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Topological aspects of Hurewicz tests
for the difference hierarchy
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(Presented by V. Ya. Gutlanskii)

Abstract. We generalize the Baire Category Theorem to the Borel and
difference hierarchies, i.e. if I is any of the classes Eg, 2, D,,(Eg) or
Dn(Eg) we find a representative set Pr € I' and a Polish topology 7r such
that for every A € I' from some assumption on the size of AN Pr we can
deduce that A\ Pr is of second category in the topology 7. This allows
us to distinguish the levels of the Borel and difference hierarchies via
Baire category. We also present some typical Baire Category Theorem-
like applications of the results.
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1. Introduction

If an open set of the Polish space (X, 7) is nonempty it is of second
category: this is probably the simplest formulation of the Baire Category
Theorem. The purpose of this note is to show that this theorem can
be extended to the entire Borel and difference hierarchies: if I' is any of
the classes X9, 19, Dn(Eg) or Dn(Eg) in a Polish space (X, 7) we define
a representative set Pr C X, Pr € I' and a fine Polish topology m on
X such that if a set A C X, A € I satisfies that AN Pr is of mp-second
category then A\ Pr is also of mp-second category. This makes possible in
particular to distinguish the classes of the Borel and difference hierarchies
via Baire category in a suitable topology.

We remark that there is a quite classical extension of the dichotomy
expressed by the Baire Category Theorem for open sets. More than a half
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century ago Witold Hurewicz proved the following theorem, also called
Hurewicz-dichotomy, about sets failing to be I1Y.

Theorem 1.1 (W. Hurewicz). Let X be a Polish space and A C X
be a coanalytic set. If A is not 1S there is a continuous injection of the

Cantor set into X, p: 2° — X such that ¢~1(A) is countable dense in
2%,

Again by the Baire Category Theorem in Polish spaces from the weak
assumption that a Hg set is dense we can conclude that it is residual; in
particular a countable dense set H C 2 is never I119. Thus Theorem 1.1
shows via Baire Category that a not I19 set is as far from being II9 as
possible on a copy of the Cantor set. This is the reason why the pair
(2@, H) is called the Hurewicz test for ¥ sets.

Theorem 1.1 has been strengthened in many successive steps. In
some sense the most general existence theorem for Hurewicz tests is the
following result (see |3, Theorem 2, p. 27|, |2, Corollary 6 and Theorem 7
p. 457] and also [5, Theorem 2, p. 1025]). For the definition of the
appearing classes see Section 2; for a class I'(X) C 2%, T'(X) = {4 C
X: X\ AeTl(X)} denotes the dual class of T'.

Theorem 1.2 (A. Louveau, J. Saint Raymond). Let I' be a non-
selfdual Borel Wadge class. Then there is a zero topological dimensional
compact metric space K and a T'(K) subset H of K with the following
property: for every Borel set B in a nonempty Suslin space E either
B € T'(E) or there is a continuous injection ¢: K — E with p(H) = B.

If3<é{<wandl <n<w orifé =2 andw < n < wy, for the
classes I' = Dn(Eg) and I = Dn(Zg) we can take K = 2¥ and H can be
an arbitrary set in T'(2¥) \ T'\(2%).

The pair (K, H) is called the Hurewicz test for I'. Observe that The-
orem 1.2 gives in particular that a membership of a Borel set in some I'
depends only on zero dimensional sets and can be witnessed via contin-
uous injections ¢: K — FE. On the other hand the aspect of dichotomy
which was present in the Baire Category Theorem for open sets and in
the Hurewicz-dichotomy Theorem for TIJ sets is lacking, e.g. Theorem 1.2
says nothing about how well a set A € T" can be approximated by sets in
I". Our main result provides a Hurewicz-dichotomy for the classes of the
Borel and difference hierarchies.

Theorem 1.3. Let 0 < £, < w1 be fixed. Then there is a Polish space
(05,77’7'05,7,) homeomorphic to (2%, 79v), a Dn(zg(TCg,n)) set Pey C Cep,
a nonempty Hg(Tcm) set We n(n) € Ceyy and Polish topologies Tgn, Tem
on Cg, with the following properties:
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1. Tgn refines ¢, and T, refines Tgn;
2. Pey and Ceyp \ Pep are both T¢ p-open;

3. for every Dn(Zg(TC&n)) set A C C¢ypy and T?n—open set G C Cgy,
if GNWey(n) # 0 and AN Py is 1¢ y-residual in G N Pe,, then
AN\ Pe,, is of ¢ y-second category in G\ Pey,.

Before any further discussion we formulate a corollary of this theorem
which is less abundant in notations.

Corollary 1.1. Let 0 < §,n < w1 be fired and let (C¢y,7c, ), Pey and
Ten be as in Theorem 1.3.

1. IfAC Ceyisa Dn(Eg(TC&n)) set and Pe, C A then A\ P, is of
Te p-second category.

2. IfA' CCepisa Dn(Eg(Tcm)) set and C¢ n\Pey C A’ then ANPe,,
is of T¢ y-second category.

The first statement of Corollary 1.1 is the special G = Cg, case
of Theorem 1.3, while the second follows from Theorem 1.3 applied to
A= Ce¢p\ A and G = C¢,. This corollary has already the feature of
dichotomy we are looking for: it allows to derive from the information
that a set A is “badly” structured the conclusion that either it does not
contain P, or it is big in category in Cg¢,, \ P, and vice versa. We
remark that for the Borel hierarchy a stronger result can be proved: as
we will see in Theorem 4.2, for n = 1 in Theorem 1.3 we can practically
conclude that AN P, is 7¢,-residual in G N P ,,. The reason why the
result we obtain for the difference hierarchy is weaker than what we have
for the Borel hierarchy is that Dn(Eg) (1 < n < wy) is not closed under
taking countable unions.

Theorem 1.3 gets its real power when combined with Theorem 1.2, as
follows.

Corollary 1.2. Let (X, 7) be a nonempty Polish space, 1 < £ < wi, 0 <
n < w1 be fived and let (C¢y,7c,,)), Pey and 7¢y be as in Theorem 1.3.
If a Borel set A C X is

1. in Dn(Eg (7)), then for every continuous injection ¢: (Ce y, Tc, ) —
(X,7), ¢(Peyy) € A implies that ¢~ *(A) \ Pe, is of 7¢,-second
category;

1. in Dn(Zg (7)), then for every continuous injection ¢: (Ce p, Tc,, ) —
(X, 7), o(Cen\Pery) C A implies that o~ (A)N Py, is of ¢ n-second
category;
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2. not in Dn(Zg(T)) there is a continuous injection : (C¢y, 7c, ) —
(X,7) such that p(Pe,) = AN @(Cep), hence o(Pey) € A but
e HA)\ Pey = 0;

2. not in Dn(Zg(T)) there is a continuous injection : (Ce¢y, 7c, ) —
(X, 7) such that p(Cey\ Pen) = AN@(Ce ), hence o(Cep\ Pey) C
A but o~ (A) N Pey = 0,

In this note we would like to prove only one more corollary, which
represents a typical way to apply the preceding results.

Corollary 1.3. Let Xy < A < 280 be a reqular cardinal and suppose that
in our model the union of A\ meager sets is meager in Polish spaces (this
assumption holds e.g. under Martin’s Axiom MA(X)). Let (X,7) be a
nonempty Polish space. Let 1 < & < wy, 0 < n < w; be fixed and set
I = Dn(Eg(T)) orI' = Dn(Zg(T)). Suppose that A, Aq C X (a < N)
such that A is Borel, A¢ T, A, €T and A C Ay (o < \). Then there
is a stationary set A C X such that (X \ A) N(\yep Aa # 0.

The paper is structured as follows. In Section 2 we recall some defini-
tions related to the Borel and difference hierarchies and fix some conven-
tions for Polish topologies. In Section 3 we define all the Polish spaces
and Hurewicz test sets we will use in the sequel. Since for our problem as
well, the £ = 1 case does not fit into the general framework we handle it
separately in Section 4.1. In Section 4.2 we prove the theorems concern-
ing the Borel hierarchy, and finally in Section 4.3 we extend the results to
the difference hierarchy and prove the corollaries. The results presented
here were initiated in [4]. A result of similar flavor for the Borel hierar-
chy was obtained by S. Solecki [6, Theorem 2.2, p. 526| using effective
methods.

2. Preliminaries

Our terminology and notation follow [1]. Let (C, 7¢) denote the Polish
space 2¥ with its usual product topology. As usual, Hg(T) and 22(7)
(0 < € < w) stand for the & multiplicative and additive Borel class in
the Polish space (X, 7), starting with IT{(7) = closed sets, ¥{(7) = open
sets.

We derive the difference hierarchy as follows (see also [1, Section 22.E,
p. 175]. Every ordinal 7 can be uniquely written as a+n where « is limit
and n < w. We call i even if n is even and odd if n is odd.
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Definition 2.1. Let 0 < &,1 < wi and let (Aq)a<n be a sequence
of subsets of a set X, such that A, C Ay (o < o' < n). Then
Dy ((Aa)a<n) € X is defined by

2 € Dy((Aa)acn) <= z€ | ] Aa
a<n

and the least o < n with x € A, has parity opposite to that of .
With this operation in the Polish space (X, T) we set

D, (22(7)) = {Dn((Aa)a<n): A, € 22(7'), Ay C Ay (a<d < 7])} )

The definition of the Wadge hierarchy can be found e.g. in [1, Section
21.E, p. 156 and Section 22.B, p. 169]. We will use only the Borel and
difference hierarchies in the sequel.

Let £,9; (i < w) be ordinals. We write ¥; — & if £ is successor and
Ui +1 =€ (i < w) orif € is limit, J; is successor (i < w), ¥; < V;
(i < j <w) and sup;, ¥; = &.

For every ordinal £ < w; we fix once and for all a sequence (9;)i<w
such that v; — £. To avoid complicated notations, we do not indicate
the dependence of the sequence on &, it will be always clear which pair
of ordinal and sequence is considered.

In this note we will notoriously refine Polish topologies by turning
countably many closed sets into open sets. We do this as described in [1],
that is the open sets of the ancient topology together with their portion
on the members of our collection of closed sets serve as a subbase of the
new, finer topology. We will use that the topology obtained in this way
is also Polish.

Definition 2.2. Let (X,7) be a Polish space, P = {P;:i < w} be a
countable collection of 1Y(7) sets. Then T[P] denotes that Polish topology
refining T where each P; (i < w) is turned successively into an open set.

It is easy to see that the resulting finer topology 7[P] is independent
from the enumeration of P. This will be clear shortly when we fix a base
of 7[P]. We also use the notation 7[P] when the countable collection of
not necessarily I19(7) sets P can be enumerated on such a way that P,
is OY(7[{P;: i < n}]).

We need a precise notion of basic open sets in our spaces.

Definition 2.3. Let (X;,7;) (i € I) be Polish spaces; if a basis G; is fized
in the spaces (X;, ;) (i € I), which are meant to be the basic open sets in
(Xi,7;), then the basic open sets of ([[,c; Xi,[[;c;7) are the open sets

of the form
HGZ X H Xl',

ieJ €I\J
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where J C I is finite and G; € G; for every i € J.

If the basic open sets G are fixed in the Polish space (X, T) and T[P]
makes sense for a countable collection P of subsets of X, then the basic
open sets of T[P] are of the sets of the form GNFyN---NEF,_1 or G
with G € G, F; € P (i <n); a basic T[P]-open set is said to be proper if
it 18 not T-open.

Observe that the basic open sets defined on this way form a basis of
[I;c; 7 and 7[P], respectively. From now on whenever a Polish space
(X, 7) appears we assume that a countable basis comprised of basic 7-
open sets is fixed; and this is done with respect to the convention of
Definition 2.3 if it is applicable. We take X to be basic T-open.

The closure of a set A C (X, 7) is denoted by cl-(A). We recall that a
19(7) subset G of the Polish space (X, ) is itself a Polish space with the
restricted topology 7|g (see e.g. [1, (3.11) Theorem|). In particular, the
notions related to category in the topology T make sense relative to G.

We will have to return to the topologies on the coordinates in product
spaces. If (X,0), (Y,7) are arbitrary topological spaces and (X,S) =
(X xY,0 x 1), then we define Prx(S) = 0. The projection of product
sets in product spaces is defined analogously. If Gx € X and Gy C Y,
we say that the set of product form G = Gx x Gy C X is nontrivial on
the X coordinate if Gx # X.

3. Spaces, sets and topologies

In this section we define the Polish spaces and the special sets for
which a Polish topology featuring the dichotomy we like can be con-
structed. First we handle the Borel hierarchy.

Definition 3.1. We set (C1,7¢,) = (Ca,7¢,) = (C, 10),
P={zeCi:z(n)=1(n<w)}

and Tp, = 7';1 =10, on Cy. Let {Uyp: n < w} be an enumeration of the
set {r € Cy: In<w (z(i) =0 (n <i<w))} and set

Py = Co\ {Uzn: n < w}, 75, = Tcy, TP, = T5,[{U2n: 1 < w}].

Let now 2 < & < wi and suppose that the spaces (Cy,7c,), the
Hg(Tcﬂ) sets Py and the topologies Tp,, 7’;19 are defined for every 9 < &.
Then with ¥; — &£ let

Ce=II1Co.  mec=Tl7,

<w <w
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Pe={xe€Ce:a(i,.) € Cy, \ Py, (i <w)},
Té = H Tpﬁi’
<w

and let Tp, = Té[{U&n: n < w}| where

Uen = H(Cﬁi \ Py;) x Py, X H Cy,

<n n<i<w

c [ICo. x Co, x J] Co=Ce (n<w).

<n n<i<w
If € is a limit ordinal for every m < w we also define
= I G rer= II 7.
m<i<w m<i<w

P ={z e C": x(i,.) € Cy, \ Py, (m <i <w)},

<
Tpm = H TPy,

m<i<w

and let Tpy = Tl§§m {Ug,: m <n <w}] where

Ul = [ (Co\Ps)x Py, x [] Co

m<i<n n<i<w

- H Cy, x Cy,, X H Cy, =Ce (m < n <w).

m<i<n n<i<w

(3.2)

(3.4)

If € is a limit ordinal and ¥ < & let I be minimal such that ¥ < 9.
Set He(9) = [Lic; (Co; \ Po;) % [l1<icy, Co, and for every m < w set
Hg”(f/‘) = Hm§i<l (Cy; \ Py;) % HI§i<w Cy, if m < I else let Hg”(ﬁ) =

Cgt. If € is a successor we set He(V) = Cg (9 < €).

We prove a lemma on the relation of P, Té and 7p,.
Lemma 3.1. Let 0 < £ < wy be fized.

L. (C¢,7c,) is homeomorphic to (C,7c).

2. Prisa Hg(’fcg) set.

3. P¢ is a Tp.-nowhere dense H?(TPE) set.

B

For{>2, P CCeisa TI§€ -dense Hg(Té) hence T]§§ -residual set.
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5. For £ >2, Ce\ Peis a Tlfé—dense 28(7—;&) set.
6. If G is basic Tp.-open and GNP # ) then G is also basic Té—open.

7. If G is proper basic Tp.-open there is a basic T;E—open set Gy and
a unique n < w satisfying G = Go N Ug .

8. If G is proper basic Tp.-open the topologies Tpg‘G and Té]g coimn-
cide.

9. The topologies TP§|P§ and 7'1§§|p5 coincide.

If € is a limit ordinal then 2-9 hold for Pgm and Ug’fn instead of P and
Uen (m<n<w).

Proof. Statement 3.1 follows from the fact that a countable power of
(C, 1¢) is homeomorphic to (C, 7¢).

We prove 2 by induction on £. For £ = 1 we have that P; is a single
point, which is clearly 11{(7¢,). For ¢ = 2, P, is the complement of a
countable set so it is I13(7¢,). Let now £ > 3 and suppose that P, is
Hg(TCn) for every n < £&. With 9,, — & we have

Pe= () {z€Ce:a(m,.) €Cy, \ Py} (3.5)

m<w

Since 7, is the product of the topologies 7¢, ~and Py,, is H%m (Tcy,,) by
the induction hypothesis, P is the intersection of sets of additive class
lower than &, so the statement follows.

We prove 3 and 4 together, by induction on £. For £ = 1, P is a
single point, which is clearly I19(7p,) and 7p,-nowhere dense. For ¢ = 2,
statements 3 and 4 follow from the fact that {Us ,: n < w} is a 7¢,-dense
countable set. Let now & > 3 and suppose that 3 holds for every n < €.
We prove 4 for £ and then 3 for . Let ¢, — £. By (3.2) and (3.5), we
have

Pe=C¢\ < U Ug,n) (3.6)

n<w
By the induction hypothesis Py, is 7p, -nowhere dense and II{(7p, )
(n < w) so since 7'1§€ is the product of the topologies 7p, (n < w), Ugy, is

Tﬁf—nowhere dense (n < w). Also, Ug,, is a finite intersection of Tlfg—open
and H?(TE{) sets, thus it is a 28(7';&) set (n < w). Hence (3.6) shows
that P is TI§€ -dense and HS(TE).

Now we prove 3 for £&. To obtain 7P, we made open every Ug, on
the right hand side of (3.6), so P is H(I)(Tpé). Using again that Py, is
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Tpy, -nowhere dense (n<w), Y Ue,n meets every Té—open set, hence

nw
it is Tpé—dense Tp,-Open. So P is Tpg—nowhere dense.

For 5, we have just observed that |J

set, hence it is TF<,§ -dense, as stated.

new Uen Meets every Té—open

Statements 6 and 7 follow from the fact that U ,, (n < w) are pairwise
disjoint and are disjoint from P¢. Statements 8 and 9 immediately follow
from 7 and 6.

Finally if £ is a limit ordinal and m < w then by taking ¥, = ¥4, the
sequence obtained satisfies ¥, — £ so 2-9 hold for Pg” and Ug“n instead
of Pe and Ug,, (m < n < w) and the proof is complete. O

Next we point out a property of He(¥).

Lemma 3.2. For every 0 < £ < wy, He(0) is a Tf,g—dense Té—open set
in C¢. We have P C He(9) C He(¥') (¥ <9 <&).

Similarly, Hg”(ﬁ) s a Tém—dense Tém—open set in Cg"” and Pg” C
Hp'(9) € HP(9) (9 <0 < 6).

Proof. The statements immediately follow from the definition. O

We continue with the definition of the spaces, the sets and the topolo-
gies for the difference hierarchy.

Definition 3.2. Let 0 < &, < wy be fized. If & is a successor ordinal

take sequences (Ce(av), 7o (a))s Pe(av), T;E(a) and Tp(a) (@ <) of copies

of the Polish space (C¢, 7c, ), the set Pg and the topologies Té, 7p, defined

in Definition 3.1; and set pg(a) = 0 (a < m). If £ is a limit ordinal

take an injection py:n — w and let (Ce(@), 7o (o)) = (C’g"(a),TCpn(a>),
3

P{(O[) = prn(a)’ Té(a) = T]zpn(a) and TPg(O&) = Tpgn(a) (Oé < 77)
Let
Cvn:: I]:C%(a)v7tkm:: II’n%(aﬁ
a<n a<n

for every a < n set

Kool = U ((TLce) x (€es)\ Ron « TT i),

BLla <B B<y<n

Ven(a <HP5 ) Ce(a) \ Pe(a H Ce(v

y<a a<y<n
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Ven(n) =11,<, Pe(v) and for 0 < o <n let

Wen(a) =[] Py x [ Ce(n)

y<a asy<n

Now set

Qe = DW((K&??(O‘))aKn) = U{VE,U(O‘): a<mn, aisodd < n is even},

Pep=Cen\ Qe = U{ng(a): a<n, aisodd < n is odd}

and define the topologies

HTP& &n HTP X H TPe(7) (a <mn),

a<n r<a asy<n

Ten = Ten (O {Wen(@): 0 < a <njl.

If € is a limit ordinal and 9 < § set He (9) =[], Hp” ( ). If ¢
is successor we set He (V) = Ce

Remark 3.1. The notation introduced above is negligent because for
limit £ we do not indicate the dependence of say C¢ (o) from the particular
n and p, we are working with. Since n and & will mostly be fixed this
will not cause any confusion. On the other hand p, will vary for the
following reason. If £ is limit and n = ng + (7 \ 7o) we identify Cg,
with Cg¢ ;0 X Cgj\p by fixing the injection py,: n — w first and taking
Pro = Plnos Pri\no = :071|n\770' In the sequel this convention applies for the
terms of product spaces. We will state in advance where this happens.

We summarize the basic properties of our new sets and topologies.
Notice in advance that Vg, (n) = We,(n), T 577 = Tén( ) (0 < < wy)
and that the sets Ve ,(a) (a <) are pairwise disjoint.

Lemma 3.3. Let 0 < £, < wy be fized.
L. (Cepy7Ce,) i homeomorphic to (C,7¢).

2. Wen(n) is a Hg(TCM) set, K¢ p(a) is a EO( Ce.y) s€t (@ <) hence
Qe is a Dn(Eg(Tcg,,,)) set and P, is a D (22(7'05 )) set.

3. Q¢ and Pe,y are T¢ ,-open.
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Proof. Statements 1 and 2 follows from Lemma 3.1.1 and Lemma 3.1.2.
For 3 we have Vg ,(n) = We ,(n) and

Ven(@) = Wep(a ((Hcg )Xpé I ¢ >a<n>

<o a<y<n

hence V¢ ,(«) is 7¢ p-open (o < 7). Since Q¢ and P, are the unions of
some V¢, (a) (a <) they are 7¢ ,-open, as stated. O

Next we analyze the restriction of the topology 7¢ , to our special sets.

Lemma 3.4. Let 0 < {,n < wi, a < n be fizred and let (Y,o0) be a
nonempty Polish space. Then

1. if G C C¢p xY is basic ’7’§<77(0) x o-open and GN (Ve (a) xY) # 0

then G is basic Tgn("}/) x o-open (v < a);

2. if G C C¢ XY is basic ¢ y x o-open and GN(Ve ,(a) x Y) # () then
there is a basic T£n< a)xo-open set G' such that GN (Ve p(a) xY) =
G0 (Vey(a) xY);

3. the topologies (T¢.; X o)y, , (a)xy and (Tgn(fy) X0y, (@)xy (¥ < @)
coincide;

4. if 0 < a, G is basic 7'§<n(0) x o-open and G N (Wep(a) xY) # 0
then G is basic T;n("}/) x g-open (v < a);

5. if G is basic T¢ , X o-open and G N (We p(n) xY) # (0 then there
is a basic 7‘5 x o-open set G' such that G' N (Wep,(n) xY) =

G N Wey(n) xY);

6. the topologies (¢ % 0)|we, (n)xy and (Tgn(’)/) X)W, (mxy (Y < 1)
concide.

Proof. For 1, let G be basic a 7 n(O) x o-open set satisfying GN (Ve , () x
Y) # 0. If for some v < «, Pre,( y(G) is proper basic TP (y)-open then

Preo, (1) (G) N Pe(y) = 0 hence G N (Vey(a) xY) = 0, which is not the
case. So Pre,(,)(G) is Tlfé(v)—open (7 < ), thus 1 holds.

For 2, let G be basic 7¢ , X g-open, say G = G'N(We () x Y) where
G' is basic 7, (0)-open and # < 5, such that G N (Vey(a) x Y) # 0.
Since Ve, (a) © We, (1) (v < @) and V(@) N Wey (1) = 0 (0 < 5 < ),
we have G N (Ve (o) xY) = G' N (Vep(o) xY) # 0. Thus by 1 with
7= a, G'is basic 77, (a) x o-open so 2 holds.

Since 75, (7) (v < @) is finer than 7, () and is coarser than 7¢ ), 2

immediately gives 3.
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For 4, observe that W, (o) = U,<p<, Ven(B). Thus we have G N
(Ven(B) x Y) # 0 for some a < 3 < n. So by 1, G is basic Tén(’y) X o-
open (v < f3), as required.

Finally 5 and 6 are the special & = 7 case of 2 and 3, so the proof is
complete. O

To close this section we prove three lemmata, the first specially for
& =1, the second for 1 < £ < wy and the third for He ,(¥).

Lemma 3.5. Let 0 < n < wy be fizred and let (Y,0) be a nonempty
Polish space. If H is 17, x g-open and H N (Wi,(n) xY) # 0 then
HN(Vig(y) xY) #0 (v <mn).

Proof. By passing to a subset we can assume that H is basic Tfn X O-
open. For v = 7 the statement follows from Vi ,(n) = Wi,(n) so let
v < n. Observe that 775, = 7¢, ,; thus H N (Wi ,(n) x Y) # 0 implies
Pi(a) € Pre, o) (H) (o <) and Pry (H) # (. Since Pre, (o) (Vig(y)) =
Pi(a) (a < 7) and Pre, o) (Vig(7)) is a 7, (a)-dense 7¢, (o)-open set
(v < a < n) we conclude H N (Vi,(v) xY) # 0.

Lemma 3.6. Let 1 <&, <wp, a <y <n be fired. Then

L Vey(a) is a 75, (v)-dense set;

2. ng(a) 8 a Tgn(a)-residual set;

3. Wep(a) is a 7'£< (v)-residual TIY(75) set.

N &m

Proof. By Lemma 3.1.4 and Lemma 3.1.5, both P¢(3) and C¢(8) \ P¢(B)
are T;&(m—dense sets (B < a), so 1 follows. By Lemma 3.1.4, P¢(f) is a
Té(ﬁ)—residual 1'18(7';?E (B)) set (8 < a) while by Lemma 3.1.3, P¢(a) is a
Tpe(a)-nOWhere dense, so we have 2 and 3. O

In the final lemma we apply the convention of Remark 3.1 for the first
time.

Lemma 3.7. For every 0 < &,1 < w1, He,(0) is a 75, -dense 7'< -open,

set in Cepy. We have We (1) C He ) (9) € He (1) (19; ng v <€) and for
a <n, i =n\a, Hey(0) = Hea(V) X He(9) (0 <€)

Proof. The statements immediately follows from Lemma 3.2 and the
definition using that p; = pyli and p, = ppla by the convention of
Remark 3.1. O
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4. Testing the difference hierarchy

From now on we work to prove that (C¢,, 7., ), Wen(n), Pens 75,
and 7¢, of Definition 3.2 have the properties required in Theorem 1.3.
We start with the easy observations.

Proposition 4.1. Let 0 < §,n < w; be fized. Then (C¢y,7c, ) is home-
omorphic to (2%, 1ow), We () is a Hg(rcm) set, Pey is a Dn(Eg(TC&n))
set. The topology T¢, is Polish and refines T£<n which in turn refines

¢, The sets Pey and Cey \ Peyy are both 7'57777—0pen.

Proof. The statements follow from Lemma 3.3.1, Lemma 3.3.2, Defini-
tion 3.2 and Lemma 3.3.3. ]

Thus Theorem 1.3.1 and Theorem 1.3.2 hold. Observe that for 1 <
¢ < wy if G is basic Tgn—open then G N We,(n) # 0 follows from Lem-
ma 3.6.3 with a = v = 7. So this condition in Theorem 1.3.3 is restrictive
only for £ = 1. In the sequel we use these properties without further refer-
ence. Theorem 1.3.3 will be proved through Theorem 4.1, Corollary 4.1.1
and Theorem 4.3.

4.1. The £ =1 case

First we prove Theorem 1.3.3 for £ = 1. As we mentioned in the
introduction this case does not fit into the general framework. Since the
1 < & < wy case is complicated enough in itself we treat £ = 1 separately.
Also, this is a simple but informative introduction to the techniques we
use. In the proof the product structure of Definition 3.2 must be exploited
thus we prove Theorem 1.3.3 for £ = 1 in the following more general form.
When Y is a single point, we get back Theorem 1.3.3.

Theorem 4.1. Let 0 < n < wy be fizred. Let (Y,0) be a nonempty Polish
space and consider a Dy(X9(7¢,, % 0)) set A C Ciy x Y. Suppose that
G C CryxY is Ty, xa-open, GN(Wi,(n) xY) # 0 and AN (Pry xY)
is T,y X o-residual in GN (P x Y). Then AN(Q1,y X Y) is of 71y X 0-
second category in G N (Q1, X Y).

Proof. Notice first that by Definition 3.2, 7%, (0) = 71, = 7¢, ,; s0 G is
basic 7¢, , X o-open. We prove the statement by induction on 7. Let
first n = 1; then AN G is a nonempty E?(TCM x o) set, Q11 = V11(0) =
C1(0) \ P1(0) and Pyy = Wi1(1) = Pi(0). That is P;; is one point
hence Q11 is a 7¢, ,-dense 7¢, -open set. Thus ANG N (Qr1 xY) is
a nonempty 7¢,; X o-open set so it is of 7¢, ; X o-second category, i.e.
AN (Qu1 xY) is of 7o, x o-second category in G N (Q1,1 xY). By
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Lemma 3.4.3 with v = 0, (71,1 X 0)|@,.1xy = (Tcy, X 0) [Qu1xy so the
statement follows.

Suppose now that 1 < 1 < w; and the statement holds for every
n < n and nonempty Polish space (Y,o0). Let A = D, ((Aq)a<y) With
EQ(TCLU x o) sets Ay (a0 < 1) satisfying Ag C A, (8 < o <n). We have
that Wi ,(n)xY C Py, xY is 11, X o-open. Since GN(Wy,(n) X Y) # 0,
Ais 11y xo-residual in GN(W1 () x Y'). Thus there is a minimal a such
that the parity of a and 7 are different and A, NG N (W1, (n) x Y) is of
71,7 X 0-second category. Since A, and G are 7¢, , X o-open, Lemma 3.5
with H = A, NG gives that A,NGN (Vi () x Y) is nonempty hence of
1,y X 0-second category. Now the parity of a and 7 differ so V; (o) xY C
Q1 x Y. That is if A, \ Uﬁ<a Apg is also of 71, x o-second category in
G N (Viy(a) xY) then we are done.

Suppose that this is not the case. Then there is a § < « and a basic
T1y X o-open set Gop € A, N G such that Go N (Vi,(a) X Y) # 0, Ag is
T,y X o-residual in Go N (V1,,(o) X Y) and the parity of 3 and « differ,
that is parity of 8 and 7 coincide. Since A,, Ag and G are XY (701, X 0)
we can assume that Gy is in fact basic 7¢, , X o-open, Gp C AgN A, NG
and Pl(ﬁ) ¢ PTCI(B)(GO)-

Set n = 3,

X—( 11 C1(’7)> XY, Q—( 11 TCl(’y)> X 0,

B<y<n B<y<n

A = Dy((Ay)y<y) and G = Go. 1t is clear that G is a basic 7¢, , X g-open
set hence G is basic Tfm X o-open, as well. Since § < « implies

Vigla) x Y CWy,(8) x Y CWiy,(n) x Y,

we have G N (W1, (n) x Y) # 0.

We show that A is T1y X o-residual in G N (P, x Y). For this we
have to prove that A is 71, x g-residual in G N (Vi,,(7) x Y) whenever
v < n has parity equal to the parity of . Now G C G implies that A
is 71, x o-residual in G N (Py, x Y), that is A is 71, X o-residual in
G N (Vig(y) xY) for every v < n with parity equal to the parity of 7.
Since the parities of 7 and 7 are equal, P1(n) ¢ Prc, () (G) implies

GN(Vig(y) xY) =GN (Vig(y) xY) (y<n)

and by Lemma 3.4.3,

(11 X Dlanvi,(nxy) = (a1, X Dlenma,()xy) =
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= (Tc1,, X 0)lani ,(nxy) = (T1, X O)lana ,(n)xY)

= (71,77 X U)’Qﬂ(vl,,,(fy)xy) (v < ﬂ)

we conclude that A is 7y, X g-residual in GN (P, xY). Now G C Ag so
Apg is also 11, X o-residual in GN (P, xY). Since the parities of 8 and
n are equal this is possible only if A = Dg((Ay)y<p) is 71,y X o-residual
in GN (P, xY). -

So the induction hypothesis can be applied for 7 < 7, the Polish space
(Y,0), the Dy(X%(7¢,,, % 0)) set A and the basic 1, X g-open set G
satisfying G N (Wi ,(n) x Y) # 0. We get that A is of T,y X o-second
category in G N (Q1, x Y). Since A = Dg((A,),<5) C A, this means
that A is of 71, X g-second category in @1, x Y. We have

Vig(n) XY =Vig(y) xY (y<n)

so by Lemma 3.4.3,

(7L X D), (nxy = (Ter, X Dlvi () xy
= (101, X O)lvi,(nxy = (To1, X 0)|vi () xy

= (7-1,77 X O-)‘VLT,('y)XY (’Y < ﬂ) (47)

Since # and 7 have the same parity,

Qip XY = Q18 X H Ci(y) xY

By<n
= U{Vlm(a): a<f, aisodd < fiseven} C Qq, X Y.

So A is of 7, x o-second category in Q1, x Y, which completes the
proof. O

4.2. The n =1 case

Similarly to the £ = 1 case, for 1 < £ < w; the proof of Theorem
1.3.3 goes by induction on 5. In this section we prove the first step of the
inductive argument, namely the n = 1 case.

Theorem 4.2. Fiz 1 < § < w;. Let (Y,0) be a nonempty Polish space,
G C Ce XY be a basic Té X o-open set.

LIfE>2and 9 <& AC Ce xY is II§(r¢, x o) and AN (P xY)
is (7'pE ]pg) x o-residual in G N (Pe X Y) then A is Tp, X o-residual
in GN(Heg(¥) xY).
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2. If for a set W € Eg(T(j§ x0o), WN(P: xY) is (Tp,|p,) X o-residual
in GN (P xY), then W is 7p, X o-residual in a Tp, X o-open set
H C C¢ x Y satisfying GN (Pe xY) C clTP&XU(H N(Pe xY)).

The same result holds if (C¢,7c,), P, Tp,, 7'1§§_ and He¢(V9) are replaced
by (C’g”,v'ogn), P, e, Tém and H{"(9) (m < w).

Proof. First observe that if £ is a limit ordinal and m < w then by taking
¥, = U4 the sequence obtained satisfies ¥, — £ so the statements for
(C’g”, Tc'gn), P, TP, Tém and Hfm(ﬁ) follow from the special m = 0 case.

Note also that for £ > 2 if G C C¢ X Y is a nonempty basic TI§€ X o-
open set then G N (P x YY) # () follows from Lemma 3.1.4.

If we have proved 1 for a 2 < £ < wy then 2 is automatic for &, as
follows. Let ¥; — & and write W = (J,_, Ai where A; is Hgi (Tce x 7).
Suppose that W N (Pe x Y) is (7p,|p,) X o-residual in GN (P x Y). For
every i < w let H; denote the maximal Tp. X 0-open set in which A;
is 7p, x o-residual. Now P: C H¢(9) (¥ < &) by Lemma 3.2 so by 1
the 7p, x g-open set H = (J;_, H; meets G' N (P; x Y) for every basic
7'1§§_ x g-open set G’ intersecting G'N (P¢ x Y'), which proves 2.

So we need only to prove 1. We do this by induction on £, namely we
prove 2 for £ = 1 and then we prove 1 for a fixed 1 < £ < wy by assuming
that 2 holds for every n < £. For 2 if £ = 1, H = W can be chosen by
the Baire Category Theorem.

Let now & > 2 and suppose that 2 holds for every n < £ and Polish
space (Y, o), no matter how we have fixed ¥; — n for a limit n < &.
Consider a H%(TC5 xo)set A C CexY for ad < & and suppose that
AN(Pe x Y)is (Tp|p,) X o-residual in GN(Pg x Y) for the basic TI§§ X o-
open set (G. By Lemma 3.1.9 the topologies TPE|P5 and ’7';5|p§ coincide
so ANGN (Py xY) is also 7'I§§|pE x o-residual in G N (P¢ x Y). But by

Lemma 3.1.4, P is a T1§£ -residual subset of Cy, so

ANGis TF<>§ x o-residual in G. (4.8)

Suppose that A is not 7p, X o-residual in GN(Hg (V) x V), that is ANG
is 7p, X o-meager for some basic 7p, X g-open set G C GN(He(W) x Y);

by passing to a basic 7p, X o-open subset we can assume that G is not

7'1§5 X o-open. By Lemma 3.1.7, there is a basic 7';5 X o-open set Gy and

a unique J < w such that G = Gy N (Ue,; x Y). By passing to a basic
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T]§§ X o-open subset Gy C Gy we can assume that

HCﬁ)XPgJX( H ng)XY>7é@
1<J JH1<i<w
(4.9)

Note that G C G N (He(¥) x Y) implies ¥ < 9; and Gy € G. To

summarize, we obtained that

G’oﬁ(U&JXY Goﬂ((

ANGoN (Ue g xY) is Tp, X o-meager in GoN(UegxY). (4.10)

Set§:19j,

Y = <HC§1. X H Cgi> XY,

i<J J+1<i<w
o= (I T1 ) e
i<J J+1<i<w

W=(CexY)\ACCe xY,
Q = éo - C§ X X
The space (Y, o) is clearly Polish, G is a basic Tp. X g-open subset

of C¢ x Y. Since GN (Pg xY) # 0, Lemma 3.1.6 implies that G is basic
T]§§ x g-open. By 9 <&, W is a Z)g(TCS x o) set. By (4.9),

Qﬂ(PéXX):éoﬂa]&JXY)

thus by Lemma 3.1.8, (Tl§5 X U)‘QQ(PQXZ) = (1P, % U)|G~Om(U§7JxY)' So we
have

(TPQ X Q)|QQ(P§><X) = (T;E X U)’Qﬂ(PéxX) = (TPg X U)‘C;‘oﬂ(Ug,JxY)'

Thus by (4.10), W is (7p.|p,) x g-residual in G N (Pz x Y). So by the
induction hypothesis W is TP, X o-residual in some Tp. X g-open set
H C C¢xY such that GN (Pg xY) C clTP& xo(HN (Pé xY)); in particular,
HNG#0. Let H=H C G x Y. Since mp, = Prc,(75,) by definition,
we have H N Gy # () and ANHNG is TI§£ X o-meager in HN Gy C G.
This contradicts (4.8) so the proof is complete. O

Theorem 4.2.2 is the key for the proof of the 1 < £ < wy, n =1 case of
Theorem 1.3.3, that we prove in Corollary 4.1.1 in the usual more general
form.
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Corollary 4.1. Let 1 < £ < wy be fizred and let (Y,0) be a nonempty
Polish space. Consider a Dl(Eg(TC&1 x o)) set A C Ceq1 x Y. Let

G C Ce1 XY be a basic Tgl X o-open set.

1 If AN (Pey xY) is 71 X o-residual in G N (Pey xY) then AN
(Qeq X Y) is of 7¢1 x o-second category in G N (Qg1 X Y).

2. Ifv <§, Ais Hg(TCE’l x o) and AN (Pgy X Y) is ¢ 1 X o-residual
in GO (Pe1 xY) then A is 1¢1 X o-residual in G N (Hep(9) x Y).

Proof. In advance, observe that by Definition 3.2 we have D; (22(70571 )=
0 0 0
22(7'06’1), (0571,7'0&1) = (Cgl( )77_051(0))7 Qen = Ve1(0) = Cgl( )\ngl( )7
0 0
Pey = Vea(1) = Wea(1) = P 75 = 75, ) e = Tpri© (078}
£

and He, (9) = H'"'(0) (9 < €).
For 1, if AN (Pey xY) is 7¢1 x o-residual in G N (Pe; x Y) then
AN (ngl(o) X Y) i (Tpp10)| ppr()) X o-residual in G N (ngl(o) xY). So
3

Pe

by Theorem 4.2.2, A is of s
¢

T per-nowhere dense by Lemma 3.1.3 so G\ (P;l(o) xY)#0and Ais
¢

»100) X o-second category in G. But P§p1(0) is

of T p,(0) X o-second category G\ (ngl(o) xY). Now G\ (ngl(o) xY)=
3
GN(Qer xY) and Te1|g., = TprQ, S0 we obtained that A is of
: ! :

T¢.1 X o-second category in G N (Q¢1 x Y), as stated.

For 2, by repeating the previous argument Theorem 4.2.1 implies that

. . . 0 .
Ais Tpgpl(o) x o-residual in Gﬁ(Hgl( )(19) xY'). Since 7¢1lp, , = Tpor) [P s
Tealge, = TPp1(0)|Q€1 and A is 7¢; x o-residual in G N (Pg1 xY) by
! :

assumption we conclude that A is 7¢ 1 X o-residual in G N (He1(9) x Y),
which completes the proof. ]

In the following corollary we show that W¢,(n) with the topology

T£<n(0) exhibits the same feature of dichotomy as P with 7p,.

Corollary 4.2. Let 1 < &,n < wy, (Y,0) be a nonempty Polish space
and let G be a nonempty basic T£<n X o-open set.

1. Ifz? < ACCe,xY isa Hg(TC@? x o) set and AN(We (1) x Y)
is (TET](O) X 0)|we , (mxy-residual in G N (Wey(n) X Y) then A is
75, (0) x o-residual in G N (He,(9) x Y).

2. If BCCeyxYisa 22(7'0577] x o) set and BN (We () xY) is of

(7'577(0) X 0)|W§m(n)xy-second category in G N (Wep(n) X Y)
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then B is of T;n(O) x o-second category in G.

3. IfRCCepyxYisa Hg(TCE’n X o) set such that R is T£<n(0) X 0-
residual in G then R is T?n x o-residual in G.

Proof. First we show that if £ < ¢ and 1 holds for Hg(TCm X o) sets A
whenever ¢ < £’ then 2 and 3 hold for Zg, (Tc,, X 0) sets and Hg, (Tce, X0)
sets, respectively.

Fix ¥; — & and let B C C¢, X Y be a 22,(705777 X o) set such
that BN (Wey(n) x Y) is of (Tgn(()) X 0)|we., (n)xy-second category in
GN(Wep(n) xY). Let B =J,.,, Bi where B; is Hgi(Tcm x o) (i <w).
Then for some i < w and basic Tgn(()) x o-open set Gp € G we have
G (Wen(n) x Y) # 0 and By (We(n) x ) s (75, (0) X 0w (v~
residual in Go N (W (1) x Y). By Lemma 3.4.5 there is a basic 7'577 X o-
open set G’ satisfying G' N (We,(n) X Y) = Go N (We () x Y'). Since
Gy C G we can assume that G/ C G. Then the conditions of 1 are satis-
fied and we get that B; is T;n(()) x o-residual in G' N (He ,(¥;) X Y). By
Lemma 3.7, He () is T ,~dense 7'5 -open, in particular G'N(He ,(9;) x
Y') # 0. Hence H¢ ,,(V;) 1s 7'577(0) open as well and G' N (He ,(¥;) xY) C
G, that is B is of Tgn (0) x o-second category in G, indeed.

For 3let R C C¢, XY be a Hg, (T, x o) set such that R is Tgr]((]) X 0-
residual in G. Suppose that R is not Tgn x o-residual in G, that is

for some nonempty basic 7'£<17 x o-open set G’ C G we have that R is

T¢, X o-meager in G'. By Lemma 3.6.3, G' N (W¢,(n) xY) # 0 and
Wen(n) x Y is 75, x o-residual in C¢ (7)) x Y. Thus B =Cg, \ Ris a
Eg, (tce, X o) set and BN (We,(n) x Y) is (7’577 X 0)|we., (n)xy-residual in
the nonempty G'N(We ,(n) x Y). By Lemma 3.4.6 withy =0and y =n
the topologies (75, x 0)|w, , (n)xy and (7,(0) X o), xy coincide so
BN (Wey(n) xY)is (1, <77(0) X 0)lwe., () xy-residual in G'N(We () X V).
Hence by 2, C¢;, \ R = B is of 7 77( ) x o-second category in G’, which
is a contradiction.

For every fixed 1 < £ < wy we prove 1 by induction on ¥ and n: we
show 3 for £ =1, 0 < 1 < wy and we show that if ¥ < £ and 3 holds for
Hg(TC&n* x o) sets R whenever n7* < 7 then 1 holds for Hg(Tcm X o) sets
A with our 1. As we have seen above this will complete the proof.

For { = 1, statement 3 follows from 71, = 71, (0). So let ¥ < ¢
and A C C¢,y XY be a HO(TC x o) set such that AN (We,(n) xY) is
(T 6,17(0) X )| We., (m)x Y _residual in G N (Wem(n) xY).

Suppose that A is not T5 (0) x o-residual in G N (He »(¥) x Y) that

is for some ¥* < ¥, 119, (tc,, x o) set A* C (C¢, x Y)\ A and nonempty
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basic 75, (0) x g-open set G' C GN(He,y(¥) x Y) we have A* is 77, (0) x 0-
residual in G’. Let I,I< C n be disjoint finite sets such that

G = <HG'(a) <[] ¢@x ] C'g(oz)) x G'(Y)

acl ael< aen\(IUI<)

where G’(«) is proper basic TP, (a)-OPEN for a« € I, G'() is basic T;{(a)-

open for € I< and G'(Y) is basic o-open. Let G* be the basic Tgn X 0-
open set defined by G* = ([[,, G*(@)) x G*(Y') where

G'(a) =G (a) (a€el%), G*(a) =Ce(a) (aen\(IUI%))

and G*(Y) = G'(Y), while for a € I let G'(a) = G*(a) N Ug p(a) With
the unique n(a) < w of Lemma 3.1.7. Since G’ C G, we can assume that
G*(a) € Pro (o)(G) (a € I). Thus G* C G and so by Lemma 3.6.3 A is
Tgn x o-residual in G*. Observe that G’ C He () x Y implies ¥ < 0o
(a € I) and we have G'NG* N (He (V) xY) = G # 0.

Set

Y* = <HC§((1)> xY, o= (HTpg(a)) xXo, T = H Té(a).

agl agl aen\I

Then G’ and G* are both nonempty basic 7* x o*-open sets. We show
that A is 7* x 0*-residual in G*N(He ,(¥) x Y') and A* is 7% X o*-residual
in G'; since G' N G* N (He,(9) x Y') # 0 this contradicts AN A* =0 so
the proof will be complete.

First we prove that A is 7% x o*-residual in G* N (He ,(¥) x Y'). Let
I ={n;: i< |I|} and for every i < |I| set

v=( I cdrx JI ciw)xv.

ag{n;: j<i} aen\{n;: j<i}

g; = ( H TPg(a) X H T;&(a)> X o,

ae{n;: j<i} aen\{n;: j<i}

Hi:< [T Proee(Hen(®) x II G

ae{n;: j<i} ac{n;: i<j<|I|}

x H PrC&(@) (H&n(ﬁ))) XY,

aen\{n;: j<|I|}
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[I ¢

aen\{n:}

Then (Y;,0;) is a Polish space, G; C Y] is a basic o;-open set so G* is a
basic T;E () X Oi-Open set (¢ < |I|). We show by induction on ¢ that A is

TP () X o;-residual in
G*N (PI'CE( )(Hgn(ﬂ)) X Hz) - Cg(?]z) xY; = 057,7 xY (Z < |I|)

Let first i = 0. Since A is T< x o residual in G* and Tg X0 = TP (10) %
00, by Lemma 3.1.9 we have that AN(Pe(no) x Yo) 18 (Tp, (no) | Pe(no ) X 00~
residual in G* N (Pe(no) x Yp). We apply Theorem 4.2.1 with the pair
Pe(10), Tp, (o), the Polish space (Yo, 0¢) for the H%(Tcg(m) x 0g) set A and
basic Té (no) < O0-Open set G*. We get that A is TP (o) X Oo-residual in

G*N(H¢ (V) x Yy) if € is successor and in G*ﬂ(Hg”(no)(ﬁ) xYp) if £ is limit.
So by Lemma 3.7 A is 7p, (5y) X oo-residual in G*N(Pre, (yy) (He n(9)) x Ho),
as well, which proves the i = 0 case.

Suppose now that the statement holds for some i < [I| — 1; we
prove it for ¢ + 1. Observe that TP(n) X Oi = T;g(mﬂ) X 0;41 and
Pre, () (Hen(9)) X Hi = C¢(ni+1) X Hiy1 so by the induction hypothesis
we have A is Té (me1) oit1-residual in G*N(C¢(niy1) X Hit1); hence by
Lemma 3.1.9, AN (Pe(nit1) X Yis1) 8 (Tp, (1) | Pe(nigr)) X Tit1-residual
in G* N (Pe(ni+1) X Hiy1). So we can apply Theorem 4.2.1 with the pair
PE(ni-i—l)’ TPe(niy1) the Polish space (Yjt1,0i4+1) for the Hg(Tcg(erl) X
oi+1) set A and basic Tlgg(n-“) xir1-open set G*N(Ce(nig1) x Hiy1). We
get that A is 7p,(,,, ) X oiy1-residual in G*N(Pre, (., ) (Hen(9)) X Hit1),
as stated. Since 7p,(y ) X oj—1 =77 X 0~ and Prcg(m”,l)(Hf,n(ﬁ)) X
H\j—1 = H¢,(9) we conclude that A is 7% x o*-residual in G*N(Hg () x
Y).

It remains to prove that A* is 7% x o*-residual in G’. Let C* =
[Ty Cela) and 77* = n \ I. Using the convention of Remark 3.1,
(C*,7*) = (Ce ppr, §n .) and 75,.(0) x 0% = 75, (0) x 0. So by the defini-
tion of G, A* is 7'5 - +(0) X o*-residual in G’. By our assumption, 3 holds
for the I19, (Tce,» x 0%) set A* C Cgyr x Y™ and the nonempty basic
7'£<n* x o*-open set G', and we get that A* is 7‘?77* x o*-residual hence
7% X o*-residual in G’. The proof is complete. O

4.3. The general case

This final section contains the proof of Theorem 1.3.3 for 1 < £ < wy.
We start with a claim which slightly strengthens Corollary 4.2.2.
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Proposition 4.2. Let 1 < &,n < w1, (Y,0) be a nonempty Polish space
and G C C¢, XY be a nonempty Tgn x o-open set. If A C C¢p xY
is Z‘g(Tc&,,7 x o) and AN (Wey(n) X Y) is of (¢ X 0) [, (n)xy-second
category in GN(We () X Y) then there is a nonempty basic 7'?77 X o-open

set Go C G such that A is 1¢ ;) X o-residual in Gp.

Proof. Before starting the proof, observe that by Lemma 3.6.3, G N
(Wen(n) xY) # 0 for every nonempty Tgn x o-open set G.

Let ¥; — £. Since A is 22(7'06’77 X o), thereisani < w, a H?% (Tc ., X0)
set B C A and a nonempty basic 7¢, x o-open set G* C G such that
G* N (Wep(n) xY) # 0 and BN (Wey(n) xY) is (1¢ x 0) |W§,n('f])><y_
residual in G* N (We,(n) xY). By Lemma 3.4.5 and Lemma 3.7 there
is a basic 77, x g-open set Go for which Go N (Wey(n) xY) = G* N
(Wen(n) xY) and Go C He y(9;) x Y. Then by Lemma 3.4.6 for v = 7,
B0 (Wep(n) xY) is (15, % 0)lw,, (n)xy-residual in Go N (W (1) x Y').
We show that B is 7¢, x o-residual in Go; then by B C A, G fulfills the
requirements.

We have C¢ , XY =, <, Ven(a) xY and V¢ () is 7¢ X o-open (o <
n) so we have to prove that B is 7¢, x o-residual in Go N (Ve (o) X Y)
(o <m).

For av = 1 this follows from V¢ ,,(n) = We ,,(n); so fix some o < 1. Set
nT=n\a,

?:(Hc&)) x Y, 5=<HT;€(7)>XJ,

y<a y<a

G = Go and B = B. Then (Y,5) is a nonempty Polish space and G
is a nonempty basic 7'£<~ x ¢-open set. By Lemma 3.6.3, We () x Y =
W&n( 7) X We o(0) XY is T5 - x g-residual in C¢ 7 x Y so BN (W 7(77) x V)
is (755 % a)]wE 7)xy-Tesidual in GN(We(7) x Y). By Lemma 3.4.6 the
topologies

(7e,7 ¥ 5)’W§7ﬁ(ﬁ)xf/ and (Tg”(’Y) X &)|W§,,—,(ﬁ)x}7 (v<n)

all coincide so B N (W (i) x V) is (T§~(0) X &)\Wg’ﬁ(ﬁ)xy—residual and

(Te,7 % &) |y, 7y x-residual in G N (Wez(77) x Y).

Thus we can apply Corollary 4.1.2 if 7j = 1 or Corollary 4.2.1 if 1 < 7
for B and G in an x Y and we get that B is 7 77(0) x og-residual in

GN(He 7(0;) x Y). Since G C He,(9;) x Y implies Gy C (He 7(9;) x Y')
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by .Lemn'la 3.7 and 75:(0) x & = 75, () x 0 we get that B is 77, (a) x 0~
residual in Gy.
By Lemma 3.6.2, V() x Y is 75, (@) x o-residual in C¢; x Y s0

GoN (Vey(a) xY) #0

and B is (Tgn(a) X 0)|ve , (a)xy-Tresidual in Go N (Ve (@) x Y). By Lem-
ma 3.4.3 with v = a the topologies (7¢;; X 0)|v;, (a)xy and (T{fn(a) X
U)|V§,,,(a)xY coincide. So we obtained that B is 7¢,, X o-residual in Gy N
(Veyn(a) x Y'). The proof is complete. O

As above, in the proof of the remaining part of Theorem 1.3.3 the
product structure of Definition 3.2 must be exploited. So we prove it in
the following more general form. When Y is a single point we get back
Theorem 1.3.3.

Theorem 4.3. Let 1 < &, < wy be fized. Let (Y,0) be a nonempty
Polish space and consider a D,](Eg(TCEJ7 x o)) set A C Cep xY. If
G CCepyxYis Tgn x o-open such that AN(Pey, x Y) is T¢ 5 X o-residual
in GN (Pey xY) then AN (Qey x Y) is of ey X o-second category in
GnN (ng X Y)

Proof. We prove the statement by induction on n. The n = 1 case is
Corollary 4.1.1.

Suppose now that 1 < 1 < w; and that the statement holds for every
n < n and Polish space (Y, o). Let A = D;((Aa)a<y) With Zg(TCm X o)
sets A, (a < n) satisfying Ag C A, (8 < o < ). We have that W, (n) x
Y C Py xY is 7¢y X 0-open. By Lemma 3.6.3, G N (We () xY) #0
so A is 7¢  x o-residual in G N (We,(n) x Y). Thus there is a minimal o
such that the parity of o and 7 are different and for some basic 7¢ ,, x o-
open set G* C G, A, is of 7¢, X o-second category in the nonempty
G* N (Weyp(n) x Y). Then by Lemma 3.4.5 there is a 7., x o-open set
G’ such that G* N (We p(n) xY) =G N (We(n) xY) # 0.

We apply Proposition 4.2 for A, and G’; we obtain that for some non-
empty basic Tgn x g-open set Go C G, A, is 7¢ , X o-residual in Gy. So in
particular, A is 7¢ ;X o-residual in GoN(V ;) () x Y'), which is nonempty
by Lemma 3.6.1. But the parity of a and 7 differ, so V¢, (a) x Y C
Qen x Y. That is if A, \ U/B<a Apg is also of 7¢, X o-second category in
Go N (Vey(a) x Y) then we are done.

Suppose that this is not the case. Then there is a § < a and a
basic 7¢, x o-open set G € Gy such that G5 N (Ve,(a) xY) # 0 and
Ag is T¢ % o-residual in G N (Ve ,(a) x Y), moreover the parity of
and « differ, that is the parity of 8 and n coincide. By Lemma 3.4.2,
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there is a basic 7, () x o-open set G{y such that Gf N (Vg ,(a) x V) =
Gy N (Ve(a) x Y); and since Gy is basic 7'£< X 0- open, we can assume
that G{) C Go. By Lemma 3.4.3 with v = «, Ag is Tf (o) x o-residual in
Gy N (Vg n(a) xY'). By passing to a subset if necessary, we assume that

Prc, (a)(Gf) is proper p, (a)-open, that is

d"r\r

Pre(a)(Gp) € Cela) \ Pe(a). (4.11)
Set 11 = a,
= Ce(y) | x Y, o= TP(y) | X O
(AL o) o=

and G = GY. With this setting, using (4.11),
G0 (Wesl@) x ) = Gy (Veu(e) x V) A0 (412)
and by Lemma 3.4.6,

= (155 a)|%m(vm(a)xy) = (75(0) X gy (v @xy): (413)

By (4.12) and (4.13) we have G N (We7(17) x Y) # 0 and Ag is
(Te,5%0) ]W e )X?—res1dual in GN(We7(77) xY). So we can apply Propo-

s1t10n 4.2 in C’g 7 X Y for Ap and G. We get that for some nonempty basic
£ _ X g-open set G() C G, Ag is 1¢ 5 X o-residual in GO In particular,

GQO(VSW( )xY) # 0 (v < 1) by Lemma 3.6.1 and Ag is 7¢ 5 X 5-residual
in Go (1 (Ve(7) % ¥) (7 < 7). )

Now Gy € G is 7¢, x o-open and Vg 5(y) x Y is also 7¢, X o-open
(v £7). So Ais 1¢, x o-residual in GoN (Vei(v) x Y) for every v < 7
with parity different from the parity of 7. We have

Go N (Vey(7) X Y) = Gon (Veg(7) x Y) #0 (v < 7).
So by Lemma 3.4.3,

(Te X 0) lgon(ve, ) = TE(0) X Olaon(ve ,(mxy)
= (753(0) X &)l Gyn(ve(xv) = Ten(0) X O)laon(ve s (mx¥)
(Te7 X 0) lGon(ve gnxv) (v <7)- (4.14)

We get that A is 7¢ j X 5-residual in éoﬂ(Vgi,(*y) xY) for every v < 7 with
parity different from the parity of 7. Since Ag is also 7¢ 5 X -residual in
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GoN (Vei(v) xY) for every v < ij, this is possible only if Dg((AA,),Kﬂ) is
T¢ 5 X 0-residual in Gon (Ve () x f/) for every v < 7 with parity different
from the parity of 7.

Let H C Cg¢, be a basic Tgn(O) open set which is nontrivial only
on the C¢(3) coordinate and Pro. s y(H) is proper basic Tp,(3)-opPen, i.e.

Pro, () (H) € Ce(8) \ Pe(B), and H N Gy # 0. Set n = B,

X=< 11 Cg(v)>><f/, Q:( 11 Tpg(y))xi

B<y<a B<y<a

Dy((Ay), - ) and G = GoN H. Since Gy is basic Tgﬁ X g-open, it is

7'§<~ (8) x g-open and so G is basic 7'§ x g-open. As above, we have

n

GoN (Ven(7) x X) = Go N (Veg(7) xY) #0 (v <)

so by Lemma 3.4.3,

(T§7ﬂ x g)|Qoﬂ(V5,ﬂ(’y)><X) = (Tgi(o) X g)|Qoﬂ(V§,E(’7)XX)
= (Teq X 9)lgn(vi smxv) (V=1 (415)

Since A = Dy((44),,) is Te3 % d-residual in Go N (Ves(y) x V),
we get that A is 7¢, X o-residual in G N (Vem(y) x Y) for every v < 7
with parity different from the parity of 7, that is with parity equal to the
parity of n. In particular, A4 is 7¢ , X g-residual in GN (P, xY). So by the
induction hypothesis A is of 7¢ , X g-second category in G N (Qe, n X Y).
Since A = D3((4,) <ﬁ) C A, this means that A is of 7¢, X o-second
category in Q¢ , X K We have

Ven(7) x Y = Vey(v) XY (v <n)

so by Lemma 3.4.3,

(Tem X O)ve () xy = (76(0) X D), ()¢
= (75,(0) X 0)lv; , (mxy = (75,(0) X O)lv, (3)xv

= (Tem X O)ve, (xy (v <m). (4.16)

Since 8 and 1 have the same parity,
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Qen xY =Qepx [[ Cety)xY

By<n
= U{Vim(a): a<f, aisodd < fis even} C Q¢ X Y.

So A is of 7¢, x o-second category in Q¢, X Y, which completes the
proof. O

Before proving Corollary 1.2 and Corollary 1.3 we need to show that
Theorem 1.2 can be applied for our pairs (C¢ ), Pr,,) and (Cg ), Q¢ ) for
1<é<wand 0<n<w.

Lemma 4.1 (A. Louveau, J. Saint Raymond). Let 1 < £ < w; and
0 <n<w be fized. Then (C¢y, Pey) is a Hurewicz test pair for Dn(Eg)
and (Ce ., Cey \ Pep) is a Hurewicz test pair for Dn(Eg).

Proof. Letfirst 3 < <wiandl <n<wjoré=2andw <n<w;. By
Lemma 3.3.1, (C¢ y, 7¢,, ) is homeomorphic to (C, 7¢). By Lemma 3.3.2,
Py, is Dn(zg(TC.g,n)) and Q¢ is Dn(Eg(TC&n)) o it remains to prove
that Pfﬂ? ¢ Dn(Eg(TC&n)) and Qfﬂ? ¢ Dn(Eg(TCm)).

Suppose that P, is Dn(Eg(Tcm)). By Corollary 1.1.1 with A = P,
Pey \ Pey = 0 is of 7¢,-second category, a contradiction. The same
argument using Corollary 1.1.2 gives that Q¢ , ¢ lv?n(Eg(Tcm)).

If ¢ =2 and 0 < n < w the statement follows from [2, Corollary 9,
p. 458] and the special choice of P, ,. This completes the proof. ]

Proof of Corollary 1.2. Let first A C X be a Dn(Eg(T)) set and sup-
pose that the continuous injection ¢: (C¢y,7c,,) — (X,7) satisfies
@(Peyy) C A. Then Pe,, C ¢~ (A) so by Corollary 1.1.1, =1 (A) \ P, is
of 7¢ ,-second category, which proves 1. If A C X is Dn(Eg(T)) the same
argument using Corollary 1.1.2 proves 1’.

For 2 let A C X be not in Dn(Zg(T)). By Lemma 4.1, (C¢ ), Pe )
is a Hurewicz test pair for Dn(Zg) so by applying Theorem 1.2 we get
a continuous injection ¢: (C¢ ), 7c, ) — (X, 7) which satisfies ¢(P¢,) =
AN @(Cey), as stated. The same argument gives 2’ so the proof is
complete. O

Proof of Corollary 1.3. We give the proof for I' = Dn(Zg), the proof

for I' = Dn(Eg) is the same. By Lemma 4.1 we can apply Theo-
rem 1.2 to have a continuous injection ¢: (C¢ y, 7, ) — (X, 7) satisfying
©(Ce \ Pey) = AN (Ce ). Fix a countable base B in the Polish space
(Pe Tenle, ). Set

Ap={a<A: 0 N (Ay) is e nlpe ,-residual in B} (B € B).
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By Corollary 1.1.2, ¢~ !(A,) is of 7¢,-second category in P, thus we
have A = (Jgcp A So A = Ap is stationary for some B € B. Since
in our model the union of A meager sets is meager in Polish spaces,
Naeay ¢ Y (Aq) is T¢ -residual in B, in particular BNNuea, 0 1(Ay) #
(). Now ¢ is one-to-one hence this implies (X \ A)N(,cp Aa # 0, so the
proof is complete. O
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