \cdot \psi^n(|x|) \ dm(x) < \infty \tag{4.3}$$

и $I(\varepsilon) \to \infty$ при $\varepsilon \to 0$. Другими словами, для заключения леммы 4.1 достаточно, чтобы сингулярный интеграл (4.3) сходился с ядром $\psi^n(t)$, где $\psi(t)$ — произвольная неотрицательная функция, которая локально интегрируема на интервале (0,1), но которая имеет неинтегрируемую особенность в 0.

Функции $Q(x) = [\log(e/|x|)]^{\lambda}$, $\lambda \in (0,1)$, $x \in \mathbb{B}^n$, $n \geq 2$, и $\psi(t) = 1/(t\log(e/t))$, $t \in (0,1)$, показывают, что условие (4.3) совместимо с условием, что $I(\varepsilon) \to \infty$ при $\varepsilon \to 0$. По лемме 2.1 условие (4.3) имеет место для любой функции $Q(x) \geq 1$ с конечным средним колебанием в нуле при $n \geq 3$ с указанным ψ .

Доказательство леммы 4.1. Так как модуль семейства путей, проходящих через фиксированную точку, равен 0, то нам достаточно показать, что f(x) имеет предел при $x \to 0$. Пусть Γ_{ε} есть семейство всех кривых соединяющих сферы $S_{\varepsilon} = \{x \in \mathbb{R}^n : |x| = \varepsilon\}$ и $S_0 = \{x \in \mathbb{R}^n : |x| = 1\}$ в кольце $A_{\varepsilon} = \{x \in \mathbb{R}^n : \varepsilon < |x| < 1\}$. Пусть также ψ^* есть борелевская функция, такая что $\psi^*(t) = \psi(t)$ для п.в. $t \in (0,\infty)$. Такая функция ψ^* существует по теореме Лузина, см., напр., [9, 2.3.5] и [65, c. 69]. Тогда функция

$$\rho_{\varepsilon}(x) = \begin{cases} \psi^*(|x|)/I(\varepsilon), & x \in A_{\varepsilon}, \\ 0, & x \in \mathbb{R}^n \backslash A_{\varepsilon} \end{cases}$$

допустима для Γ_{ε} и, следовательно,

$$M(f\Gamma_{\varepsilon}) \leq \int_{0<|x|<1} Q(x) \cdot \rho_{\varepsilon}^{n}(|x|) dm(x),$$

т.е. $M(f\Gamma_{\varepsilon}) \to 0$ при $\varepsilon \to 0$ ввиду (4.1).

По теореме Жордана-Брауэра образы сфер $fS_t, t \in (0,1)$, разбивают пространство \mathbb{R}^n на две компоненты и, таким образом, $\mathbb{R}^n \backslash fA_\varepsilon$ состоит только из двух компонент, см., напр., [8, с. 358], [16, с. 363] и [73, с. 63]. Обозначим через Γ_ε^* семейство всех путей в \mathbb{R}^n , соединяющих образы сфер fS_ε и fS_0 . Тогда

$$M(\Gamma_{\varepsilon}^*) = M(f\Gamma_{\varepsilon}),$$

поскольку с одной стороны $f\Gamma_{\varepsilon} \subset \Gamma_{\varepsilon}^{*}$ и, следовательно, $M(f\Gamma_{\varepsilon}) \leq M(\Gamma_{\varepsilon}^{*})$, а с другой стороны $f\Gamma_{\varepsilon} < \Gamma_{\varepsilon}^{*}$ (т.е. каждый путь в Γ_{ε}^{*} содержит подпуть, входящий в $f\Gamma_{\varepsilon}$, т.к. fA_{ε} разделяет две компоненты дополнения $\mathbb{R}^{n} \setminus fA_{\varepsilon}$) и, следовательно, $M(f\Gamma_{\varepsilon}) \geq M(\Gamma_{\varepsilon}^{*})$, см. также теорему 1(c) в [10] или [70, 6.4].

По лемме Геринга, см. [12], см. также [71, 7.37, 7.22 и 7.19],

$$M(\Gamma_{\varepsilon}^*) \ge a_n / \left(\log \frac{b_n}{\delta_0 \delta \varepsilon}\right)^{n-1},$$

где постоянные a_n и b_n зависят только от n, δ_0 и δ_{ε} — сферические (хордальные) диаметры fS_0 и fS_{ε} . Таким образом, $\delta_{\varepsilon} \to 0$ и fS_{ε} стягивается в точку при $\varepsilon \to 0$.

В частности, выбирая в лемме $4.1~\psi=1/(t\log(1/t))$, получаем по следствию 2.3 следующее утверждение.

Теорема 4.1. Пусть $f: D \setminus \{x_0\} \to \mathbb{R}^n$, $n \geq 2$, является Q-гомеоморфизмом, где Q(x) имеет конечное среднее колебание в точке $x_0 \in D$. Тогда f допускает Q-гомеоморфное продолжение на D.

Другими словами, изолированная особенность Q-гомеоморфизма устранима, если Q(x) имеет конечное среднее колебание в точке. В качестве следствий теоремы 4.1, предложения 2.1 и следствия 2.1, получаем следующие утверждения.

Следствие 4.1. Точка Лебега функции Q является устранимой особенностью для Q-гомеоморфизмов.

Следствие 4.2. Если $f:\mathbb{B}^n\backslash\{0\}\to\mathbb{R}^n,\,n\geq 2,\,ecmb\,Q$ -гомеоморфизм c

$$\overline{\lim_{\varepsilon \to 0}} \oint_{B(\varepsilon)} Q(x) \, dm(x) < \infty, \tag{4.4}$$

то f имеет Q-гомеоморфное продолжение на \mathbb{B}^n .

5. Топологические леммы

Здесь доказываются леммы, которые заменяют теорему Жордана-Брауэра в случае, когда вместо одной особой точки приходится иметь дело с бесконечными и даже несчетными множествами особых точек.

Напомним, что по известной теореме Александрова-Борсука, см., напр., [8, с. 357], [15, с. 100], [1] и [7], компакт $K \subset \mathbb{R}^n$, $n \geq 2$, разбивает \mathbb{R}^n тогда и только тогда, когда существует непрерывное отображение $f: K \to S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$, которое не гомотопно

постоянному. Наоборот, утверждение, что компакт K не разбивает \mathbb{R}^n эквивалентно утверждению, что любое непрерывное отображение $f:K\to S^{n-1}$ гомотопно константе. Таким образом, получаем следующее простое следствие теоремы Александрова-Борсука.

Предложение 5.1. Пусть K_1 и K_2 — два непересекающихся компакта в $\overline{\mathbb{R}^n}$, $n \geq 2$, каждый из которых не разбивает $\overline{\mathbb{R}^n}$. Тогда компакт $K = K_1 \bigcup K_2$ также не разбивает $\overline{\mathbb{R}^n}$.

На этой основе мы докажем следующее утверждение.

Лемма 5.1. Пусть D- область в $\overline{\mathbb{R}^n}$, $n\geq 2$. Тогда границей каждой компоненты ее дополнения $\overline{\mathbb{R}^n}\backslash D$ является компонента ∂D .

Доказательство. Допустим, что заключение леммы 5.1 неверно, т.е. существует область D в $\overline{\mathbb{R}^n}$, $n \geq 2$, такая что граница некоторой компоненты C_0 дополнения $\overline{\mathbb{R}^n} \backslash D$ не совпадает с компонентой ∂D .

Известно, что $\partial C_0 \subset \partial D$, см., напр., [8, с. 356]. Кроме того, если некоторая компонента K границы ∂D имеет непустое пересечение с ∂C_0 , то $K \subset \partial C_0$. Таким образом, отрицание утверждения леммы эквивалентно тому, что ∂C_0 состоит более чем из одной компоненты ∂D , т.е., что ∂C_0 не является связным множеством. Каждая компонента $\overline{\mathbb{R}^n} \setminus D$ является замкнутым множеством. Поэтому, присоединяя к D, если необходимо, все компоненты дополнения $\overline{\mathbb{R}^n} \setminus D$ за исключением C_0 , мы можем по теореме Александрова-Борсука без потери общности считать, что $\overline{\mathbb{R}^n} \setminus D$ имеет единственную компоненту C_0 и, следовательно, $\overline{\mathbb{R}^n} \setminus C_0 = D$ есть область.

По предположению компакт ∂C_0 может быть разбит на два непересекающихся замкнутых множества S_1 и S_2 , которые являются компактами в $\overline{\mathbb{R}^n}$. Пусть Ω_1 — компонента дополнения $\overline{\mathbb{R}^n} \backslash S_1$, включающая область D. Тогда компакт $K_1 = \overline{\mathbb{R}^n} \backslash \Omega_1$ включает S_1 и не разбивает $\overline{\mathbb{R}^n}$. Кроме того, по построению $K_1 \subset C_0$ и $S_2 \subset \Omega_1$ (последнее в силу того, что любая точка $S_2 \subset \partial C_0$ в любой своей окрестности должна содержать точки $D \subset \Omega_1$, а сферическое (хордальное) расстояние $h(S_2, \partial \Omega_1) \geq h(S_2, S_1) > 0$, т.к. $\partial \Omega_1 \subset S_1$, см. [8, с. 356]). Аналогично, Ω_2 и K_2 определяются через S_2 .

Заметим, что $K_1 \cap K_2 = \emptyset$. Действительно,

$$\partial K_1 = \partial \Omega_1 \subset S_1 \subset \Omega_2 = \overline{\mathbb{R}^n} \backslash K_2$$

И

$$\partial K_2 = \partial \Omega_2 \subset S_2 \subset \Omega_1 = \overline{\mathbb{R}^n} \backslash K_1$$
.

Поэтому $\partial K_1 \cap K_2 = \emptyset$ и $\partial K_2 \cap K_1 = \emptyset$. Таким образом, если допустить, что

$$K_1 \bigcap K_2 \neq \emptyset$$
, (5.1)

TO

$$\operatorname{Int} K_1 \bigcap \operatorname{Int} K_2 \neq \emptyset,$$

т.е. найдутся компоненты $\Omega^{(1)} \neq \Omega_1$, $\Omega^{(1)} \subset \operatorname{Int} K_1$ и $\Omega^{(2)} \neq \Omega_2$, $\Omega^{(2)} \subset \operatorname{Int} K_2$ дополнений $\overline{\mathbb{R}^n} \backslash S_1$ и $\overline{\mathbb{R}^n} \backslash S_2$, соответственно, такие что $\Omega^{(1)} \cap \Omega^{(2)} \neq \emptyset$. Если $\Omega^{(1)} = \Omega^{(2)}$, тогда $\partial \Omega^{(1)} = \partial \Omega^{(2)} \subset S_1 \cap S_2 = \emptyset$, т.е. $\partial \Omega^{(1)} = \partial \Omega^{(2)} = \emptyset$ и $\Omega^{(1)} = \Omega^{(2)} = \overline{\mathbb{R}^n}$ (т.к. $\overline{\mathbb{R}^n}$ связно), что невозможно по построению. Пусть для определенности $\Omega^{(1)} \backslash \Omega^{(2)} \neq \emptyset$. Тогда $\partial \Omega^{(2)} \cap \Omega^{(1)} \neq \emptyset$, поскольку $\emptyset \neq \Omega^{(1)} \cap \Omega^{(2)} \subset \Omega^{(1)}$ и $\Omega^{(1)}$ связно. Однако, $\partial \Omega^{(2)} \subset S_2$ и $\Omega^{(1)} \subset K_1$. Следовательно, допущение (5.1) противоречит включению $S_2 \subset \Omega_1 = \overline{\mathbb{R}^n} \backslash K_1$.

Тогда по предложению 5.1 компакт $K = K_1 \bigcup K_2 \subset C_0$ не разбивает $\overline{\mathbb{R}^n}$, т.е. $\Omega = \overline{\mathbb{R}^n} \backslash K = \Omega_1 \bigcap \Omega_2$ является областью в $\overline{\mathbb{R}^n}$.

Далее, так как $\partial C_0 = S_1 \bigcup S_2 \subset K_1 \bigcup K_2 = K$ и $K_1 \cap K_2 = \emptyset$ и C_0 связно, то $\Omega_0 = \Omega \cap \operatorname{Int} C_0 \neq \emptyset$ (если $\operatorname{Int} C_0 \subset K$, то $C_0 = K = K_1 \bigcup K_2$). Однако, по построению $D \subset \Omega$, $D \bigcup C_0 = \overline{\mathbb{R}^n}$, $D \cap C_0 = \emptyset$ и $\Omega = D \bigcup \Omega_0$. Последнее противоречит связности Ω . Таким образом, наше допущение, что ∂C_0 не связно, является неверным и мы получаем заключение леммы.

Следствие 5.1. Внутренность Int C^* каждой компоненты C^* дополнения $\overline{\mathbb{R}^n} \setminus D$ области D отделяется от $\overline{\mathbb{R}^n} \setminus C^*$ единственной компонентой K^* границы ∂D , т.е. любой путь, соединяющий $x \in$ Int C^* u $y \in \overline{\mathbb{R}^n} \setminus C^*$ в $\overline{\mathbb{R}^n}$, пересекает K^* .

Доказательство. Действительно, по лемме 5.1 граница C^* состоит из одной компоненты K^* границы ∂D . Если некоторый путь $\gamma: (0,1) \to \overline{\mathbb{R}^n}$, соединяющий $x \in \operatorname{Int} C^*$ и $y \in \overline{\mathbb{R}^n} \backslash C^*$, не пересекает ∂D , тогда (0,1) разбивается на два непересекающихся открытых множества $\gamma^{-1}(\operatorname{Int} C^*)$ и $\gamma^{-1}(\overline{\mathbb{R}^n} \backslash C^*)$, что противоречит связности интервала (0,1).

Лемма 5.2. Пусть D — область в \mathbb{R}^n , $n \geq 2$, u пусть C^* компонента ее дополнения $\mathbb{R}^n \backslash D$. Тогда, для любого $\varepsilon > 0$, найдется окрестность N_{ε} компоненты C^* , такая что $D_{\varepsilon} = D \cap N_{\varepsilon} \subset C_{\varepsilon}$ является областью, где

$$C_{\varepsilon} = \{ x \in \overline{\mathbb{R}^n} : h(x, C^*) < \varepsilon \}$$
 (5.2)

 ε -окрестность C^* относительно сферической (хордальной) метрики $h \in \mathbb{R}^n$.

Доказательство. Обозначим через S_{ε} объединение всех компонент компакта $C = \overline{\mathbb{R}^n} \backslash D$, которые пересекают компакт $\overline{\mathbb{R}^n} \backslash C_{\varepsilon}$. Заметим, что множество S_{ε} — замкнутое и, следовательно, — компакт в $\overline{\mathbb{R}^n}$.

Действительно, предположим, что S_{ε} — незамкнутое, т.е. существует точка $x_0 \in \mathbb{R}^n \backslash S_{\varepsilon}$ и последовательность $x_l \in S_{\varepsilon}$, такие что $x_l \to x_0$ при $l \to \infty$. Пусть $C_l \subset S_{\varepsilon}$ — соответсвующая последовательность компонент C, содержащих x_l . Тогда

$$C_0 = \overline{\lim}_{l \to \infty} C_l = \{ y \in \overline{\mathbb{R}^n} : y = \lim_{l \to \infty} y_l, \ y_l \in C_l, \ l = 1, 2 \dots \}$$
 (5.3)

является связным (замкнутым) подмножеством C, см., напр., (9.12) в [72, с. 15], которое содержит x_0 и пересекает $\mathbb{R}^n \backslash C_{\varepsilon}$. Полученное противоречие опровергает предположение.

Теперь, пусть N_{ε} — компонента $\overline{\mathbb{R}^n} \backslash S_{\varepsilon}$, содержащая C^* . Тогда по построению всякая компонента C полностью содержится либо в области N_{ε} , либо в ее дополнении. Заметим также, что отрытое множество $D_{\varepsilon} = D \bigcap N_{\varepsilon}$ не пусто. Остается показать, что D_{ε} связно.

Предположим, что D_{ε} не является связным. Тогда существует компонента $D_0 \subset D_{\varepsilon}$, такая что $D_{\varepsilon} \backslash D_0 \neq \emptyset$ и по следствию 5.1 существует компонента K_0 границы ∂D_0 , которая отделяет D_0 от другой компоненты D^* дополнения $D_{\varepsilon} \backslash D_0$. По построению K_0 содержится в компоненте K^* границы D или N_{ε} .

Если $K^* \subset \partial D$, то точки $x \in D_0$ и $y \in D^*$ можно соединить путем γ в D. С другой стороны, по следствию 5.1 γ должен пересекать K_0 , что невозможно, поскольку $K_0 \subset C = \overline{\mathbb{R}^n} \backslash D$. Аналогично, если $K^* \subset \partial N_{\varepsilon}$, то точки $x \in D_0$ и $y \in D^*$ могут быть соединены путем γ в N_{ε} . Снова по следствию 5.1 путь γ должен пересекать K_0 , что противоречит включению $K_0 \subset \overline{\mathbb{R}^n} \backslash N_{\varepsilon}$.

Лемма 5.3. Пусть D- область в $\overline{\mathbb{R}^n}$, $n\geq 2$, u пусть $f:D\to \overline{\mathbb{R}^n}$ является гомеоморфизмом. Тогда D'=f(D)- область u существует естественное взаимно однозначное соответствие между компонентами K u K' границ ∂D u $\partial D'$, такое что C(f,K)=K' u $C(f^{-1},K')=K$.

Здесь мы используем понятие npedeльного множества отображения f на $E\subset \partial D$

$$C(f, E) = \{ y \in \overline{\mathbb{R}^n} : y = \lim_{l \to \infty} f(x_l), \quad x_l \to x \in E \}.$$
 (5.4)

Доказательство. D' = f(D) является областью по известной теореме Брауэра, см., напр., [8, с. 358].

Далее, $C(f,E)\subset \partial D'$ для каждого множества $E\subset \partial D$ и, аналогично, $C(f^{-1},E')\subset \partial D$ для каждого множества $E'\subset \partial D'$.

Действительно, по определению $C(f,E) \subset \overline{D'}$. Предположим, что существует точка $y_0 \in C(f,E) \cap D'$. Положим $x_0 = f^{-1}(y_0)$. Тогда $x_0 \in D$ и, следовательно, $\delta_0 = \operatorname{dist}(x_0,\partial D)/2 > 0$. Пусть $x_k \in D$ таково, что $f(x_k) \to y_0$ и $\operatorname{dist}(x_k,E) \to 0$ при $k \to \infty$. Тогда $x_k \in B(x_0,\delta_0)$ для достаточно больших k и, одновременно, $x_k = f^{-1}(f(x_k)) \to f^{-1}(y_0) = x_0$ при $k \to \infty$ по непрерывности f^{-1} . Противоречие опровергает предположение.

Пусть K — компонента границы D. Ясно, что K является замкнутым подмножеством ∂D , которое является компактным множеством в \mathbb{R}^n и, следовательно, K — континуум. Далее, пусть

$$\delta_{\varepsilon} = \{ x \in D : h(x, K) < \varepsilon \},$$

где h — сферическое (хордальное) расстояние в \mathbb{R}^n . Тогда

$$C(f,K) = \bigcap_{\varepsilon>0} \overline{f(\delta_{\varepsilon})}.$$

Обозначим через D'_{ε} компоненту $\overline{f(\delta_{\varepsilon})}$, включающую C(f,K). Существование такой компоненты следует из леммы 5.1. Множества D'_{ε} образуют убывающее семейство континуумов и

$$C(f,K) = \bigcap_{\varepsilon>0} D'_{\varepsilon}.$$

Таким образом, C(f,K) — континуум, см., напр., (9.4) в [72, с. 15].

Обозначим через K' компоненту $\partial D'$, включающую C(f,K). Тогда, аргументируя как и выше, мы получаем, что $C(f^{-1},K')$ — континуум, который по построению включает K и, следовательно, $K = C(f^{-1},K')$. В силу симметрии условий леммы относительно f и f^{-1} , имеем также, что K' = C(f,K).

Следствие 5.2. Пусть $f: D \setminus X \to D'$ — гомеоморфизм, где X — замкнутое полностью разрывное подмножество D. Если f имеет непрерывное продолжение \overline{f} на D, то \overline{f} — гомеоморфизм D на $\overline{f}(D)$.

Здесь множество $X \subset \mathbb{R}^n$ называется *полностью разрывным*, если все связные компоненты X вырождаются в точку. Замкнутые множества X в \mathbb{R}^n являются локально-компактными пространствами и, следовательно, для таких X, полная разрывность эквивалентна условию dim X=0, см., напр., [15, с. 22].

6. Сингулярные множества длины нуль

В этой секции рассматривается проблема устранимости особенностей для супер Q—гомеоморфизмов. Множество X в \mathbb{R}^n называется множеством нулевой длины, если X можно покрыть последовательностью шаров в \mathbb{R}^n с произвольно малой суммой диаметров. Как известно, такие множества имееют (лебегову) нулевую меру и

$$\dim X = 0 \tag{6.1}$$

и, следовательно, они полностью разрывны, см., напр., [15, c. 104 и 22]. Классическим примером таких множеств является множество C типа Кантора, которое получается удалением последовательности открытых интервалов, средних половин, из замкнутого единичного отрезка. Заметим, что множество C является coepmenhum, т.е. замкнутым и без изолированных точек. Следовательно, по известной теореме Янга, любая окрестность точки в C содержит подмножество C мощности континуума, см. [74].

По теореме Менгера и Урысона (6.1) гарантирует, что X не разбивает область D в $\mathbb{R}^n, n \geq 2$, и, таким образом, если X — замкнутое в D, то $D^* = D \setminus X$ — область.

Лемма 6.1. Пусть D- область в \mathbb{R}^n , $n\geq 2$, X- замкнутое подмножество D длины нуль и пусть $f:D\setminus X\to \mathbb{R}^n-$ супер Q- гомеоморфизм. Если для $x_0\in X$ при $\varepsilon\to 0$

$$\int_{\varepsilon < |x| < \delta(x_0)} Q(x_0 + x) \cdot \psi_{x_0, \varepsilon}^n(|x|) \, dm(x) = o(I(x_0, \varepsilon)^n), \qquad (6.2)$$

где $0 < \delta(x_0) < \mathrm{dist}(x_0, \partial D)$ и $\psi_{x_0, \varepsilon}(t), \varepsilon \in (0, \delta(x_0)),$ — неотрицательная измеримая (по Лебегу) функция на $(0, \infty)$, такая что

$$0 < I(x_0, \varepsilon) = \int_{\varepsilon}^{\delta(x_0)} \psi_{x_0, \varepsilon}(t) dt < \infty, \qquad (6.3)$$

то f имеет непрерывное продолжение в x_0 . Если условия (6.2) и (6.3) выполнены в каждой точке $x_0 \in X$, то f имеет гомеоморфное продолжение на D.

Доказательство. Пусть Γ_{ε} — семейство всех открытых дуг (инъективных путей), соединяющих $B_0 = \overline{\mathbb{R}^n} \backslash B(x_0, \varepsilon_0)$ и $B_{\varepsilon} = \overline{B(x_0, \varepsilon)}$ в кольце $A_{\varepsilon} = \{x \in \mathbb{R}^n : \varepsilon < |x - x_0| < \varepsilon_0\}$, где $\varepsilon_0 = \delta(x_0)$ и $\Gamma_{\varepsilon}^{\circ}$ — семейство соответсвующих штриховых линий в $A_{\varepsilon} \backslash X$, получающихся

из дуг Γ_{ε} при выбрасывании всех точек из X. Пусть $\psi_{x_0,\varepsilon}^*$ — борелевская функция, такая что $\psi_{x_0,\varepsilon}^*(t) = \psi_{x_0,\varepsilon}(t)$ для п.в. $t \in (0,\infty)$, см. [9, 2.3.5] и [65, с. 69]. Тогда функция

$$\rho_{\varepsilon}(x) = \begin{cases} \psi_{x_0,\varepsilon}^*(|x - x_0|)/I(x_0,\varepsilon), & x \in A_{\varepsilon} \setminus X, \\ 0, & x \in \mathbb{R}^n \setminus (A_{\varepsilon} \setminus X), \end{cases}$$
(6.4)

является допустимой для $\Gamma_{\varepsilon}^{\circ}$, поскольку X имеет длину нуль, см., напр., замечание 30.11 в [70], и поэтому

$$M(f\Gamma_{\varepsilon}^{\circ}) \leq \int_{D\setminus X} Q(x) \cdot \rho_{\varepsilon}^{n}(|x|) dm(x).$$
 (6.5)

Следовательно,

$$\lim_{\varepsilon \to 0} M(f\Gamma_{\varepsilon}^{\circ}) = 0 \tag{6.6}$$

по условию (6.2).

Обозначим через Γ_{ε}^* семейство всех открытых дуг в \mathbb{R}^n , соединяющих множества $\overline{f(B_0)}$ и $\overline{f(B_{\varepsilon})}$. Тогда, как это ясно из следствия 5.1,

$$f\Gamma_{\varepsilon}^{\circ} \leq \Gamma_{\varepsilon}^{*} \tag{6.7}$$

и, следовательно,

$$M(f\Gamma_{\varepsilon}^{\circ}) \ge M(\Gamma_{\varepsilon}^{*}) ,$$
 (6.8)

см. предложение 3.1.

Напомним также, что

$$M(\Gamma_{\varepsilon}^*) = M(\Gamma_{\varepsilon}'), \tag{6.9}$$

где Γ'_{ε} семейство всех путей, соединяющих $\overline{f(B_{\varepsilon})}$ и $\overline{f(B_0)}$ в \mathbb{R}^n , см., напр., замечание 7.11 в [70]. С другой стороны, по лемме Геринга, см. [12], см. также [71, 7.37, 7.22 и 7.19],

$$M(\Gamma_{\varepsilon}') \ge a_n / \left(\log \frac{b_n}{\delta_0 \delta \varepsilon}\right)^{n-1},$$
 (6.10)

где a_n и b_n — постоянные, зависящие только от n, а δ_ε и δ_0 — диаметры $\overline{f(B_\varepsilon)}$ и $\overline{f(B_0)}$ в сферической (хордальной) метрике в $\overline{\mathbb{R}^n}$.

Наконец, соотношения (6.6)–(6.10) влекут, что $\delta_{\varepsilon} \to 0$, т.е. $\overline{f(B_{\varepsilon})}$ стягивается в точку при $\varepsilon \to 0$ и, таким образом, f продолжается в x_0 по непрерывности. Утверждение о гомеоморфности продолжения f в D получается из следствия 5.2.

Важным следствием леммы 6.1 является следующая теорема.

Теорема 6.1. Пусть D- область в \mathbb{R}^n , $n\geq 2$, X- замкнутое подмножество D длины нуль и пусть $f:D\backslash X\to \mathbb{R}^n-$ супер Q-гомеоморфизм. Если функция Q(x) имеет конечное среднее колебание в каждой точке $x_0\in X$, то f имеет гомеоморфное продолжение на D.

Доказательство. Заключение теоремы 6.1 получается из леммы 6.1 при выборе функционального параметра $\psi_{x_0,\varepsilon}(t) \equiv 1/(t\log(1/t))$ с привлечением следствия 2.3.

По предположению 2.1 и следствию 2.1 получаются, в частности, следующие два интересных следствия теоремы 6.1.

Следствие 6.1. Пусть X — замкнутое множество длины нуль в D и пусть

$$\overline{\lim_{\varepsilon \to 0}} \int_{B(x_0,\varepsilon)} Q(x) \, dm(x) < \infty \tag{6.11}$$

для каждой точки $x_0 \in X$. Тогда любой супер Q-гомеоморфизм $f: D \backslash X \to \mathbb{R}^n$ имеет гомеоморфное продолжение на D.

Благодарности. Исследование было частично поддержано грантами Хельсинского Университета и Израильского Института Технологий, а также грантом 01.07/00241 Научного Фонда Фундаментальных Исследований Украины. Наконец, я хотел бы поблагодарить нашего рецензента за полезные замечания, которые сделали текст более читаемым.

Постскриптум. Работа посвящается светлой памяти Андрея, который умер 3 апреля 2004 года от рака в возрасте 25 лет в самом расцвете своего математического таланта. Здесь подводится некоторый итог его творческим поискам по теории особых точек пространственных отображений. Теория граничного поведения пространственных отображений будет опубликована отдельно.

Литература

- [1] P. Alexandroff, Dimensionstheorie // Math. Ann. 106 (1932), 161–238.
- [2] K. Astala, A remark on quasiconformal mappings and BMO-functions // Michigan Math. J. **30** (1983), 209–212.
- [3] K. Astala and F. W. Gehring, Injectivity, the BMO norm and the universal Teichmuller space // J. Anal. Math. 46 (1986), 16–57.
- [4] K. Astala, T. Iwaniec, P. Koskela and G. Martin, Mappings of BMO-bounded distortion // Math. Annalen 317 (2000), 703–726.
- [5] A. S. Besicovitch, On sufficient conditions for a function to be analytic // Proc. London Math. Soc. **32** (1932), 1–9.

- [6] П. А. Билута, Экстремальные проблемы для отображений, квазиконформных в среднем // Сиб. матем. ж. **6** (1965), 717–726.
- [7] K. Borsuk, Uber Schnitte der n-dimensionalen Euklidischen Raume // Math. Ann. 106 (1932), 239–248.
- [8] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
- [9] H. Federer, Geometric Measure Theory, Springer, Berlin etc., 1969.
- [10] B. Fuglede, Extremal length and functional completion // Acta Math. 98 (1957), 171–219.
- [11] F. W. Gehring, Characteristic Properties of Quasidisk, Les presses de l'Universite de Montreal, Montreal, 1982.
- [12] F. W. Gehring, Quasiconformal mappings, in Complex Analysis and its Applications, V. 2., International Atomic Energy Agency, Vienna, 1976.
- [13] F. W. Gehring and T. Iwaniec, *The limit of mappings with finite distortion* // Ann. Acad. Sci. Fenn. Math. **24** (1999), 253–264.
- [14] J. Heinonen and P. Koskela, Sobolev mappings with integrable dilatations // Arch. Rational Mech. Anal. 125 (1993), 81–97.
- [15] W. Hurewicz and H. Wallman, *Dimension Theory*, Princeton Univ. Press, Princeton, 1948.
- [16] J. G. Hocking and G. S. Young, *Topology*, Addison-Wesley, London, 1961.
- [17] T. Iwaniec, P. Koskela and G. Martin, Mappings of BMO-distortion and Beltrami type operators // J. d'Anal. Math. 88 (2002), 337–381.
- [18] T. Iwaniec, P. Koskela, G. Martin and C. Sbordone, *Mappings of finite distortion:* $L^n \log^{\alpha} L$ -integrability // J. London Math. Soc. (2) 67 (2003), No 1, 123–136.
- [19] T. Iwaniec, P. Koskela and J. Onninen, Mappings of finite distortion: compactness // Ann. Acad. Sci. Fenn. Math. 27 (2002), No 2, 391–417.
- [20] T. Iwaniec, P. Koskela and J. Onninen, Mappings of finite distortion: monotonicity and continuity // Invent. Math. 144 (2001), No 3, 507–531.
- [21] T. Iwaniec and G. Martin, Geometrical Function Theory and Non-linear Analysis, Clarendon Press, Oxford, 2001.
- [22] A. Ignat'ev and V. Ryazanov, Finite mean oscilation in the mapping theory // Report of Math. Dept. of the Helsinki Univ. **332** (2002), 1–17.
- [23] T. Iwaniec and V. Šverák, On mappings with integrable dilatation // Proc. Amer. Math. Soc. 118 (1993), 181–188.
- [24] P. M. Jones, Extension theorems for BMO, Indiana Univ. Math. J. $\mathbf{29}$ (1980), 41-66.
- [25] F. John and L. Nirenberg, On functions of bounded mean oscillation // Comm. Pure Appl. Math. 14 (1961), 415–426.
- [26] С. Л. Крушкаль, Об отображениях, квазиконформных в среднем // ДАН СССР 157 (1964), No 3, 517–519.
- [27] С. Л. Крушкаль, Об абсолютной интегрируемости и дифференцируемости некоторых классов отображений многомерных областей // Сиб. матем. ж. 6 (1965), No 3, 692–696.
- [28] С. Л. Крушкаль, Об отображениях, ε-квазиконформных в среднем // Сиб. матем. ж. 8 (1967), No 4, 798–806.

- [29] J. Kauhanen, P. Koskela and J. Maly, Mappings of finite distortion: discreteness and openness // Arch. Rational Mech. Anal. 160 (2001), 135–151.
- [30] J. Kauhanen, P. Koskela and J. Maly, Mappings of finite distortion: condition N // Michigan Math. J. 49 (2001), 169–181.
- [31] P. Koskela and J. Onninen, Mappings of finite distortion: capacity and modulus inequalities // Dept. Math. Stat., University of Jyväskylä, Preprint 257 (2002), 1–32.
- [32] В. И. Кругликов и В. И. Пайков, Соответствие границ для пространственных отображений, квазиконформных в среднем // Дон. ун-т, Донецк, 1983, 63 с. Деп. в Укр. ВИНИТИ, No 371 Ук Д 83.
- [33] P. Koskela and K. Rajala, Mappings of finite distortion: removable singularities // Israel J. Math. 136 (2003), 269–283.
- [34] В. И. Кругликов, О существовании и единственности отображений, квазиконформных в среднем, В книге: Метрические вопросы теории функций и отображений, Наукова думка, Киев, 1973, 123–147.
- [35] В. И. Кругликов, Характеристическое свойство отображений, квазиконформных в среднем // ДАН СССР **228** (1976), No 5, 1031–1033.
- [36] В. И. Кругликов, Емкости кондесаторов и пространственные отображения, квазиконформные в среднем // Матем. сб. 130 (172) (1986), No 2 185—206.
- [37] В. С. Кудьявин, Оценки искажения расстояния при отображениях, квазиконформных в среднем // Динамика Сплош. Ср. (1981), No 52, 168–171.
- [38] В. С. Кудьявин, Локальные граничные свойства отображений, квазиконформных в среднем, Сб. науч. тр. ИМ СО АН СССР, Новосибирск (1981), 168-171.
- [39] В. С. Кудьявин, Поведение класса отображений, квазиконформных в среднем, в изолированной особой точке // ДАН СССР 277 (1984), No 5, 1056–1058.
- [40] O. Lehto, *Homeomorphisms with a prescribed dilatation* // Lecture Notes in Math. **118** (1968), 58–73.
- [41] O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York etc., 1973.
- [42] V. Maz'ya, Sobolev classes, Springer, Berlin-New York, 1985.
- [43] О. Мартио, В. Рязанов, У. Сребро и Э. Якубов, *К теории Q-гомеомор-физмов* // ДАН России **381** (2001), No 1, 20–22.
- [44] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Q-homeomorphisms, Contemporary Math. 364 (2004), 193–203.
- [45] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, On Q-homeomorphisms // Ann. Acad. Sci. Fenn. 30 (2005), No 1, 1–21.
- [46] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Mappings with finite length distortion // J. d'Anal. Math. 93 (2004), 215–236.
- [47] O. Martio, V. Ryazanov and M. Vuorinen, BMO and Injectivity of Space Quasiregular Mappings // Math. Nachr. 205 (1999), 149–161.
- [48] O. Martio, S. Rickman and J. Vaisala, Definitions for quasiregular mappings // Ann. Acad. Sci. Fenn. Ser. AI. Math. 448 (1969), 40 pp.

- [49] В. М. Миклюков и Г. Д. Суворов, О существовании и единственности квазиконформных отображений с неограниченными характеристиками, В книге: Исследования по теории функций комплексного переменного и ее приложениям, Инст. Мат., Киев, 1972.
- [50] S. Muller, Higher integrability of determinants and weak convergence in L¹, J. Reine Angew. Math. 412 (1990), 20–34.
- [51] J. J. Manfredi and E. Villamor, Mappings with integrable dilatation in higher dimensions // Bull. Amer. Math. Soc. 32 (1995), No 2, 235–240.
- [52] J. J. Manfredi and E. Villamor, An extension of Reshetnyak's theorem // Indiana Univ. Math. J. 47 (1998), No 3, 1131–1145.
- [53] M. Perovich, Isolated singularity of the mean quasiconformal mappings // Lecture Notes in Math. 743 (1979), 212–214.
- [54] М. Перович, Глобальная гомеоморфность отображений, квазиконформных в среднем // ДАН СССР 230 (1976), No 4, 781–784.
- [55] И. Н. Песин, Отображения, квазиконформные в среднем // ДАН СССР 187 (1969), 740–742.
- [56] С. П. Пономарев, N^{-1} -свойство отображений и (N)-условие Лузина // Матем. заметки **58** (1995), 411–418.
- [57] H. M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings // Comment. Math. Helv. 49 (1974), 260–276.
- [58] H. M. Reimann and T. Rychener, Funktionen Beschränkter Mittlerer Oscillation, Springer, Berlin etc., 1975.
- [59] Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Transl. of Math. Monographs 73, AMS, 1989.
- [60] Ю. Г. Решетняк, Геометрические свойства функций и отображений с обобщенными производными // Сиб. матем. ж. 7 (1966), 886–919.
- [61] Ю. Г. Решетняк, Обобщенные производные и дифференцируемость почти всюду // Матем. сб. (N.S.) **75 (117)** (1968), 323–334.
- [62] В. Рязанов, У. Сребро и Э. Якубов, К теории ВМО-квазирегулярных отображений // Доклады АН России 369, (1999), No 1, 13–15.
- [63] V. Ryazanov, U. Srebro and E. Yakubov, BMO-quasiconformal mappings // J. d'Analyse Math. 83 (2001), 1–20.
- [64] V. Ryazanov, U. Srebro and E. Yakubov, Plane mappings with dilatation dominated by functions of bounded mean oscillation // Sib. Adv. in Math. 11 (2001), No 2, 94–130.
- [65] S. Saks, Theory of the Integral, New York, Dover Publ. Inc., 1964.
- [66] Ю. Ф. Стругов, Компактность классов отображений, квазиконформных в среднем // ДАН СССР 243 (1978), No 4, 859–861.
- [67] Ю. Ф. Стругов, Квазиконформные в среднем отображения и экстремальные задачи. Часть 1, Омск (1994), 154 с., Деп. в ВИНИТИ 05.12.94, No 2786—В94.
- [68] Ю. Ф. Стругов, Квазиконформные в среднем отображения и экстремальные задачи. Часть 2, Омск (1994), 114 с., Деп. в ВИНИТИ 05.12.94, No 2787–В94.
- [69] Ю. Ф. Стругов и А. В. Сычев, О различных классах отображений, квазиконформных в среднем // Вестник ПАНИ, 7 (2002), 14–19.

- [70] J. Vaisala, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math. 229, Springer-Verlag, Berlin etc., 1971.
- [71] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math. 1319, Springer-Verlag, Berlin etc., 1988.
- [72] G. Th. Whyburn, Analytic Topology, Amer. Math. Soc., Providence, 1942.
- [73] R. L. Wilder, Topology of Manifolds, AMS, New York, 1949.
- [74] W. H. Young, Zur Lehre der nicht abgeschlossenen Punktmengen // Ber. Verh. Sachs. Akad. Leipzig 55 (1903), 287–293.
- [75] W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, New York etc., 1989.
- [76] В. А. Зорич, Допустимый порядок роста характеристики квазиконформности в теореме Лаврентьева // ДАН СССР 181 (1968).
- [77] В. А. Зорич, Изолированные особенности отображений с ограниченным искажением // Матем. сб. 81 (1970), 634–638.

Сведения об авторах

Владимир Ильич Рязанов

Институт прикладной математики и механики НАН Украины, Р. Люксембург 74, 83114, Донецк, Украина

E-Mail: ryazanov@www.math.helsinki.fi, ryaz@iamm.ac.donetsk.ua