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Discontinuous Birkhoff theorem

O. PETRENKO, IGOR V. PROTASOV

Abstract. A topological space X is called totally recurrent if every
mapping f : X — X has a recurrent point. We prove that a Hausdorff
space X is totally recurrent if and only if X is either finite or a one-point
compactification of an infinite discrete space.

2000 MSC. 37B20, 54C10, 58K15.

Key words and phrases. Recurrent point, totally recurrent space.

Let X be a topological space, f : X — X. A point 2 € X is said
to be recurrent if, x is a limit point of the orbit {f™(x) : m € w}. By
Birkhoff Theorem ([1,2]), every continuous mapping of a compact space
has a recurrent point.

We say that a topological space X is totally recurrent if every map-
ping f : X — X has a recurrent point.

Example 1. Every finite space is totally recurrent.

Example 2. Let X be an infinite discrete space, X = X U{co} be a
one-point compactification of X, f : X — X. If co is not a recurrent
point of f then there exist a neighbourhood U of x and n € w such that
f™(x) ¢ U for every m > n. Since X \ U is finite, at least one point of
X \ U is recurrent, so X is totally recurrent.

Example 3. Let X be an infinite set endowed with a topology in which
a subset U is open if and only if X \ U is finite. Every point of X is
a limit point of any infinite subset of X. It follows that X is a totally
recurrent Ti-space.

To prove our main result we need some auxiliary lemmas.

Lemma 1. Fvery closed subspace F of a totally recurrent space X is
totally recurrent.
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Proof. We take an arbitrary mapping f : ' — F, fix some point y € F'
and define a mapping h : X — X by the rule

hlp = flr, hlx\r =y

Since X is totally recurrent, there exists a recurrent point x of h. By the
definition of h, we have x € F', so x is a recurrent point of f and F is
totally recurrent. O

Lemma 2. Let X be a topological space, v be a limit ordinal. Assume
that there exists a family {F, : a < v} of non-empty closed subspaces of
X such that Fy = X and

(i) Fo D Fg foralla < B <7;
(i4) Fp =g Fa for every limit ordinal B < ;

(7i7) ﬂa<,y F,=9.
Then X is not totally recurrent.

Proof. For every a < 7y, we fix some point z, € Fy, \ Fo+1 and define a
mapping f : X — X by the rule f|g\r,,, = Tat1. Given an arbitrary
point & € X, we choose the minimal ordinal 3 such that = ¢ Fj. By (ii),
B is not a limit ordinal, so # = a+ 1 for some o« < v and = € F,, \ Fy41.
By definition of f, we have f™(z) € F,41 for every natural number n, so
f"(x) ¢ X\ Fay1. Since X \ Fi41 is a neighbourhood of X, we conclude
that = is not a recurrent point of f. O

Lemma 3. Let X be a topological space. Assume that there exist two
families {F,, : n € w},{H, : n € w} of closed subspaces of X such that
FoNHy=@ and F, D Fy11, Hy, D Hpy1 for everyn € w. Then X is
not totally recurrent.

Proof. For every n € w, we fix some points z,, € F;,\Fp4+1, Yn € Hy\Hnt1
and define a mapping f : X — X by the rule

flENFy = Tntts flHAH 0 = Ynts

flonewrn = Y05 flaneor, =20s  flx\(roum,) = To-
It is a routine verification that f has no recurrent points. O
Lemma 4. Let X be an infinite totally recurrent space such that every

infinite closed subspace of X has an infinite proper closed subspace. Then
the following statements hold
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(1) FNH # @ for any two closed infinite subspaces of X ;

(13) there exists a non-empty finite subset A of X such that X \ U is
finite for every open subset U of X containing A.

Proof. (i) follows directly from Lemma 3.

(7i) Using the assumption of lemma, we can construct inductively,
a family {F, : @ < 7} of infinite closed subspaces of X satisfying (i),
(¢) of Lemma 2 and such that (), Fu is finite. Put A = (), Fa.
By Lemma 2, A is non-empty. Let U be an open subset of X such
that A C U. Assume that X \ U is infinite and, for every a < =, put
H,=(X\U)NF,. By (i) of Lemma 4, H, # @ for every a < . Then
the family {H, : o < v} of closed subsets of X \ U satisfies Lemma 2, so
X \ U is not totally recurrent contradicting Lemma 1. O

Theorem 1. Let X be an infinite Hausdorff totally recurrent space.
Then X is a one-point compactification of a discrete space.

Proof. Let A ={a1,...,a,} beasubset of X given by Lemma 4. Since X
is Hausdorff, every point from X \ A is isolated, so it suffices to show that
A has only one non-isolated point in X. We assume the contrary that
a1, ag are non-isolated, and choose pairwise disjoint open sets Uy, ..., U,
containing aq, ..., a,. Since every point from X \ (Uy,...,U,) is isolated
then Uy, ..., U, are closed, so Uy, Uy are infinite disjoint closed subsets
of X and we get a contradiction to Lemma, 4. O

Example 3 shows that this theorem does not hold for T7-spaces.
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