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Global asymptotic stability of a higher order

difference equation
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Abstract. The aim of this work is to investigate the global stability,
periodic nature, oscillation and boundedness of solutions of the difference
equation

xn+1 =
Axn−1

B + Cxn−2lxn−2k

, n = 0, 1, 2, . . .

where A, B, C are nonnegative real numbers and l, k are nonnegative
integers, l ≤ k.
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1. Introduction

Difference equations have always played an important role in the
construction and analysis of mathematical models of biology, ecology,
physics, economic processes, etc. [3].

The study of nonlinear rational difference equations of higher order is
of paramount importance, since we still know so little about such equa-
tions. Cinar [1] examined the global asymptotic stability of all positive
solutions of the rational difference equation

xn+1 =
axn−1

1 + bxnxn−1
, n = 0, 1, 2, . . .

Xiaofan yang et all [4] investigated the asymptotic behavior of solutions
of the difference equations

xn+1 =
axn−1 + bxn−1

c+ dxnxn−1
, n = 0, 1, 2, . . .
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where a ≥ 0, b, c, d > 0.

In this paper, we study the global asymptotic stability of the difference
equation

xn+1 =
Axn−1

B + Cxn−2lxn−2k
, n = 0, 1, 2, . . . (1.1)

where A,B,C are nonnegative real numbers and l, k are nonnegative
integers, l ≤ k. The following particular cases can be obtained:

(1) When A = 0, equation (1.1) reduces to the equation

xn+1 = 0, n = 0, 1, 2, . . .

(2) When B = 0, equation (1.1) reduces to the equation

xn+1 =
Axn−1

Cxn−2lxn−2k
, n = 0, 1, 2, . . .

This equation can be reduced to the linear difference equation

yn+1 − yn−1 + yn−2l + yn−2k = γ,

by taking

xn = eyn , γ = ln
A

C
.

(3) When C = 0, equation (1.1) reduces to the equation

xn+1 =
A

B
xn−1, n = 0, 1, 2, . . .

which is a linear difference equation.

For various values of l and k, we can get more equation.

2. Preliminaries

Consider the difference equation

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, . . . (2.1)

where f : Rk+1 → R.

Definition 2.1 ([2]). An equilibrium point for equation (2.1) is a point

x̄ ∈ R such that x̄ = f(x̄, x̄, . . . , x̄).
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Definition 2.2 ([2]). (1) An equilibrium point x̄ for equation (2.1) is

called locally stable if for every ǫ > 0, ∃ δ > 0 such that every

solution {xn} with initial conditions x−k, x−k+1, . . . , x0 ∈]x̄−δ, x̄+
δ[ is such that xn ∈]x̄ − ǫ, x̄ − ǫ[, ∀n ∈ N. Otherwise x̄ is said to

be unstable.

(2) The equilibrium point x̄ of equation (2.1) is called locally asymp-

totically stable if it is locally stable and there exists γ > 0 such that

for any initial conditions x−k, x−k+1, . . . , x0 ∈]x̄ − γ, x̄ + γ[, the

corresponding solution {xn} tends to x̄.

(3) An equilibrium point x̄ for equation (2.1) is called attractor if every

solution {xn} converges to x̄ as n→∞.

(4) The equilibrium point x̄ for equation (2.1) is called globally asymp-

totically stable if it is locally asymptotically stable and global attrac-

tor.

The linearized equation associated with equation (2.1) is

yn+1 =
k∑

i=0

∂f

∂xn−i
(x̄, . . . x̄)yn−i, n = 0, 1, 2, . . . (2.2)

The characteristic equation associated with equation (2.2) is

λk+1 −
k∑

i=0

∂f

∂xn−i
(x̄, . . . , x̄)λk−i = 0. (2.3)

Theorem 2.1 ([2]). Assume that f is a C1 function and let x̄ be an

equilibrium point of equation (2.1). Then the following statements are

true:

(1) If all roots of equation (2.3) lie in the open disk |λ| < 1, then x̄ is

locally asymptotically stable.

(2) If al least one root of equation (2.3) has absolute value greater than

one, then x̄ is unstable.

The change of variables xn =
√

B
C yn reduces equation (1.1) to the

difference equation

yn+1 =
γyn−1

1 + yn−2lyn−2k
, n = 0, 1, 2, . . . (2.4)

where γ = A
B .
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3. Linearized stability analysis

In this section we study the asymptotic stability of the nonnegative
equilibrium points of equation (2.4). We can see that equation (2.4) has
two nonnegative equilibrium points ȳ = 0 and ȳ =

√
γ − 1 when γ > 1

and the zero equilibrium only when γ ≤ 1.
The linearized equation associated with equation (2.4) about ȳ is

zn+1 −
γ

1 + ȳ2
zn−1 +

γȳ2

(1 + ȳ2)2
(zn−2l + zn−2k) = 0, n = 0, 1, 2, . . .

(3.1)
The characteristic equation associated with this equation is

λ2k+1 − γ

1 + ȳ2
λ2k−1 +

γȳ2

(1 + ȳ2)2
(λ2k−2l + 1) = 0. (3.2)

We summarize the results of this section in the following theorem.

Theorem 3.1. (1) If γ < 1, then the zero equilibrium point is locally

asymptotically stable.

(2) If γ > 1, then the equilibrium points ȳ = 0 and ȳ =
√
γ − 1 are

unstable (saddle points).

Proof. The linearized equation associated with equation (2.4) about ȳ =
0 is

zn+1 − γzn−1 = 0, n = 0, 1, 2, . . . 1

The characteristic equation associated with this equation is

λ2k+1 − γλ2k−1 = 0.

So λ = 0,±√γ.
(1) If γ < 1, then |λ| < 1 for all roots and ȳ = 0 is locally asymptoti-

cally stable.

(2) If γ > 1, it follows that ȳ = 0 is unstable (saddle point).

The linearized equation (3.1) about ȳ =
√
γ − 1 becomes

zn+1 − zn−1 +
(
1− 1

γ

)
(zn−2l + zn−2k) = 0, n = 0, 1, 2, . . .

The associated characteristic equation is

λ2k+1 − λ2k−1 +
(
1− 1

γ

)
(λ2k−2l + 1) = 0.

Let f(λ) = λ2k+1 − λ2k−1 + (1 − 1
γ )(λ2k−2l + 1). We can see that f(λ)

has a root in (−∞,−1). Then the point ȳ =
√
γ − 1 is unstable (saddle

point).
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4. Global behavior of equation (2.4)

Theorem 4.1. If γ < 1, then the zero equilibrium point is globally

asymptotically stable.

Proof. Let {yn} be a solution of equation (2.4). Hence

yn+1 =
γyn−1

1 + yn−2lyn−2k
< γyn−1, n = 0, 1, 2, . . .

Then limn→∞ yn = 0. In view of Theorem 3.1, ȳ = 0 is globally asymp-
totically stable.

5. Existence of prime period two solutions

This section is devoted to discuss the condition under which there
exist prime period two solutions.

Theorem 5.1. A necessary and sufficient condition for equation (2.4)
to have a prime period two solution is that γ = 1. In this case the

prime period two solution is of the form . . . , 0, ϕ, 0, ϕ, 0, . . . where ϕ > 0.
Furthermore, every solution converges to a period two solution.

Proof. Sufficiency: let γ = 1, then for every ϕ > 0 we have . . . , 0, ϕ, 0, ϕ,
0, . . . is a prime period two solution.

Necessity: assume that equation (2.4) has a prime period two solution
. . . , ψ, ϕ, ψ, ϕ, ψ, . . . . Then

ϕ =
γϕ

1 + ψ2
, ψ =

γψ

1 + ϕ2
.

Hence
(ϕ− ψ) + ϕψ(ψ − ϕ) = γ(ϕ− ψ),

implies
ϕψ = 1− γ. (5.1)

So γ ≤ 1. Similarly,
ϕψ = γ − 1. (5.2)

So γ ≥ 1. Then ϕψ = 0 and the solution is of the form

. . . , 0, ϕ, 0, ϕ, 0, . . . with ϕ > 0.

Now let {yn}∞n=−2k be a solution of equation (2.4) with γ = 1. Then

yn+1 =
γyn−1

1 + yn−2lyn−2k
≤ yn−1, n = 0, 1, 2, . . .
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and so the even terms {y2n}∞n=0 decreases to a limit ϕ and the odd terms
{y2n+1}∞n=0 decreases to a limit ψ, where ϕ = ϕ

1+ψ2 , ψ = ψ
1+ϕ2 .

Then ϕψ2 = 0 and ψϕ2 = 0. Therefore, {yn}∞n=−2k converges to the
periodic solution . . . , 0, ϕ, 0, ϕ, 0, . . . with ϕ > 0.

6. Semicycle analysis

Here we discuss the existence of semicycles. We need the following
theorem to obtain the main result of this section.

Theorem 6.1. Assume that f ∈ C([0,∞[2k+1, [0,∞[) is increasing in

the even arguments and decreasing in the others. Let ȳ be an equilibrium

point for the difference equation

yn+1 = f(yn, yn−1, . . . , yn−2k), n = 0, 1, 2, . . . (6.1)

Let {yn}∞n=−2k be a solution of equation (6.1) such that either,

(C1) y−2k, y−2k+2, . . . , y0 > ȳ and y−2k+1, y−2k+3, . . . , y−1 < ȳ

or

(C2) y−2k, y−2k+2, . . . , y0 < ȳ and y−2k+1, y−2k+3, . . . , y−1 > ȳ

is satisfied, then {yn}∞n=−2k oscillates about ȳ with semicycles of length

one.

Proof. Assume that f is increasing in the even arguments and decreasing
in the others. Let f be satisfying condition (C1), we have

y1 = f(y0, y−1, y−2, . . . , y−2k+1, y−2k)

< f(ȳ, y−1, ȳ, . . . , y−2k+1, ȳ)

< f(ȳ, ȳ, ȳ, . . . , ȳ, ȳ, ) = ȳ,

y2 = f(y1, y0, y−1, y−2, . . . , y−2k+2, y−2k+1)

> f(ȳ, y0, ȳ, . . . , y−2k+2, ȳ)

> f(ȳ, ȳ, ȳ, . . . , ȳ, ȳ, ) = ȳ.

by induction we obtain the result.
If f satisfies condition (C2), we can prove the result similarly.

Corollary 6.1. Assume that γ > 1 and let {yn}∞n=−2k be a solution of

equation (2.4) such that either (C1) or (C2) is satisfied. Then {yn}∞n=−2k

oscillates about the positive equilibrium point ȳ =
√
γ − 1 with semicycles

of length one.

Proof. The proof follows directly from the previous theorem.
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7. Existence of unbounded solutions

Finally we show that, under certain initial condition, unbounded so-
lution will be obtained.

Theorem 7.1. Assume that γ > 1. Let {yn}∞n=−2k be a solution of

equation (2.4) and ȳ =
√
γ − 1, the positive equilibrium point. Then the

following statements are true:

(1) If y−2k, y−2k+2, . . . , y0 > ȳ and y−2k+1, y−2k+3, . . . , y−1 < ȳ, then

{y2n} increases to ∞ and {y2n+1} decreases to 0.

(2) If y−2k, y−2k+2, . . . , y0 < ȳ and y−2k+1, y−2k+3, . . . , y−1 > ȳ, then

{y2n} decreases to 0 and {y2n+1} increases to ∞.

Proof. (1) Let {yn}∞n=−2k be a solution of equation (2.4) with initial con-
ditions y−2k, y−2k+1, . . . , y0 > ȳ and y−2k+1, y−2k+3, . . . , y−1 < ȳ. Then

y2n+2 =
γy2n

1 + y2n−2l+1y2n−2k+1
>

γy2n

1 + ȳ2
= y2n

and

y2n+3 =
γy2n+1

1 + y2n−2l+1y2n−2k+1
<
γy2n+1

1 + ȳ2
= y2n+1

and so {y2n} increases to ∞ and {y2n+1} decreases to 0.

(2) The proof is similar and will be omitted.
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