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Some endpoint inequalities for multilinear
integral operators
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Abstract. In this paper, the endpoint estimates for some multilinear
operators related to certain fractional singular integral operators are
obtained. The operators include Calderén—Zygmund singular integral
operator and fractional integral operator.
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1. Introduction

Let T be the Calderén—Zygmund singular integral operator, the clas-
sical result by Coifman, Rochberg and Weiss (see [6]) states that the com-
mutator [b, T](f) = T(bf) — bT(f) (where b € BMO(R")) is bounded
on LP(R™) for 1 < p < oo; Chanillo (see [1]) has proved a similar result
when T was replaced by the fractional integral operator; in [9], the end-
point boundedness of the commutators was obtained. The main purpose
of this paper is to establish the endpoint boundedness of some multilin-
ear operators related to certain non-convolution type fractional singular
integral operators. As an application, the endpoint boundedness of the
multilinear operators related to the Calderén—Zygmund singular integral
operator and fractional integral operator is obtained.

2. Notations and results

Throughout this paper, @ will denote a cube of R"™ with sides par-
allel to the axes. For a cube @) and a locally integrable function f, let

fo =1QI7" [ f(2) dx and f#(z) = sup,eq Q1" [, 1f(y) — foldy. For
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a weight function w, f is said to belong to BMO(w) if f# € L*°(w). Set
£l Bro@w) = ||f#HL<>O(w). Note that BMO(w) = BMO(R") if w = 1.
A function a is called an H' atom if there exists a cube @ such that a is
supported in Q, ||al 1o () < w(Q)™! and [a(z)dx = 0. It is well known
that the Hardy space H'(w) has the atomic decomp051t10n characteriza-
tion (see [8,12]).

In this paper, we consider a class of multilinear integral operators
defined in the following way.

First, given a fixed locally integrable function K(z,y) on R™ x R",

set
- / K(x.y)f(y) dy
Rn

for every bounded and compactly supported function f. We write K € 3
for 6§ > 0 if
K (z,y)| < Clo —y|™"*°

and
K (y.2) = K(z,2)] + | K (2,y) = K(2,2)| < Cly — 2 |o — 2/ 7=+

and 2|y — z| < |z — 2| for a fixed € > 0. Tk is called a fractional singular
integral operator if K € X5 for some d > 0.
Now, let m be a positive integer and A be a function on R™. Set

Rnia(di,y) = Alx) = Y DA —y)°,

la|<m

and

Qi (A ,) = Bu(Ai,) = 3~ DR A() —y)"

|a)=m

The multilinear operator associated with the fractional singular integral
operator Tk is defined by

/Rm-i—ley

=g K(z,y)f(y) dy.

We also consider the variant of TI?, which is defined by

Qm+1(A; x, y)
|z —y|™

Ti(f)(x) = K(z,y)f(y) dy.
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Note that TI‘? is closely related to T[‘?, for

Rer(Ai,9) = Qi (Asy) = S0 (0~ )" (DUA() — D A(y)).

|al=m

Note that when m = 0, TI‘? is just the commutators of Tk and
A(see [1,6,9]). It is well known that multilinear operator, as an ex-
tension of commutator, is of great interest in harmonic analysis and has
been widely studied by many authors(see, e.g. [2-5]). In [7] and [10], the
weighted LP (p > 1) and HP(0 < p < 1) boundedness of the multilin-
ear operator related to the Calderén—Zygmund singular integral operator
was obtained; in [2], the weak (H', L') boundedness of the multilinear
operator related to some singular integral operator was obtained.

Now we state our results as following.
Theorem 2.1. Let 0 < § < n and D*A € BMO(R"™) for all a with
la| = m. Suppose Tk is bounded from LP(R™) to LI(R"™) for any p,q €
(1,400) and 1/qg=1/p—0d/n. If K € X5, then
(a) T# is bounded from L™(R"™) to BMO(R™);
(b) T3 is bounded from H'(R™) to L' (=9 (R");

(c) T4 is bounded from H'(R") to weak L™ =9 (R").

Theorem 2.2. Let D*A € BMO(R") for all o with |a] = m and w €
Ay. Suppose Ty is bounded on LP(w) for all 1 < p < oo. If K € X,
then

(i) T4 is bounded from L™ (w) to BMO(w);
(i1) T4 is bounded from H'(w) to L*(w);
(i43) T§ is bounded from H'(w) to weak L'(w).

Remark 2.1. The boundedness is uniform with respect to K € X
and K € g, respectively. In general, TI‘? is not (H L/ (”*5)) or
(H'(w), L' (w)) bounded.
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3. Proofs of the theorems

To prove these theorems, we need the following lemmas.

Lemma 3.1 (see [5, p. 448]). Let A be a function on R" and D*A €
LY(R™) for |a| = m and some g > n. Then

1 1/q
|Rn(A;,9)| < Clz —y[™ > (m / ’DaA(Z)’qu> :

lal=m Q(z.y)

where Q(x,y) is the cube centered at = and having side length 5/n|x —y|.
Lemma 3.2 (see [1, p. 8]). Let b € BMO(R") and Cj be the commu-

tator defined by
/ Rl

(1) If0<é<n,l1<p<ooandl/q=1/p—3d/n, then Cy is bounded
from LP(R™) to LY(R"™) and from H'(R™) to weak L™/ ("=9(R™).

(2) If6=0,1<p< oo andw € Ay, then Cy is bounded on LP(w) and
from HY(w) to weak L*(w).
Lemma 3.3 (see [5, p. 454(28)] and [12, p. 222]). Let Q be a
cube an~d Alz) = Az) = X ja=m ﬁ(D"A)QmO‘. Then Rpi1(A;z,y) =
Rn1(A;2,y).
Lemma 3.4 (see [3, p. 695, Lemma 2.2]). Let Q1 and Q2 be the
cubes with Q1 C Q2. Then

@, — ba,| < C (1 + [log(|Q1]/[Q2)]) Il Baso-

Proof of Theorem 2.1. (a) It suffices to prove that there exists a constant
Cg such that

o / TAS) () — Col de < Ol || s

holds for any cube Q. le a cube Q = Q(xo,d). Let Q = 5\/_Q and
A(z) = Az)— 2 lal=m al (DaA) 2%, then Ry, y1(A;2,y) = Ry 1(A; 2, y)
by induction and D*A = DA — (D*A)g for all a with [af = m. We
write, for f; = fXQ and fo = fXRn\Q,
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1)@ - | Wm () dy
R™
R‘x f‘yfmy Ko, 9)fi(0) dy

K(z o
Pk / I DR Ao d
+/Rm+1(14,$,y)

|z —y|™

K(z,y) f2(y) dy,

T —

(= an)o

ITA(F) (@) — TA(f2) (o) | < ]TK(MQ(@

+ | TAf) () — TR(f2) (20)|

=I(z)+ II(x)+ I11I(x),
and, thus,

0] /|TK — TR(f2) (w0 )| da

1

g@ I(z)de + = [ [I(z)da + 5/ III(x

IQI
Q

=1+I1T+111

Now, let us estimate I, 11 and II1, respectively. First, we have known
(see [12, p. 144]), for b € BMO(R"™),

1 1/p
1bll a0 ~ sup [ — / by) —bolPdy |
Q IQIQ

then, for z € Q and y € Q, using Lemma 3.1 and Lemma 3.4, we get

Rm(A;xzy) < C|l‘_y|m Z [|Q(i y)| / (|DQA( ) (DQA)Q(ny)|

laf=m Q(z,y)

+1(D%A)g

1/q
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< Clz—yI™ Y (ID*Allparo + 1+ [log |Q(z, )I/1Ql|)

|a|=m

< Clz—y™ Y [|D*Allzmo,

|a)|=m

thus, by the (L”/ 3 L*>°)-boundedness of Tk, we have

T5< Z HDO‘AHBMOf1>(37) d

|a|=m
<C Z DAl ol Ts(f1)| Lee

laj=m

I<—

\QI

X

<C Y ID*Allpsoll fllgws:

laf=m

Secondly, by the (LP, L?)-boundedness of Tk for 1/¢g=1/p—3§/n, p > 1
and Holder’s inequality, we gain

¢ YA — (D%A) 5 x)| dx
n<o |T5<MZW<D A= (D) ) @) d

1/q
<y <|Q’/]T5 (DA — (D*A) )fl)(x)\qu>

lal=m

<RIV Y (DA = (D A)g) fill L

|a|=m

1/q
<c Z (|Q, / D°A(y) — (D*A) \%@) 1l

<C Y ID*Allpmoll fllgws.

laf=m

To estimate I11, we write

T (f2)(x) — TR (f2) (o)
- / e ] ) () d

[z —y[™  Jzo—y[™

K (xo, ~ -
Iw;)— Jm [Rm(A;w,y) — Rin(A;20,y)] dy
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-y / (Fne 2 BT pe i) () dy
|a|=m

[zo — y|™
=111 + 111 + 1113
By Lemma 3.1 and Lemma 3.4, we know that, for z € @ and y €
21€+1Q\2k@7

|[Bon(A;2,9)| < Cla—y™ Y (ID*Alparo+(D* Ay, — (D" A)g)

laj=m

< Ckle —y|™ Y |ID*Alluo.

|al=m

Note that |z — y| ~ |zo — y| for z € Q and y € R™\ Q, we obtain, by the
condition on K,

— |
unj<c | (s

‘37 — 1:0‘5 ~
+ ’l’o _ y‘m—&-n—&—s—é ’Rm(A’ $7y)"f2(y)‘ dy

e > |£L‘—l'0’
<C Z 1D AHBMOZ / k<m

|a|=m k=0 2k+1@\2k@

| — zol|°

W) |f(y)] dy

<C Y D% Alprollflpws k@ +27)
|a|=m

k=1

+

<C Y IID*Allsyol fllps;

|a|=m
For 1115, by the formula (see (39) in [5]):
Rm(A§$ay) Ry, A 3T0,Y ||Z /3' m—18( D Az xo)(x—y)ﬁ
Bl<m

and Lemma 3.1, we have

|Rm<A§x;y> - Rm<14; x()vy)|
<C Y D o= o™ e — yPNID> Al Brso,

|Bl<m [a|=m
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similar to the estimates of 111, we get

o Lo
1L <c Y o AHBMOZ / T’lgf(y)my
la|=m 2k+1Q\2kQ

< C|ID* Al parol| 1 oss;

For 1113, by taking r > 1 such that 1/r+d/n = 1, similar to the estimates
of I1I,, we get

x — ol
mze Yy | (s

|oe|=m k=0,

2k+1Q\2kQ
T — X0 € o ¥
+W>|D AW ()l dy
1/r
<CZ Z (2™ kio- Ek: <2kQ -1 / |ID*A(y)—(D*A) 5 de) HfHLn/é
|a|]=m k=1 G
<C Y D Allsaollfll s
la|=m

Thus

I11<C Z | DAl proll fll s -

laf=m

(b) It is only to show that there exists a constant C' > 0 such that
for every H'-atom a(that is that a satisfies: suppa C Q = Q(zo,d),
lallLe < |Q|7! and [a(y)dy = 0 (see [8])), the following holds:

1T (@)| pnsn—s) < C.

_[ / + / [T (a) ()] " da = T + JJ.

lz—z0|<2r  |z—x0|>21

For J, by the following equality

Qa4 ) = Ba (i) + 30 (o — ) (D"A(r) — D A(y)),
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we have,

T(@) (@) < ITE@@)|+C Y /IDA |f°;f4<y>'|a<y>|dy7

‘Oé| mRn

thus, T[’? is (L?, L9)-bounded by Lemma 3.2 and (a), where 1/¢ = 1/p —
d/n. We see that
J < CITR @) Q) /(=000
< Ollall "= |QI /(=9 < c.
To obtain the estimate of .J.J, we denote A(x) = A(z) — > lal=m 1 x
(D*A)a02®. Then Qu(A;x,y) = Qm(A;z,y). We write, by the vanish-

ing moment of a,

/K |x_ mid y)a(y)dy

ylm

-2 4 /nyDA)( o) dy

|z —y|™

|lal=m

:/ {K(“’) - K(x’xO)}Rm(A;x,y)a(y)dy

e

K(x,x0) N

+ W[Rm(A; ,y) — R(A; z,20)]a(y) dy
-2 / { I:v — ylm e K(xixxo_)(;;n%)a} D*A(z)a(y) dy,

|la|=m

=JNh+JJa+ JJs.

Now, similar to the proof of 111, we obtain, for x € (2Q)°

— 7o ly — ol i
101 <c/ s et IR )ty

<C Z HDQAHBMO(\QIV”\JU ~ o[ QM — mo| ),

|a|=m

Ry (A;2,y) — Ry (A; 2, 20)]|aly))|
|J<]2| SC/ |x_y|m+n—6 dy
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a 20 — ylla(y)]
<C ) ID*Alpu /Wdy
‘Oé|: R
<C > | D*Al| parol Q™| — wo| 71

|a|=m
and
|J<]3‘<C/‘ ‘n+1 3 Z |DaA HCL )|dy
la|=m
=C Z D A@)|(1QIY = ol "1 + QI — o ).
lo]=m
Thus

JJ < / (|JJ1 4 JJo + JJs|) =9 dy

(2Q)°
n/(n—8) o0
< C( > HD“AHBMo) S k{2t 08 (g kne/ (0] <
la)|=m k=1

(c) By the following equality

Ron1(452,9) = Qur (A;2,9) + 30 (= ) (D"A(x) — D A(y)),

|a|=m
we have
D% A — D%A
TA @) < [TAH@|+C Y /' y,n AW 5 ) ay,
|Oé| =mpn

thus, by Lemma 3.2 and (b), we obtain

[ € B ITA()@)] > M < [ € R": [TA()(@)] > A/2)]
{xeR”' > [ DQA(y"wy)ydwm}

y‘n d

lal=m gn

Ol /2™ =2,

This completes the proof of Theorem 2.1. O
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Proof of Theorem 2.2. (i) It is only to prove that there exists a constant

Cq such that

/ TAf) () — Colw(z) dr < C|Lf]l e w)

holds for any cube Q. Fix a cube Q = Q(z¢,d). Let Q and fl(m) be
the same as the proof of Theorem 2.1. We have, similar to the proof of

Theorem 2.1, for f; = fXQ and fo = fXRn\Q,

1) - T ) wo)] < |1ic (P ) o)
T ((jf - Daﬁfl) ()| + [TA) @) - T2 (o)

1
+Z$

|a|=m
= I(x) + 1I(x) + I11(x),

(VAN
‘ -
—
=~
2
E\
Q.
8
_l_
@\
~
*\4

o )/III(:L‘)w( yda =T+ 11+ I11.

First, using Lemma 3.1 and the L*(w)-boundedness of Tk, we have

< ﬁ/’TK< > HDO‘AHBMofl)(x) w
Q

|a|=m

(x)dx

<C > ID*AlsuolT Al < C > 1D*Allzroll £l oo w);
|a|=m |a)|=m

Secondly, since w € A1, w satisfies the reverse of Holder’s inequality:

e o
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for all cube @ and some 1 < ¢ < oo (see [12]), thus, taking p > 1 and
1/p+1/p’ =1, by the LP(w)-boundedness of Tk and Holder’s inequality,
we gain

(D*A — (DaA)Q)fl) (z)|w(z) dz

1/p
ﬁ/T((DaA— (D“A)Q)fl)(x)lpw(m)dx>

1 1/p
chzzm mZKD A(z) — (D*A)g) fr(x)[Pw(z) dx)
1/pq
<C 1/p< |D°A(x) — (D*A)g pd dar)
laj=m /

1/pq
X (/w(l‘)q d33> ”fHL"C(w)

| /\
o
Q
5
S
Q
D>
u
Q
E‘i
_E
QL
]
N——
3

1/P 1/p
<c HDaArBMo<ﬁ / w(w)dx> (w'%)) T

<C > ID*Allsyoll f o w)

For 111, similar to the proof of Theorem 2.1, we obtain

1< c > [ID*Allsmo

|al=m

/Z | (e ) iyt e

2k+1 Q\QkQ

L
w(Q)
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| — 20| |z — xol|®
+C / / ( +
2 Z ool o~y
O 2er1Q\2rQ
< [ D*A(y)[| f ()| dy w(z) da

<C Y IID*Alsyoll fllzsw) Y k27" +275)
|a|=m

k=1

<C Y ID*Allsmoll £l L w)

laf=m

(79) It suffices to show that there exists a constant C' > 0 such that
for every H'(w)-atom a (that is that a satisfy: suppa C Q = Q(zo,7),
lall ooy < w(Q)~" and [ a(y)dy = 0 (see [8])), we have

IT# (a)l| £ () < C-

We write
/ Aa)(@)w(z) dz = / / w(z)da = J + JJ.
Rn 2Q  (2Q)¢
For J, similar to the proof of Theorem 2.1, we get
e | D A — D*A(y)|
T @) < @@ +c Y | — oty dy

|a| =m pn
thus, T# is LP(w)-bounded by Lemma 3.2 and (i). We see that
T < CITR(a)] e (wyw(2Q) < Cllal e (uyw(Q) < C

For JJ, notice that if w € Ay, then “ig;') wl(QQll') < C for all cubes Q1, Q2
with @1 C Q2. Thus, by Holder’s inequality and the reverse of Holder’s
inequality for w € A; and some 1 < ¢ < oo, taking p > 1 and 1/p+1/p’ =

1, similarly, we obtain

a4 ok 4 ok (1@ w<2k+1Q)>
JJSCMZ:mHD |BMO]€Z:1(2 +2 )<w(Q) 2EH1Q)]

1/p
+C Z Z (27" +27 *) ’?‘)szj}l@ / ‘Dafi(f’f)’pdw)

|a|=m k=1 KF1Q
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1 / 1/p’

2k+1Q

o ok oeehy (W(2TQ) Q)]
SO 2 I Alsvo ) ke 2 k>( 2F1Q) w(Q)) =¢

|a|=m k=1

(747) Similarly, we know

TAH @) < [FAH@)]+C Y /'D Alz) yf"‘(y)’u(ywy,

|Oé| =mpn

by Lemma 3.2 and (i7), we obtain
w({z € R |TR(f)(2)] > A}) < w({z € R* : [T (f)(x)] > A/2})
—i—w({x er: Y / D2 A() = DEAWN 3 gy > cx})

|z —y|"

lal=m pn

< Ol £l w) /M-

This completes the proof of Theorem 2.2. O

4. Applications

In this section we shall apply the Theorem 2.1 and 2.2 to some partic-
ular operators such as the Calderén—Zygmund singular integral operator
and fractional integral operator.

Aplication 1 (Calder6n—Zygmund singular integral operator).
Let T be the Calderén-Zygmund operator defined by (see [8,12])

/Kwy y) dy,

the multilinear operator related to 1" is defined by

/Rerley

|z —y|™

K(z,y)f(y) dy.

Then it is easily to see that Tk satisfies the conditions in Theorem 2.2,
thus that 74 is bounded from L*°(w) to BMO(w) and from H'(w) to
weak L'(w) and that T is bounded from H'(w) to L'(w) for w € A,
and D*A € BMO(R"™) with |a| =
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Aplication 2 (Fractional integral operator with rough kernel).
For 0 < § < n, let T5 be the fractional integral operator with rough
kernel defined by (see [7,9,10])

7,f(0) = [ %ﬂy) ay,
RTL

the multilinear operator related to Ty is defined by

Rm+1 (Aa z, y)

T (@) = | oy pen=s @ = 9)I () dy.

where €2 is homogeneous of degree zero on R", [g,_1 Q(2')do(2") = 0 and
Q € Lip,(S"1) for 0 < v < 1, that is there exists a constant M > 0
such that for any x,y € S™ ! |Q(z) — Q(y)| < M|z — y|?. Then Tj
satisfies the conditions in Theorem 3.1. In fact, for supp f C (2Q)¢ and
x € Q = Q(xg,d), by the condition of 2, we have (see [12])

Qx—-—y)  QAzo—y) <c |z — x0]7 . |2 — 20
- |(IZ[) _ y’n—l—'y—cs ‘xO _ y|n+1—§ ’

P R P
thus, similar to the proof of Theorem 2.1,

T (f) () — T35 (f) (o)
< CZ k@27 + 279D Al smol| £l poss
k=1
< C|D*Allpmoll fll s

Therefore that T3 is bounded from Ii”/ S(R™) to BMO(R") and from
HY(R™) to weak L™ (=9 (R") and T§ is bounded from H!(R") to
L™ (=9 (R™) for all D*A € BMO(R") with |a| = m.
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