Український математичний вісник Том 4 **(2007)**, № 3, 434 – 436

Discontinuous Birkhoff theorem

O. Petrenko, Igor V. Protasov

Abstract. A topological space X is called totally recurrent if every mapping $f: X \to X$ has a recurrent point. We prove that a Hausdorff space X is totally recurrent if and only if X is either finite or a one-point compactification of an infinite discrete space.

2000 MSC. 37B20, 54C10, 58K15.

Key words and phrases. Recurrent point, totally recurrent space.

Let X be a topological space, $f : X \to X$. A point $x \in X$ is said to be *recurrent* if, x is a limit point of the orbit $\{f^m(x) : m \in \omega\}$. By Birkhoff Theorem ([1,2]), every continuous mapping of a compact space has a recurrent point.

We say that a topological space X is *totally recurrent* if **every** mapping $f: X \to X$ has a recurrent point.

Example 1. Every finite space is totally recurrent.

Example 2. Let X be an infinite discrete space, $\dot{X} = X \cup \{\infty\}$ be a one-point compactification of X, $f : \dot{X} \to \dot{X}$. If ∞ is not a recurrent point of f then there exist a neighbourhood U of x and $n \in \omega$ such that $f^m(x) \notin U$ for every m > n. Since $\dot{X} \setminus U$ is finite, at least one point of $\dot{X} \setminus U$ is recurrent, so \dot{X} is totally recurrent.

Example 3. Let X be an infinite set endowed with a topology in which a subset U is open if and only if $X \setminus U$ is finite. Every point of X is a limit point of any infinite subset of X. It follows that X is a totally recurrent T_1 -space.

To prove our main result we need some auxiliary lemmas.

Lemma 1. Every closed subspace F of a totally recurrent space X is totally recurrent.

Received 11.05.2007

Proof. We take an arbitrary mapping $f : F \to F$, fix some point $y \in F$ and define a mapping $h : X \to X$ by the rule

$$h|_F = f|_F, \quad h|_{X \setminus F} \equiv y.$$

Since X is totally recurrent, there exists a recurrent point x of h. By the definition of h, we have $x \in F$, so x is a recurrent point of f and F is totally recurrent.

Lemma 2. Let X be a topological space, γ be a limit ordinal. Assume that there exists a family $\{F_{\alpha} : \alpha < \gamma\}$ of non-empty closed subspaces of X such that $F_0 = X$ and

- (i) $F_{\alpha} \supset F_{\beta}$ for all $\alpha < \beta < \gamma$;
- (ii) $F_{\beta} = \bigcap_{\alpha < \beta} F_{\alpha}$ for every limit ordinal $\beta < \gamma$;
- (*iii*) $\bigcap_{\alpha < \gamma} F_{\alpha} = \emptyset$.

Then X is not totally recurrent.

Proof. For every $\alpha < \gamma$, we fix some point $x_{\alpha} \in F_{\alpha} \setminus F_{\alpha+1}$ and define a mapping $f: X \to X$ by the rule $f|_{F_{\alpha} \setminus F_{\alpha+1}} \equiv x_{\alpha+1}$. Given an arbitrary point $x \in X$, we choose the minimal ordinal β such that $x \notin F_{\beta}$. By (ii), β is not a limit ordinal, so $\beta = \alpha + 1$ for some $\alpha < \gamma$ and $x \in F_{\alpha} \setminus F_{\alpha+1}$. By definition of f, we have $f^n(x) \in F_{\alpha+1}$ for every natural number n, so $f^n(x) \notin X \setminus F_{\alpha+1}$. Since $X \setminus F_{\alpha+1}$ is a neighbourhood of X, we conclude that x is not a recurrent point of f.

Lemma 3. Let X be a topological space. Assume that there exist two families $\{F_n : n \in \omega\}, \{H_n : n \in \omega\}$ of closed subspaces of X such that $F_0 \cap H_0 = \emptyset$ and $F_n \supset F_{n+1}, H_n \supset H_{n+1}$ for every $n \in \omega$. Then X is not totally recurrent.

Proof. For every $n \in \omega$, we fix some points $x_n \in F_n \setminus F_{n+1}$, $y_n \in H_n \setminus H_{n+1}$ and define a mapping $f : X \to X$ by the rule

$$f|_{F_n \setminus F_{n+1}} \equiv x_{n+1}, \quad f|_{H_n \setminus H_{n+1}} \equiv y_{n+1},$$
$$f|_{\bigcap_{n \in \omega} F_n} \equiv y_0, \quad f|_{\bigcap_{n \in \omega} H_n} \equiv x_0, \quad f|_{X \setminus (F_0 \cup H_0)} \equiv x_0.$$

It is a routine verification that f has no recurrent points.

Lemma 4. Let X be an infinite totally recurrent space such that every infinite closed subspace of X has an infinite proper closed subspace. Then the following statements hold

- (i) $F \cap H \neq \emptyset$ for any two closed infinite subspaces of X;
- (ii) there exists a non-empty finite subset A of X such that $X \setminus U$ is finite for every open subset U of X containing A.

Proof. (i) follows directly from Lemma 3.

(*ii*) Using the assumption of lemma, we can construct inductively, a family $\{F_{\alpha} : \alpha < \gamma\}$ of infinite closed subspaces of X satisfying (*i*), (*ii*) of Lemma 2 and such that $\bigcap_{\alpha < \gamma} F_{\alpha}$ is finite. Put $A = \bigcap_{\alpha < \gamma} F_{\alpha}$. By Lemma 2, A is non-empty. Let U be an open subset of X such that $A \subseteq U$. Assume that $X \setminus U$ is infinite and, for every $\alpha < \gamma$, put $H_{\alpha} = (X \setminus U) \cap F_{\alpha}$. By (*i*) of Lemma 4, $H_{\alpha} \neq \emptyset$ for every $\alpha < \gamma$. Then the family $\{H_{\alpha} : \alpha < \gamma\}$ of closed subsets of $X \setminus U$ satisfies Lemma 2, so $X \setminus U$ is not totally recurrent contradicting Lemma 1.

Theorem 1. Let X be an infinite Hausdorff totally recurrent space. Then X is a one-point compactification of a discrete space.

Proof. Let $A = \{a_1, \ldots, a_n\}$ be a subset of X given by Lemma 4. Since X is Hausdorff, every point from $X \setminus A$ is isolated, so it suffices to show that A has only one non-isolated point in X. We assume the contrary that a_1, a_2 are non-isolated, and choose pairwise disjoint open sets U_1, \ldots, U_n containing a_1, \ldots, a_n . Since every point from $X \setminus (U_1, \ldots, U_n)$ is isolated then U_1, \ldots, U_n are closed, so U_1, U_2 are infinite disjoint closed subsets of X and we get a contradiction to Lemma 4.

Example 3 shows that this theorem does not hold for T_1 -spaces.

References

- [1] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Coll. Publ., 9, 1927.
- [2] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969.

CONTACT INFORMATION

O. Petrenko,	Department of Cybernetics,
Igor V. Protasov	National T. Shevchenko University of Kyiv
	Volodimirska 64,
	Kyiv 01033,
	Ukraine
	E-Mail: protasov@unicyb.kiev.ua