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Abstract. With the aid of results by Gehring, we introduce and study

plane ring Q-homeomorphisms. This study is then applied in deriving

general principles on the existence and uniqueness of homeomorphic ACL

solutions to the Beltrami equation extending earlier results. In partic-

ular, we obtain new existence criteria which are expressed in terms of

finite mean oscillation majorants for tangential dilatations. Moreover,

we give a new proof of our generalization of the well-known Lehto exis-

tence theorem that has, in turn, a number of other consequences.
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1. Introduction

The existence problem for degenerate Beltrami equations is currently
an active area of research. It has intensively been studied and many
contributions have been made, see e.g. [7, 10, 21, 25, 32, 34, 36, 41, 43, 59]
and [50–54]. Some of those and many other theorems can be derived from
the mentioned generalization of the Lehto existence theorem, Theorem 5.5
below, see [54]. A detaled discussion of the above results can be found in
the survey [58].

Let D be a domain in the complex plane C, i.e., open and connected
subset of C, and let µ : D → C be a measurable function with |µ(z)| < 1
a.e. The Beltrami equation is the equation of the form

fz = µ(z) · fz (1.1)
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where fz = ∂f = (fx + ify)/2, fz = ∂f = (fx − ify)/2, z = x + iy, and
fx and fy are partial derivatives of f in x and y, correspondingly. The
function µ is called the complex coefficient and

Kµ(z) =
1 + |µ(z)|

1 − |µ(z)|
(1.2)

the maximal dilatation or in short the dilatation of the equation (1.1).
The Beltrami equation (1.1) is said to be degenerate if ess supKµ(z) = 1.
As known, the Beltrami equation plays an important role in the mapping
theory. The main goal of this paper is to present general principles which
allow to obtain variety of conditions for the existence of homeomorphic
ACL solutions in the degenerate case. Our existence theorems are proved
by an approximation method.

Given a point z0 in D, the tangential dilatation and the radial dilata-
tion of (1.1) with respect to z0 are respectively defined by

KT
µ (z, z0) =

∣

∣1 − z−z0

z−z0
µ(z)

∣

∣

2

1 − |µ(z)|2
(1.3)

and

Kr
µ(z, z0) =

1 − |µ(z)|2
∣

∣1 + z−z0

z−z0
µ(z)

∣

∣

2 , (1.4)

cf. [34, 55] and [21]. Reasons for the names will be given in Section 3.
Recall that a mapping f : D → C is absolutely continuous on lines,

abbr. f ∈ACL, if, for every closed rectangle R in D whose sides are
parallel to the coordinate axes, f |R is absolutely continuous on almost
all line segments in R which are parallel to the sides of R. In particular,
f is ACL if it belongs to the Sobolev class W 1,1

loc , see e.g. [35, p. 8]. Note
that, if f ∈ ACL, then f has partial derivatives fx and fy a.e. and, thus,
by the well-known Gehring–Lehto theorem every ACL homeomorphism
f : D → C is totally differentiable a.e., see [20] or [33, p. 128]. For a
sense-preserving ACL homeomorphism f : D → C, the Jacobian Jf (z) =
|fz|

2 − |fz|
2 is nonnegative a.e., see [33, p. 10]. In this case, the complex

dilatation µf of f is the ratio µ(z) = fz/fz, if fz 6= 0 and µ(z) = 0
otherwise, and the dilatation Kf of f is Kµ(z), see (1.2). Note that
|µ(z)| ≤ 1 a.e. and Kµ(z) ≥ 1 a.e.

Basically, there are three definitions of quasiconformality: analytic,
geometric and metric. They are equivalent with the same parameter
of quasiconformality K. By the analytic definition, a homeomorphism
f : D → C, D ⊂ C, is K-quasiconformal, abbr. K-qc, if f is ACL and

ess supKµ(z) = K <∞ (1.5)
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where µ is the complex dilatation of f. According to the geometric defi-
nition, f is K-quasiconformal if

sup
M(fΓ)

M(Γ)
= K <∞ (1.6)

where the supremum is taken over all path families Γ in D with modulus
M(Γ) 6= 0. It was noted by Ahlfors and Gehring that the supremum in
(1.6) can be taken over special families yielding the same bound K. In
particular, by [16] one may restrict to families of paths connecting the
boundary components of rings in D.

Given a measurable function K : D → [1,∞], we say that a sense-
preserving ACL homeomorphism f : D → C is K(z)-quasiconformal,
abbr. K(z)-qc, if

Kf (z) ≤ K(z) a.e. (1.7)

Given a measurable function Q : D → [1,∞], we say that a homeomor-
phism f : D → C is a Q-homeomorphism if

M(fΓ) ≤

∫

D

Q(z) · ρ2(z) dx dy (1.8)

holds for every path family Γ in D and each ρ ∈ admΓ. This term was
introduced in [37], see also [38, 39] and [26, 27], and the inequality was
first used in [50] and [51] as a basic tool in studying BMO-qc mappings.

Recall that, given a family of paths Γ in C, a Borel function ρ : C →
[0,∞] is called admissible for Γ, abbr. ρ ∈ admΓ, if

∫

γ

ρ(z) |dz| ≥ 1 (1.9)

for each γ ∈ Γ. The modulus of Γ is defined by

M(Γ) = inf
ρ∈adm Γ

∫

C

ρ2(z) dx dy. (1.10)

We say that a property P holds for almost every (a.e.) path γ in a family
Γ if the subfamily of all paths in Γ for which P fails has modulus zero.
In particular, almost all paths in C are rectifiable.

The inequality

M(fΓ) ≤

∫

D

Kµ(z) · ρ2(z) dx dy (1.11)
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for µ = µf was obtained in [33, p. 221] for quasiconformal mappings.
Note that Kµ cannot be replaced by a smaller function in (1.11) unless
one restricts either to special families Γ or to special ρ ∈ adm Γ. In
Section 3 (1.11) is improved for special Γ and ρ and then used for deriving
new criteria for the existence of homeomorphic solutions of the Beltrami
equation (1.1).

Given a domain D and two sets E and F in C, Γ(E,F,D) denotes
the family of all paths γ : [a, b] → C which join E and F in D, i.e., γ(a) ∈
E, γ(b) ∈ F and γ(t) ∈ D for a < t < b. We set Γ(E,F ) = Γ(E,F,C)
if D = C. A ring domain, or shortly a ring in C is a doubly connected
domain R in C. Let R be a ring in C. If C1 and C2 are the connected
components of C \R, we write R = R(C1, C2). The capacity of R can be
defined by

capR(C1, C2) = M(Γ(C1, C2, R)), (1.12)

see e.g. [24]. Note that

M(Γ(C1, C2, R)) = M(Γ(C1, C2)) , (1.13)

see e.g. Theorem 11.3 in [60].

Motivated by the ring definition of quasiconformality in [16], we in-
troduce the following notion that localizes and extends the notion of a
Q-homeomorphism. Let D be a domain in C, z0 ∈ D, r0 ≤ dist(z0, ∂D)
and Q : D(z0, r0) → [0,∞] a measurable function in the disk

D(z0, r0) = {z ∈ C : |z − z0| < r0}. (1.14)

Set

A(r1, r2, z0) = {z ∈ C : r1 < |z − z0| < r2}, (1.15)

C(z0, ri) = {z ∈ C : |z − z0| = ri}, i = 1, 2. (1.16)

We say that a homeomorphism f : D → C is a ring Q-homeomorphism
at the point z0 if

M → Γ(fC1, fC2) ≤

∫

A

Q(z) · η2(|z − z0|) dx dy (1.17)

for every annulus A = A(r1, r2, z0), 0 < r1 < r2 < r0, and for every
measurable function η : (r1, r2) → [0,∞] such that

r2
∫

r1

η(r) dr = 1. (1.18)



V. Ryazanov, U. Srebro, E. Yakubov 83

Note that every Q-homeomorphism f : D → C is a ring Q-homeomor-
phism at each point z0 ∈ D. Later on, we give other conditions on f which
force it to be a ring Q-homeomorphism.

An ACL homeomorphism f : D → C is called a ring solution of the
Beltrami equation (1.1) with a complex coefficient µ if f satisfies (1.1)
a.e., f−1 ∈W 1,2

loc and f is a ring Q-homeomorphism at every point z0 ∈ D
with Qz0

(z) = KT
µ (z, z0), see (1.3). We show that ring solutions exist for

wide classes of the degenerate Beltrami equations.

The condition f−1 ∈ W 1,2
loc given in the definition of a ring solution

implies that a.e. point z is a regular point for the mapping f, i.e., f is
differentiable at z and Jf (z) 6= 0. Note that the condition Kµ ∈ L1

loc

is necessary for a homeomorphic ACL solution f of (1.1) to have the
property g = f−1 ∈W 1,2

loc because this property implies that

∫

C

Kµ(z) dx dy ≤ 4

∫

C

dxdy

1 − |µ(z)|2
= 4

∫

f(C)

|∂g|2 du dv <∞

for every compact set C ⊂ D.

Note that every homeomorphic ACL solution f of the Beltrami equa-
tion with Kµ ∈ L1

loc belongs to the class W 1,1
loc as in all our theorems.

Note also that if, in addition, Kµ ∈ Lp
loc, p ∈ [1,∞], then f ∈W 1,s

loc where
s = 2p/(1 + p) ∈ [1, 2]. Indeed,

|∂f | + |∂f | = K1/2
µ (z) · J

1/2
f (z),

and by Hölder’s inequality, on every compact set C ⊂ D,

‖∂f‖s ≤ ‖∂f |s ≤ ‖K1/2
µ ‖p · ‖J

1/2
f ‖2

= ‖Kµ‖
1/2
q · ‖Jf‖

1/2
1 ≤ ‖Kµ‖

1/2
q ·A(f(C))1/2,

see e.g. [33, p. 131] where A(f(C)) is the area of the set f(C) and
1
p + 1

2 = 1
s and q = p/2. Hence f ∈W 1,s

loc , see e.g. [35, p. 8].

In the classical case when ‖µ‖∞ < 1, equivalently, when Kµ ∈ L∞,
every ACL homeomorphic solution f of the Beltrami equation (1.1) is
in the class W 1,2

loc together with its inverse mapping f−1, and hence f is
a ring solution of (1.1) by Theorem 3.1 below. In the case ‖µ‖∞ = 1
with Kµ ≤ Q ∈ BMO, again f−1 ∈ W 1,2

loc and f belongs to W 1,s
loc for all

1 ≤ s < 2 but not necessarily to W 1,2
loc , see [50] and [51]. However, there

is a varity of degenerate Beltrami equations for which ring solutions exist
as shown below. The inequality (1.17), which ring solutions satisfy, is an
important tool in deriving various properties of the solutions.
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Recall that a real valued function ϕ ∈ L1
loc(D) is said to be of bounded

mean oscillation in D, abbr. ϕ ∈ BMO(D) or simply ϕ ∈ BMO, if

‖ϕ‖∗ = sup
B⊂D

−

∫

B

|ϕ(z) − ϕB| dx dy <∞ (1.19)

where the supremum is taken over all disks B in D and

ϕB = −

∫

B

ϕ(z) dx dy =
1

|B|

∫

B

ϕ(z) dx dy (1.20)

is the mean value of the function ϕ over B. It is well-known that L∞(D)
⊂ BMO(D) ⊂ Lp

loc(D) for all 1 ≤ p < ∞, see e.g. [48]. A function ϕ in
BMO is said to have vanishing mean oscillation, abbr. ϕ ∈ VMO, if the
supremum in (1.19) taken over all disks B in D with |B| < ε converges
to 0 as ε→ 0.

The BMO space was introduced by John and Nirenberg, see [31],
and soon became one of the main concepts in harmonic analysis, com-
plex analysis and partial differential equations. BMO functions are re-
lated in many ways to quasiconformal and quasiregular mappings, see
e.g. [2,3,14,30,40] and [47], as well as to the modern classes of mappings
with finite distortion, see e.g. [4] and [25]. VMO has been introduced
by Sarason, see [57]. It is known a large number of papers devoted to
the existence, uniqueness and properties of solutions for various kind of
differential equations and, in particular, of elliptic type with coefficients
of the class VMO, see e.g. [8,28,42,46]. In this connection, it should be
noted that by the recent result of Brezis and Nirenberg in [6] the Sobolev
class W 1,2

loc is a subclass of VMO, see also [9].

Conditions for the existence and uniqueness of ACL homeomorphic
solutions for the Beltrami equation can be given in terms of the maximal
dilatation Kµ(z). In particular, it was proved that, if Kµ(z) has a BMO
majorant, then the Beltrami equation (1.1) has a homeomorphic ACL
solution, see e.g. [51]. Various conditions for the existence of solutions
for the Beltrami equation have been formulated in terms of integral and
measure constraints on Kµ, see e.g. [7, 10, 25, 32, 36, 41, 43, 59]. These
conditions assume either exponential integrability or at least high local
integrability of the dilatation. As in [21,34] and [54], the existence criteria
which are established in the present paper are expressed in terms of the
tangential dilatations KT

µ (z, z0) with the assumption that Kµ ∈ L1
loc.

In [52, 53], we proved that if Kµ(z) has a majorant Q(z) in D which
belongs to the class FMO (functions of finite mean oscillation) described
in Section 2, then (1.1) has a homeomorphic ACL solution. Here we
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prove, in particular, a stronger result on the existence of a ring solution
of (1.1) where the assumption on a FMO majorant for Kµ inD is replaced
by the condition that every point z0 ∈ D has a neighborhood Uz0

and a
function Qz0

: Uz0
→ [0,∞] which is of finite mean oscillation at z0 such

that KT
µ (z, z0) ≤ Qz0

(z) for all z ∈ Uz0
, see Theorem 5.1 in Section 5

below. This as well as other new existence theorems here are based on a
general existence principle, Lemma 5.1. Some of these existence theorems
are expressed in terms of mean and logarithmic mean of the tangential
dilatation KT

µ (z, z0) over infinitesimal disks and annuli centered at z0,
see e.g. Theorems 5.2 and 5.4. We also use Lemma 5.1 in a new proof
of an extension of Lehto’s theorem that we established [54]. Finally, we
prove the corresponding uniqueness theorems for the Beltrami equation
in Section 6.

2. Finite mean oscillation

Let D be a domain in the complex plane C. We say that a function
ϕ : D → R has finite mean oscillation at a point z0 ∈ D if

dϕ(z0) = lim
ε→0

−

∫

D(z0,ε)

|ϕ(z) − ϕε(z0)| dx dy <∞ (2.1)

where

ϕε(z0) = −

∫

D(z0,ε)

ϕ(z) dx dy <∞ (2.2)

is the mean value of the function ϕ(z) over the disk D(z0, ε) with small
ε > 0. Thus, the notion includes the assumption that ϕ is integrable in
some neighborhood of the point z0. We call dϕ(z0) the dispersion of the
function ϕ at the point z0. We say that a function ϕ : D → R is of finite
mean oscillation in D, abbr. ϕ ∈ FMO(D) or simply ϕ ∈ FMO, if ϕ has
a finite dispersion at every point z ∈ D.

Remark 2.1. Note that, if a function ϕ : D → R is integrable over
D(z0, ε0) ⊂ D, then

−

∫

D(z0,ε)

|ϕ(z) − ϕε(z0)| dx dy ≤ 2 · ϕε(z0) (2.3)

and the right side in (2.3) is continuous in the parameter ε ∈ (0, ε0] by the
absolute continuity of the indefinite integral. Thus, for every δ0 ∈ (0, ε0),

sup
ε∈[δ0,ε0]

−

∫

D(z0,ε)

|ϕ(z) − ϕε(z0)| dx dy <∞. (2.4)
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If (2.1) holds, then

sup
ε∈(0,ε0]

−

∫

D(z0,ε)

|ϕ(z) − ϕε(z0)| dx dy <∞. (2.5)

The number in (2.5) is called the maximal dispersion of the function
ϕ in the disk D(z0, ε0).

Proposition 2.1. If, for some collection of numbers ϕε ∈ R, ε ∈ (0, ε0],

lim
ε→0

−

∫

D(z0,ε)

|ϕ(z) − ϕε| dx dy <∞, (2.6)

then ϕ is of finite mean oscillation at z0.

Proof. Indeed, by the triangle inequality,

−

∫

D(z0,ε)

|ϕ(z) − ϕε(z0)| dx dy

≤ −

∫

D(z0,ε)

|ϕ(z) − ϕε| dx dy + |ϕε − ϕε(z0)|

≤ 2 −

∫

D(z0,ε)

|ϕ(z) − ϕε| dx dy.

Corollary 2.1. If, for a point z0 ∈ D,

lim
ε→0

−

∫

D(z0,ε)

|ϕ(z)| dx dy <∞, (2.7)

then ϕ has finite mean oscillation at z0.

Remark 2.2. Clearly BMO ⊂ FMO. The example given in the end of
this section shows that the inclusion is proper. Note that the function
ϕ(z) = log 1

|z| belongs to BMO in the unit disk ∆, see e.g. [48, p. 5], and

hence also to FMO. However, ϕε(0) → ∞ as ε → 0, showing that the
condition (2.7) is only sufficient but not necessary for a function ϕ to be
of finite mean oscillation at z0.



V. Ryazanov, U. Srebro, E. Yakubov 87

A point z0 ∈ D is called a Lebesgue point of a function ϕ : D → R if
ϕ is integrable in a neighborhood of z0 and

lim
ε→0

−

∫

D(z0,ε)

|ϕ(z) − ϕ(z0)| dx dy = 0. (2.8)

It is known that, for every function ϕ ∈ L1(D), almost every point in D
is a Lebesgue point.

Corollary 2.2. Every function ϕ : D → R, which is locally integrable,
has a finite mean oscillation at almost every point in D.

Below we use the notations D(r) = D(0, r) = {z ∈ C : |z| < r} and

A(ε, ε0) = {z ∈ C : ε < |z| < ε0}. (2.9)

Lemma 2.1. Let D ⊂ C be a domain such that D(1/2) ⊂ D, and let
ϕ : D → R be a nonnegative function. If ϕ is integrable in D(1/2) and
of FMO at 0, then

∫

A(ε,1/2)

ϕ(z) dx dy
(

|z| log2
1
|z|

)2 ≤ C · log2 log2

1

ε
(2.10)

for ε ∈ (0, 1/4), where

C = 4π [ϕ0 + 6d0], (2.11)

ϕ0 is the mean value of ϕ over the disk D(1/2) and and d0 is the maximal
dispersion of ϕ in D(1/2).

Versions of this lemma have been first established for BMO functions
and n = 2 in [50] and [51] and then for FMO functions in [26] and [53]. An
n-dimensional version of the lemma for BMO functions was established
in [38].

Proof. Let 0 < ε < 2−2, εk = 2−k, Ak = {z ∈ D : εk+1 ≤ |z| <
εk}, Dk = D(εk) and let ϕk be the mean value of ϕ(z) over Dk, k =
1, 2 . . . . Take a natural number N such that ε ∈ [εN+1, εN ) and denote
α(t) = (t log 1/t)−2. Then A(ε, 2−1) ⊂ A(ε) =

⋃N
k=1Ak and

η(ε) =

∫

A(ε)

ϕ(z)α(|z|) dx dy ≤ |S1| + S2
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where

S1(ε) =
N
∑

k=1

∫

Ak

(ϕ(z) − ϕk)α(|z|) dx dy,

S2(ε) =
N
∑

k=1

ϕk

∫

Ak

α(|z|) dx dy.

Since Ak ⊂ Dk, |z|−2 ≤ 4π/|Dk| for z ∈ Ak and log 1
|z| > k in Ak,

then

|S1| ≤ 4πd0

N
∑

k=1

1

k2
< 8πd0

because
∞
∑

k=2

1

k2
<

∞
∫

1

dt

t2
= 1.

Now,
∫

Ak

α(|z|) dx dy ≤
1

k2

∫

Ak

dxdy

|z|2
=

2π

k2
.

Moreover,

|ϕk − ϕk−1| =
1

|Dk|

∣

∣

∣

∣

∣

∫

Dk

(ϕ(z) − ϕk−1) dx dy

∣

∣

∣

∣

∣

≤
4

|Dk−1|

∫

Dk−1

|ϕ(z) − ϕk−1| dx dy ≤ 4d0

and by the triangle inequality, for k ≥ 2,

ϕk = |ϕk| ≤ ϕ1 +
k
∑

l=2

|ϕl − ϕl−1| ≤ ϕ1 + 4kd0 = ϕ0 + 4kd0.

Hence

S2 = |S2| ≤ 2π
N
∑

k=1

ϕk

k2
≤ 4πϕ0 + 8πd0

N
∑

k=1

1

k
.

But
N
∑

k=2

1

k
<

N
∫

1

dt

t
= logN < log2N
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and, for ε < εN ,

N = log2

1

εN
< log2

1

ε
.

Consequently,
N
∑

k=1

1

k
< 1 + log2 log2

1

ε
,

and, thus, for ε ∈ (0, 2−2),

η(ε) ≤ 4π
(

2d0 +
4d0 + ϕ0

log2 log2
1
ε

)

· log2 log2

1

ε
≤ C · log2 log2

1

ε
.

We complete this section by constructing a function ϕ : C → R which
belongs to FMO but not to Lp

loc for any p > 1, and in particular it does
not belong to BMOloc.

Example. Fix p > 1. For k = 1, 2, . . . , set zk = 2−k, rk = 2−pk2

and
Dk = D(zk, rk). Define ϕ(z) =

∑∞
k=2 ϕk(z) where ϕk(z) = 22k2

if z ∈ Dk

and 0 otherwise. Then ϕ is locally bounded in C\{0} and hence belongs
to BMOloc(C \ {0}) and therefore to FMO(C \ {0}). To show that ϕ is
of FMO at z = 0, calculate

∫

Dk

ϕk(z) dx dy = π2−2(p−1)k2

. (2.12)

Consequently,

lim
ε→0

−

∫

D(ε)

ϕ(z) dx dy <∞. (2.13)

Indeed, setting

K = K(ε) =
[

log2

1

ε

]

≤ log2

1

ε
(2.14)

where [A] is the integral part of a number A, we have that

J = −

∫

D(ε)

ϕ(z) dx dy ≤
∞
∑

k=K

2−2(p−1)k2

/2−2(K+1). (2.15)

If (p− 1)K > 1, i.e. K > 1/(p− 1), then

∞
∑

k=K

2−2(p−1)k2

≤
∞
∑

k=K

2−2k = 2−2K
∞
∑

k=0

(1

4

)k
=

4

3
· 2−2K , (2.16)
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i.e., J ≤ 16/3. Thus, by Corollary 2.1 ϕ ∈ FMO.
Finally, note that

∫

Dk

ϕp
k(z) dx dy = π (2.17)

and hence ϕ /∈ Lp(U) for any neighborhood U of 0.

3. Ring Q-homeomorphisms in the plane

The notation of ring Q-homeomorphisms which was introduced in
(1.17) appears in Theorems 3.1 and 3.2 below.

Let z be a regular point for a mapping f : D → C. Given ω ∈ C,
|ω| = 1, the derivative in the direction ω of the mapping f at the point
z is

∂ωf(z) = lim
t→+0

f(z + t · ω) − f(z)

t
. (3.1)

The radial direction at a point z ∈ D with respect to the center
z0 ∈ C, z0 6= z, is

ω0 = ω0(z, z0) =
z − z0
|z − z0|

. (3.2)

The radial dilatation of f at z with respect to z0 is defined by

Kr(z, z0, f) =
|Jf (z)|

|∂z0
r f(z)|2

(3.3)

and the tangential dilatation by

KT (z, z0, f) =
|∂z0

T f(z)|2

|Jf (z)|
(3.4)

where ∂z0
r f(z) is the derivative of f at z in the direction ω0 and ∂z0

T f(z)
in τ = iω0, correspondingly.

Note that if z is a regular point of f and |µ(z)| < 1, µ(z) = fz/fz,
then

Kr(z, z0, f) = Kr
µ(z, z0) (3.5)

and
KT (z, z0, f) = KT

µ (z, z0) (3.6)

whereKr
µ(z, z0) andKT

µ (z, z0) are defined by (1.4) and (1.3), respectively.
Indeed, the equalities (3.5) and (3.6) follow directly from the calculations

∂rf =
∂f

∂z
·
∂z

∂r
+
∂f

∂z
·
∂z

∂r
=

z − z0
|z − z0|

· fz +
z − z0
|z − z0|

· fz (3.7)
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where r = |z − z0| and

∂T f =
1

r

(∂f

∂z
·
∂z

∂ϑ
+
∂f

∂z
·
∂z

∂ϑ

)

= i ·
( z − z0
|z − z0|

· fz −
z − z0
|z − z0|

· fz

)

(3.8)

where ϑ = arg (z − z0) because Jf (z) = |fz|
2 − |fz|

2.
The big radial dilatation of f at z with respect to z0 is defined by

KR(z, z0, f) =
|Jf (z)|

|∂z0

R f(z)|2
(3.9)

where

|∂z0

R f(z)| = min
ω∈C,
|ω|=1

|∂ωf(z)|

|Reωω0|
. (3.10)

Here Reωω0 is the scalar product of vectors ω and ω0. In the other
words, Reωω0 is the projection of the vector ω onto the radial direction
ω0. Obviously, there is a unit vector ω∗ such that

|∂z0

R f(z)| =
|∂ω∗

f(z)|

|Reω∗ω0|
. (3.11)

It is clear that

|∂z0
r f(z)| ≥ |∂z0

R f(z)| ≥ min
ω∈C,
|ω|=1

|∂ωf(z)| (3.12)

and hence
Kr(z, z0, f) ≤ KR(z, z0, f) ≤ Kµ(z) (3.13)

and the equalities hold in (3.13) if and only if the minimum in the right
hand side of (3.12) is realized for the radial direction ω = ω0.

Note that ∂z0
r f(z) 6= 0, |∂z0

R f(z)| 6= 0 and ∂z0

T f(z) 6= 0 at every regular
point z 6= z0 of f, see e.g. 1.2.1 in [49]. In view of (3.4), (3.6) and (1.3),
the following lemma shows that the big radial dilatation coincides with
the tangential dilatation at every regular point.

Lemma 3.1. Let z ∈ D be a regular point of a mapping f : D → C with
the complex dilatation µ(z) = fz/fz such that |µ(z)| < 1. Then

KR(z, z0, f) =

∣

∣1 − z−z0

z−z0
µ(z)

∣

∣

2

1 − |µ(z)|2
. (3.14)

Proof. The derivative of f at the regular point z in the arbitrary direction
ω = eiα is the quantity ∂ωf(z) = fz + fz · e

−2iα, see e.g. [33, p. 17 and
182]. Consequently,
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X :=
|∂z0

R f(z)|2

|fz|2
= min

α∈[0,2π]

|µ(z) + e2iα|2

cos2(α− ϑ)
= min

β∈[0,2π]

|ν − e2iβ |2

sin2 β

= min
β∈[0,2π]

1 + |ν|2 − 2|ν| cos(κ− 2β)

sin2 β

= min
t∈[−1,1]

1 + |ν|2 − 2|ν| · [(1 − 2t2) cos κ± 2t(1 − t2)1/2 sin κ]

t2

where t = sin β, β = α+ π
2 −ϑ, ν = µ(z)e−2iϑ and κ = arg ν = argµ−2ϑ.

Hence X = minτ∈[1,∞] ϕ±(τ) where τ = 1/ sin2 β,

ϕ±(τ) = b+ aτ ± c(τ − 1)1/2,

a = 1 + |ν|2 − 2|ν| cosκ, b = 4|ν| cosκ, c = 4|ν| sinκ.

Since ϕ′
±(τ) = a ± (τ − 1)−1/2c/2 the minimum is realized for τ = 1 +

c2/4a2 under (τ − 1)1/2 = ∓c/2a, correspondingly, where the signs are
agreed. Thus,

X = b+
(

a+
1

4

c2

a

)

−
1

2

c2

a
=

(1 − |ν|2)2

1 + |ν|2 − 2|ν| cosκ

that implies (3.14).

Next, we recall some general properties of homeomorphisms in the
Sobolev class W 1,2

loc .

Proposition 3.1. Let f : D → C be a homeomorphism of the class
W 1,2

loc . Then f is differentiable a.e. and satisfies Lusin’s property (N). If,

in addition, f−1 belongs to the class W 1,2
loc , then

Jf (z) 6= 0 a.e. (3.15)

The statement follows from the well-known results for W 1,2
loc homeo-

morphisms, see e.g. [33, p. 121, 128–130 and 150], and the equivalence of
the (N−1)-property and the property (3.15) for mappings f which are dif-
ferentiable a.e., see Theorem 1 in [44]. Recall that a mapping f : X → Y
between measurable spaces (X,Σ, µ) and (X ′,Σ′, µ′) is said to have the
Lusin (N)-property if µ′(f(S)) = 0 whenever µ(S) = 0. Similarly, f has
the (N−1)-property if µ(S) = 0 whenever µ′(f(S)) = 0.

Some prototypes of the following theorem can be found in [21, 34,
55]. In these theorems, both |µ| and argµ are incorporated in modulus
estimations.
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Theorem 3.1. Let f : D → C be a sense-preserving homeomorphism
of the class W 1,2

loc such that f−1 ∈ W 1,2
loc . Then at every point z0 ∈ D

the mapping f is a ring Q-homeomorphism with Q(z) = KT
µ (z, z0) where

µ(z) = µf (z).

Proof. Fix z0 ∈ D, and r1 and r2 such that 0 < r1 < r2 < r0 ≤
dist (z0, ∂D) and let C1 = {z ∈ C : |z − z0| = r1} and C2 = {z ∈ C :
|z − z0| = r2}. Set Γ = Γ(C1, C2, D) and denote by Γ∗ the family of all
rectifiable paths γ∗ ∈ fΓ for which f−1 is absolutely continuous on every
closed subpath of γ∗. Then M(fΓ) = M(Γ∗) by the Fuglede theorem,
see [13] and [60], because f−1 ∈ ACL2, see e.g. [35, p. 8].

Fix γ∗ ∈ Γ∗. Set γ = f−1 ◦γ∗ and denote by s and s∗ natural (length)
parameters of γ and γ∗, correspondingly. Note that the correspondence
s∗(s) between the natural parameters of γ∗ and γ is a strictly monotone
function and we may assume that s∗(s) is increasing. For γ∗ ∈ Γ∗, the
inverse function s(s∗) has the (N)-property and s∗(s) is differentiable a.e.
as a monotone function. Thus, ds∗

ds 6= 0 a.e. on γ by [44]. Let s be such
that z = γ(s) is a regular point for f and suppose that γ is differentiable
at s with ds∗

ds 6= 0. Let r = |z − z0| and let ω be a unit tangential vector
to the path γ at the point z = γ(s). Then

∣

∣

∣

dr

ds∗

∣

∣

∣
=

dr
ds
ds∗
ds

=
|Reωω0|

|∂ωf(z)|
≤

1

|∂z0

R f(z)|
(3.16)

where |∂z0

R f(z)| is defined by (3.10).
Now, let η : (r1, r2) → [0,∞] be an arbitrary measurable function

such that
r2
∫

r1

η(r) dr = 1. (3.17)

By the Lusin theorem, there is a Borel function η∗ : (r1, r2) → [0,∞] such
that η∗(r) = η(r) a.e., see e.g. 2.3.5 in [13] and [56, p. 69]. Let

ρ(z) = η∗(|z − z0|)

in the annulus A = {z ∈ C : r1 < |z − z0| < r2} and ρ(z) = 0 outside of
A. Set

ρ∗(w) = {ρ/|∂z0

R f |} ◦ f
−1(w)

if z = f−1(w) is a regular point of f, ρ∗(w) = ∞ at the rest points of
f(D) and ρ∗(w) = 0 outside f(D). Then by (3.16) and (3.17), for γ∗ ∈ Γ∗,

∫

γ∗

ρ∗ds∗ ≥

∫

γ∗

η(r)
∣

∣

∣

dr

ds∗

∣

∣

∣
ds∗ ≥

∫

γ∗

η(r)
dr

ds∗
ds∗ =

r2
∫

r1

η(r) dr = 1
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because the function z = γ(s(s∗)) is absolutely continuous and hence so
is r = |z − z0| as a function of the parameter s∗. Consequently, ρ∗ is
admissible for all γ∗ ∈ Γ∗.

By Proposition 3.1 f and f−1 are regular a.e. and have the property
(N). Thus, by change of variables, see e.g. Theorem 6.4 in [59], we have
in view of Lemma 3.1 that

M(fΓ) ≤

∫

f(A)

ρ∗(w)2 du dv =

∫

A

ρ(z)2KT
µ (z, z0) dx dy

=

∫

A

KT
µ (z, z0) · η

2(|z − z0|) dx dy,

i.e., f is a ring Q-homeomorphism with Q(z) = KT
µ (z, z0).

If f is a plane W 1,2
loc homeomorphism with a locally integrable Kf (z),

then f−1 ∈ W 1,2
loc , see e.g. [23]. Hence we obtain the following conse-

quences of Theorem 3.1 which will be quoted below.

Corollary 3.1. Let f : D → C be a sense-preserving homeomorphism of
the class W 1,2

loc and suppose that Kf (z) is integrable in a disk D(z0, r0) ⊂
D for some z0 ∈ D and r0 > 0. Then f is a ring Q-homeomorphism at
the point z0 ∈ D with Q(z) = KT

µ (z, z0) where µ(z) = µf (z).

Corollary 3.2. Let f : D → C be a sense-preserving homeomorphism
of the class W 1,2

loc with Kµ ∈ L1
loc. Then f is a ring Q-homeomorphism at

the every point z0 ∈ D with Q(z) = Kµ(z) where µ(z) = µf (z).

We close this section with a convergence theorem which plays an
important role in our scheme for deriving the existence theorems of the
Beltrami equation.

Theorem 3.2. Let fn : D → C, n = 1, 2, . . . , be a sequence of ring Q-
homeomorphisms at a point z0 ∈ D. If fn converge locally uniformly to
a homeomorphism f : D → C, then f is also a ring Q-homeomorphism
at the point z0.

Indeed, it follows from the uniform convergence of the rings fnR(C1,
C2) to the ring fR(C1, C2), see [16–18].

4. Distortion estimates

Below we use the standard conventions a/∞ = 0 for a 6= ∞ and
a/0 = ∞ if a > 0 and 0 · ∞ = 0, see e.g. [56, p. 6].
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For points z, ζ ∈ C, the spherical (chordal) distance s(z, ζ) between z
and ζ is given by

s(z, ζ) =
|z − ζ|

(1 + |z|2)
1
2 (1 + |ζ|2)

1
2

if z 6= ∞ 6= ζ, (4.1)

s(z,∞) =
1

(1 + |z|2)
1
2

if z 6= ∞.

Given a set E ⊂ C, δ(E) denotes the spherical diameter of E, i.e.,

δ(E) = sup
z1,z2∈E

s(z1, z2). (4.2)

The following lemma is based on well known capacity estimates by
Gehring.

Lemma 4.1. Let f : D → C be a homeomorphism with δ(C \ f(D)) ≥
∆ > 0 and let z0 be a point in D, ζ ∈ D(z0, r0), r0 ≤ dist (z0, ∂D),
C0 = {z ∈ C : |z − z0| = r0} and C = {z ∈ C : |z − z0| = |ζ − z0|}. Then

s(f(ζ), f(z0)) ≤
32

∆
· exp

(

−
2π

capR(fC, fC0)

)

. (4.3)

Proof. Let E denote the component of C\fA containing f(z0) and F
the component containing ∞ where A = {z ∈ C : |ζ−z0| < |z−z0| < r0}.
By the known Gehring lemma

capR(E,F ) ≥ capRT

( 1

δ(E)δ(F )

)

(4.4)

where δ(E) and δ(F ) denote the spherical diameters of the continua E
and F, correspondingly, and RT (t) is the Teichmüller ring

RT (t) = C \ ([−1, 0] ∪ [t,∞]), t > 1, (4.5)

see e.g. 7.37 in [62] or [18]. It is also known that

capRT (t) =
2π

log Φ(t)
(4.6)

where the function Φ admits the good estimates:

t+ 1 ≤ Φ(t) ≤ 16 · (t+ 1) < 32 · t, t > 1, (4.7)

see e.g. [18, p. 225–226], and (7.19) and (7.22) in [62]. Hence the inequal-
ity (4.4) implies that

capR(E,F ) ≥
2π

log 32
δ(E)δ(F )

. (4.8)
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Thus,

δ(E) ≤
32

δ(F )
exp

(

−
2π

capR(E,F )

)

(4.9)

that implies the desired statement.

Lemma 4.2. Let f : D → C be a ring Q-homeomorphism at a point
z0 ∈ D for a given measurable function Q : D(z0, r0) → [0,∞], r0 ≤
dist(z0, ∂D). Let ψε : [0,∞] → [0,∞], 0 < ε < ε0 < r0, be a given one
parameter family of measurable functions such that

0 < I(ε) =

ε0
∫

ε

ψε(t) dt <∞, ε ∈ (0, ε0). (4.10)

Set C = {z ∈ C : |z − z0| = ε}, C0 = {z ∈ C : |z − z0| = ε0} and

A(ε) = A(ε, ε0, z0) = {z ∈ C : ε < |z − z0| < ε0}. (4.11)

Then
capR(fC, fC0) ≤ ω(ε) (4.12)

where

ω(ε) =
1

I2(ε)

∫

A(ε)

Q(z) · ψ2
ε(|z − z0|) dx dy. (4.13)

Proof. Given a ring Q-homeomorphism f at z0, then (4.12) follows by
the definition with choosing η(r) = ψε(r)/I(ε), r ∈ (ε, ε0), in (1.17).

Using Lemma 4.2, we present now a sharp capacity estimate for ring
Q-homeomorphisms f : D → C at a point z0 ∈ D. This estimate depends
only on Q and it implies as a special case a known inequality which was
proved for qc mappings by Reich and Walczak in [55] and that has later
been applied by several authors.

Lemma 4.3. Let D be a domain in C, z0 a point in D, r0 ≤ dist(z0, ∂D),
Q : D(z0, r0) → [0,∞] a measurable function and q(r) the mean of Q(z)
over the circle |z − z0| = r, r, r0. For 0 < r1 < r2 < r0, set

I = I(r1, r2) =

r2
∫

r1

dr

rq(r)
(4.14)

and Cj = {z ∈ C : |z − z0| = rj}, j = 1, 2. Then

capR(fC1, fC2) ≤
2π

I
, (4.15)

whenever f : D → C is a ring Q-homeomorphism at z0.
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Proof. With no loss of generality we may assume that I 6= 0 because
otherwise (4.15) is trivial and that I 6= ∞ because otherwise we can
replace Q(z) by Q(z) + δ with arbitrarily small δ > 0 and then take the
limit as δ → 0 in (4.15). The condition I 6= ∞ implies, in particular,
that q(r) 6= 0 a.e. in (r1, r2).

For I 6= 0,∞, Lemma 4.3 follows from Lemma 4.2 by choosing the
functional parameter

ψε(t) ≡ ψ(t) : =

{

1/[tq(t)], t ∈ (0, ε0),

0, otherwise
(4.16)

with ε = r1 and ε0 = r2, since
∫

A

Q(z) · ψ2(|z − z0|) dx dy = 2πI (4.17)

where
A = A(r1, r2, z0) = {z ∈ C : r1 < |z − z0| < r2}. (4.18)

Corollary 4.1. For every ring Q-homeomorphism f : D → C at z0 ∈ D
and 0 < r1 < r2 < r0,

r2
∫

r1

dr

rq(r)
<∞ (4.19)

where q(r) is the mean of Q(z) over the circle |z − z0| = r.

Indeed, by (4.8) with E = fC1 and F = fC2, C1 = {z ∈ C : |z−z0| =
r1} and C2 = {z ∈ C : |z − z0| = r2}

capR(fC1, fC2) ≥
2π

log 32
δ(fC1)δ(fC2)

. (4.20)

The right side in (4.20) is positive since f is injective. Thus, Corollary
4.1 follows from (4.15) in Lemma 4.3.

Corollary 4.2. Let f : D → C be a W 1,2
loc homeomorphism in a domain

D ⊂ C such that

Kµ(z) =
1 + |µ(z)|

1 − |µ(z)|
∈ L1

loc(D) (4.21)

where µ(z) = µf (z). Set

qT
z0

(r) =
1

2π

2π
∫

0

|1 − e−2iϑµ(z0 + reiϑ)|2

1 − |µ(z0 + reiϑ)|2
dϑ. (4.22)
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Then
r2
∫

r1

dr

rqT
z0

(r)
<∞ (4.23)

for every z0 ∈ D and 0 < r1 < r2 < d0 where d0 = dist(z0, ∂D).

Corollary 4.2 follows from Corollaries 4.1 and 3.1 and from the defi-
nition of the tangential dilatation KT

µ (z, z0), see (1.3).

Corollary 4.3. Let f : D → C be a W 1,2
loc homeomorphism with Kµ(z) ∈

L1
loc where µ(z) = µf (z). Then

capR(fC1, fC2) ≤

[ r2
∫

r1

dr

r
∫ 2π
0

|1−e−2iϑµ(z0+reiϑ)|2

1−|µ(z0+reiϑ)|2
dϑ

]−1

. (4.24)

Indeed, by Corollary 3.1 f is a ring Q-homeomorphism at z0 with
Q(z) = KT

µ (z, z0). The tangential dilatation KT
µ (z, z0) is given by (1.3)

and thus (4.24) follows from Lemma 4.3.

Remark 4.1. (4.24) was first derived by Reich and Walczak [55] for qua-
siconformal mappings and then by Lehto [34] for certain µ-homeomor-
phisms, and was later applied by Brakalova and Jenkins [7] and Gutlyan-
skii, Martio, Sugawa and Vuorinen [21] in the study of degenerate Bel-
trami equations.

The following lemma shows that the estimate (4.15), which implies
(4.24), cannot be improved in the class of all ring Q-homeomorphisms.
Note that the additional condition (4.25) which appears in the following
lemma holds automatically for every ring Q-homeomorphism by Corol-
lary 4.1.

Lemma 4.4. Fix 0 < r1 < r2 < r0, A = {z ∈ C : r1 < |z − z0| < r2},
and suppose that Q : D(z0, r0) → [0,∞] is a measurable function such
that

c0 =

r2
∫

r1

dr

rq(r)
<∞ (4.25)

where q(r) is the mean of Q(z) over the circle |z − z0| = r and let

η0(r) =
1

c0rq(r)
. (4.26)

Then

2π

c0
=

∫

A

Q(z) · η2
0(|z − z0|) dx dy ≤

∫

A

Q(z) · η2(|z − z0|) dx dy (4.27)
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for any η : (r1, r2) → [0,∞] such that

r2
∫

r1

η(r) dr = 1. (4.28)

Proof. If c0 = 0, then q(r) = ∞ for a.e. r ∈ (r1, r2) and the both sides
in (4.27) are equal to ∞. Hence we may assume below that 0 < c0 <∞.

Now, by (4.25) and (4.28) q(r) 6= 0 and η(r) 6= ∞ a.e. in (r1, r2). Set
α(r) = rq(r)η(r) and w(r) = 1/rq(r). Then by the standard conventions
η(r) = α(r)w(r) a.e. in (r1, r2) and

C :=

∫

A

Q(z) · η2(|z − z0|) dx dy = 2π

r2
∫

r1

α2(r) · w(r) dr. (4.29)

By Jensen’s inequality with weights, see e.g. Theorem 2.6.2 in [46],
applied to the convex function ϕ(t) = t2 in the interval Ω = (r1, r2) with
the probability measure

ν(E) =
1

c0

∫

E

w(r) dr (4.30)

we obtain that
(

−

∫

α2(r)w(r) dr

)1/2

≥ −

∫

α(r)w(r) dr =
1

c0
(4.31)

where we also used the fact that η(r) = α(r)w(r) satisfies (4.28). Thus,

C ≥
2π

c0
(4.32)

and the proof is complete.

Given a number ∆ ∈ (0, 1), a domain D ⊂ C, a point z0 ∈ D, a
number r0 ≤ dist(z0, ∂D), and a measurable function Q : D(z0, r0) →
[0,∞], let R∆

Q denote the class of all ring Q-homeomorphisms f : D → C

at z0 such that
δ(C \ f(D)) ≥ ∆. (4.33)

Next, we introduce the classes B∆
Q and F∆

Q of certain qc mappings. Let

B∆
Q denote the class of all quasiconformal mappings f : D → C satisfying

(4.33) such that

KT
µ (z, z0) =

∣

∣1 − z−z0

z−z0
µ(z)

∣

∣

2

1 − |µ(z)|2
≤ Q(z) a.e. in D(z0, r0) (4.34)
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where µ = µf . Similarly, let F∆
Q denote the class of all quasiconformal

mappings f : D → C satisfying (4.33) such that

Kµ(z) =
1 + |µ(z)|

1 − |µ(z)|
≤ Q(z) a.e. in D(z0, r0). (4.35)

Remark 4.2. By Corollaries 3.1 and the relations (3.13) and (3.6)

F∆
Q ⊂ B∆

Q ⊂ R∆
Q. (4.36)

Combining Lemmas 4.2 and 4.1 we obtain the following distortion
estimates in the class R∆

Q which allow us to obtain further basic distortion
bounds, see theorems and corollaries following Theorem 4.1.

Corollary 4.4. Let f ∈ R∆
Q, and let ω(ε) be as in Lemma 4.2. Then

s(f(ζ), f(z0)) ≤
32

∆
· exp

(

−
2π

ω(|ζ − z0|)

)

(4.37)

for all ζ ∈ D(z0, ε0).

Theorem 4.1. Let f ∈ R∆
Q, and let ψ : [0,∞] → [0,∞] be a measurable

function such that

0 <

ε0
∫

ε

ψ(t) dt <∞, ε ∈ (0, ε0). (4.38)

Suppose that

∫

ε<|z−z0|<ε0

Q(z) · ψ2(|z − z0|) dx dy ≤ C ·

ε0
∫

ε

ψ(t) dt (4.39)

for all ε ∈ (0, ε0). Then

s(f(ζ), f(z0)) ≤
32

∆
· exp

(

−
2π

C
·

ε0
∫

|ζ−z0|

ψ(t) dt

)

(4.40)

whenever ζ ∈ D(z0, ε0).

Choosing in Theorem 4.1 the special functional parameter ψ(t) given
by (4.16) we obtain the following distortion theorem for ring Q-homeo-
morphisms.
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Theorem 4.2. Let D be a domain in C, z0 a point in D, r0 ≤ dist(z0,
∂D), Q : D(z0, r0) → [0,∞] a measurable function and let f ∈ R∆

Q. Then

s(f(ζ), f(z0)) ≤
32

∆
· exp

(

−

r0
∫

|ζ−z0|

dr

rq(r)

)

(4.41)

for all ζ ∈ D(z0, r0) where q(r) is the mean of Q(z) over the circle
|z − z0| = r.

In the following theorem the estimate of distortion is expressed in
terms of maximal dispersion, see (2.5).

Theorem 4.3. Let f ∈ R∆
Q for ∆ > 0 and Q with finite mean oscillation

at z0 ∈ D. If Q is integrable over a disk D(z0, ε0) ⊂ D, then

s(f(ζ), f(z0)) ≤
32

∆
·
(

log
2ε0

|ζ − z0|

)−β0

(4.42)

for every point ζ ∈ D(z0, ε0/2) where

β0 =
1

2
[q0 + 6d0]

−1, (4.43)

q0 is the mean and d0 the maximal dispersion of Q(z) in D(z0, ε0).

Proof. The mean and the dispersion of a function over disks are invariant
under linear transformations w = (z − z0)/2ε0. Hence, (4.42) follows by
Theorem 4.1 and Lemma 2.1.

The following two corollaries, which are formulated in terms of mean
of Q over disks and annuli, are obtained from Corollary 4.4 by setting
ψε(t) ≡ 1 for 0 < ε < ε0 in (4.13) where we choose ε = |ζ − z0| and
ε0 = 4|ζ−z0| in the case of Corollary 4.5 and ε = |ζ−z0| and ε0 = 3|ζ−z0|
in the case of Corollary 4.6.

Corollary 4.5. Let Q : D(z0, r0) → [0,∞], r0 ≤ dist (z0, ∂D), be a
measurable function, for r ≤ r0/4, let MQ(r) denote the mean of Q over
the disk D(z0, 4r) and let ∆ > 0. If f ∈ R∆

Q, then

s(f(ζ), f(z0)) ≤
32

∆
· e−1/MQ(|ζ−z0|) (4.44)

for all ζ ∈ D(z0, r0/4).
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Corollary 4.6. Let Q : D(z0, r0) → [0,∞], r0 ≤ dist(z0, ∂D), be a
measurable function, for r ≤ r0/3, let MQ(r) denote the mean of Q over
the annulus A = {z ∈ C : r < |z − z0| < 3r} and let ∆ > 0. If f ∈ R∆

Q,
then

s(f(ζ), f(z0)) ≤
32

∆
· e−1/MQ(|ζ−z0|) (4.45)

for all ζ ∈ D(z0, r0/3).

Another consequence of Lemma 4.2, see Corollary 4.4 above, can be
formulated in terms of the logarithmic mean of Q over an annulus A(ε) =
A(ε, ε0, z0) = {z ∈ C : ε < |z − z0| < ε0} which is defined by

MQ
log(ε) = −

ε0
∫

ε

q(t) d log t :=
1

log ε0/ε

ε0
∫

ε

q(t)
dt

t
(4.46)

where q(t) denotes the mean value of Q over the circle |z − z0| = t.
Choosing in the expression (4.13) ψε(t) = 1/t for 0 < ε < ε0, and setting
ε = |ζ − z0| we have the following statement.

Corollary 4.7. Let Q : D(z0, r0) → [0,∞], r0 ≤ dist(z0, ∂D), be a
measurable function, ε0 ∈ (0, r0) and ∆ > 0. If f ∈ R∆

Q, then

s(f(ζ), f(z0)) ≤
32

∆
·
( |ζ − z0|

ε0

)1/MQ
log

(|ζ−z0|)
(4.47)

for all ζ ∈ D(z0, ε0).

Note that, for Q ≡ K ∈ [1,∞), (4.47) is reduced to the following
known distortion estimate for qc mappings

s(f(ζ), f(z0)) ≤
32

∆
·
( |ζ − z0|

ε0

)1/K
. (4.48)

The corollaries and theorems presented above show that Lemmas 4.1
and 4.2 are useful tools in deriving various distortion estimates for ring
Q-homeomorphisms. These, in turn, are instrumental in the study of
properties of ring Q-homeomorphisms and, in particular, of ring solutions
of the Beltrami equation (1.1) where Q(z) can be either the maximal
dilatation Kµ(z) or the tangential dilatation KT

µ (z, z0) that are defined
in (1.2) and (1.3), respectively.
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5. A general existence lemma and its corollaries

The following lemma and corollary serve as the main tool in obtain-
ing many criteria of existence of ring solutions for the Beltrami equation.
See Section 1 for the definition of a ring solution. In Theorem 5.1 the
existence of a ring solution is established when at every point z0 ∈ D the
tangential dilatation KT

µ (z, z0) is assumed to be dominated by a function
of finite mean oscillation at z0 in the variable z. In Theorem 5.2 below
the condition for existence is formulated in terms of the mean of the tan-
gential dilatation over infinitesimal disks. Since the maximal dilatation
dominates the tangential dilatation, these two results obviously imply
similar existence theorems in terms of conditions on the maximal dilata-
tion, Theorem 5.3 and Corollary 5.2 below. The results in this theorem
and corollary were established earlier in [53] with different proofs. The
criterion for the existence in the last theorem in this section is formulated
in terms of the logarithmic mean.

Lemma 5.1. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that for every z0 ∈ D there exist ε0 ≤
dist(z0, ∂D) and an one parameter family of measurable functions ψz0,ε :
(0,∞) → (0,∞), ε ∈ (0, ε0), such that

0 < Iz0
(ε) :=

ε0
∫

ε

ψz0,ε(t) dt <∞, (5.1)

and such that
∫

ε<|z−z0|<ε0

KT
µ (z, z0) · ψ

2
z0,ε(|z − z0|) dx dy = o(I2

z0
(ε)) (5.2)

as ε→ 0. Then the Beltrami equation (1.1) has a ring solution fµ.

Proof. Fix z1 and z2 in D. For n ∈ N, define µn : D → C by letting
µn(z) = µ(z) if |µ(z)| ≤ 1 − 1/n and 0 otherwise. Let fn : D → C

be a homeomorphic ACL solution of (1.1), with µn instead of µ, which
fixes z1 and z2. Such fn exists by the well-known existence theorem in
the nondegenerate case, see e.g. [1, p. 98], cf. [33, p. 185 and 194].
By Theorem 3.1 and Corollary 4.4, in view of (5.2), the sequence fn

is equicontinuous and hence by the Arzela–Ascoli theorem, see e.g. [12,
p. 267], and [11, p. 382] it has a subsequence, denoted again by fn, which
converges locally uniformly to some nonconstant mapping f in D. Then,
by Theorem 3.1 and Corollary 5.12 in [50] on convergence, f is K(z)-qc
with K(z) = Kµ(z) and f satisfies (1.1) a.e. Thus, f is a homeomorphic
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ACL solution of (1.1). Moreover, by Theorems 3.1 and 3.2 f is a ring
Q-homeomorphism, see (1.17), with Q(z) = KT

µ (z, z0) at every point
z0 ∈ D.

Since the locally uniform convergence fn → f of the sequence fn is
equivalent to the continuous convergence, i.e., fn(zn) → f(z0) if zn → z0,
see [12, p. 268] and since f is injective, it follows that gn = f−1

n → f−1 =
g continuously, and hence locally uniformly. By a change of variables
which is permitted because fn and gn are in W 1,2

loc we obtain that for
large n

∫

B

|∂gn|
2 du dv =

∫

gn(B)

dxdy

1 − |µn(z)|2
≤

∫

B∗

Q(z) dx dy <∞ (5.3)

where B∗ and B are relatively compact domains in D and in f(D),
respectively, such that g(B̄) ⊂ B∗. The relation (5.3) implies that the
sequence gn is bounded in W1,2(B), and hence f−1 ∈ W1,2

loc(f(D)), see
e.g. [49, p. 319].

Remark 5.1. If fµ is as in Lemma 5.1, then f−1
µ is locally absolutely

continuous and preserves nulls sets, and fµ is regular a.e., i.e., differ-
entiable with Jfµ

(z) > 0 a.e. Indeed, the assertion about f−1
µ follows

from the fact that f−1
µ ∈ W 1,2

loc , see [33, p. 131 and 150]. As an ACL
mapping fµ has a.e. partial derivatives and hence by [20] it has a total
differential a.e. Let E denote the set of points of D where fµ is differ-
entiable and Jfµ

(z) = 0, and suppose that |E| > 0. Then |fµ(E)| > 0,
since E = f−1

µ (fµ(E)) and f−1
µ preserves null sets. Clearly f−1

µ is not
differentiable at any point of fµ(E), contradicting the fact that f−1

µ is
differentiable a.e.

Corollary 5.1. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e., Kµ ∈ L1

loc, and let ψ : (0,∞) → (0,∞) be a measurable function
such that for all 0 < t1 < t2 <∞

0 <

t2
∫

t1

ψ(t) dt <∞,

t2
∫

0

ψ(t) dt = ∞. (5.4)

Suppose that for every z0 ∈ D there is ε0 < dist (z0, ∂D) such that

∫

ε<|z−z0|<ε0

Kµ(z) · ψ2(|z − z0|) dx dy ≤ O

( ε0
∫

ε

ψ(t) dt

)

(5.5)

as ε→ 0. Then (1.1) has a ring solution.
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Lemma 5.1 yields the following theorem by choosing

ψz0,ε(t) =
1

t log 1
t

, (5.6)

see also Lemma 2.1.

Theorem 5.1. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that every point z0 ∈ D has a neighborhood
Uz0

such that
KT

µ (z, z0) ≤ Qz0
(z) a.e. (5.7)

for some function Qz0
(z) of finite mean oscillation at the point z0 in the

variable z. Then the Beltrami equation (1.1) has a ring solution.

The following theorem is a consequence of Theorem 5.1 and Corol-
lary 2.1.

Theorem 5.2. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that at every z0 ∈ D

lim
ε→0

−

∫

D(z0,ε)

∣

∣1 − z−z0

z−z0
µ(z)

∣

∣

2

1 − |µ(z)|2
dx dy <∞. (5.8)

Then the Beltrami equation (1.1) has a ring solution fµ.

The following theorem is an important particular case of Theorem
5.1.

Theorem 5.3. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. such that

Kµ(z) =
1 + |µ(z)|

1 − |µ(z)|
≤ Q(z) ∈ FMO. (5.9)

Then the Beltrami equation (1.1) has a ring solution.

Since every ring solution is an ACL homeomorphic solution and since
every BMO function is in FMO, the theorem generalizes and strengthens
earlier results in [50,51] about the existence of ACL homeomorphic solu-
tions of the Beltrami equation when the conditions involve majorants of
bounded mean oscillation.

Corollary 5.2. If

lim
ε→0

−

∫

D(z0,ε)

1 + |µ(z)|

1 − |µ(z)|
dx dy <∞ (5.10)

at every z0 ∈ D, then (1.1) has a ring solution.
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Applying Lemma 5.1 with ψ(t) = 1/t, we have also the following state-
ment which is formulated in terms of the logarithmic mean, see (4.46), of
KT

µ (z, z0) over the annuli A(ε) = {z ∈ C : ε < |z − z0| < ε0} for a fixed
ε0 = δ(z0) ≤ dist(z0, ∂D).

Theorem 5.4. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. If at every point z0 ∈ D the logarithmic mean of KT
µ

over A(ε) does not converge to ∞ as ε→ 0, i.e.,

lim inf
ε→0

M
KT

µ

log (ε) <∞, (5.11)

then the Beltrami equation (1.1) has a ring solution.

Corollary 5.3. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Denote by qT
z0

(t) the mean of KT
µ (z, z0) over the

circle C = {z ∈ C : |z − z0| = t}. If

δ(z0)
∫

0

qT
z0

(t)
dt

t
<∞ (5.12)

at every point z0 ∈ D for some δ(z0) > 0, then (1.1) has a ring solution.

Lehto considers in [34] degenerate Beltrami equations in the special
case where the singular set Sµ

Sµ = {z ∈ C : lim
ε→0

‖Kµ‖L∞(D(z,ε)) = ∞} (5.13)

of the complex coefficient µ in (1.1) is of measure zero, and shows that,
if for every z0 ∈ C and every r1 and r2 ∈ (0,∞) the integral

r2
∫

r1

dr

r(1 + qT
z0

(r))
, r2 > r1 (5.14)

is positive and tends to ∞ as either r1 → 0 or r2 → ∞ where

qT
z0

(r) =
1

2π

2π
∫

0

|1 − e−2iϑµ(z0 + reiϑ)|2

1 − |µ(z0 + reiϑ)|2
dϑ, (5.15)

then there exists a homeomorphism f : C → C which is ACL in C \ Sµ

and satisfies (1.1) a.e. Note that the integrand in (5.15) is the tangential
dilatation KT

µ (z, z0), see (1.3).
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We present now an extension of Lehto’s existence theorem which en-
ables to derive many other existence theorems as it was shown in [54].
In this extension we prove the existence of a ring solution in a domain
D ⊂ C which by the definition is ACL in D and not only in D \Sµ. Note
that, in the following theorem, the situation where Sµ = D is possible.
Note also that the condition (5.16) in the following theorem is weaker
than the condition in Lehto’s existence theorem.

Theorem 5.5. Let D be a domain in C and let µ : D → C be a measur-
able function with |µ(z)| < 1 a.e. and Kµ ∈ L1

loc. Suppose that at every
point z0 ∈ D

δ(z0)
∫

0

dr

rqT
z0

(r)
= ∞ (5.16)

where δ(z0) < dist (z0, ∂D) and qT
z0

(r) is the mean of KT
µ (z, z0) over

|z − z0| = r. Then the Beltrami equation (1.1) has a ring solution.

Proof. Theorem 5.5 follows from Lemma 5.1 by special choosing the func-
tional parameter

ψz0,ε(t) ≡ ψz0
(t) :=

{

1/[tqT
z0

(t)], t ∈ (0, ε0),

0, otherwise
(5.17)

where ε0 = δ(z0).

Corollary 5.4. If Kµ ∈ L1
loc and at every point z0 ∈ D

qT
z0

(r) = O
(

log
1

r

)

as r → 0, (5.18)

then (1.1) has a ring solution.

Since KT
µ (z, z0) ≤ Kµ(z) we obtain as a consequence of Theorem 5.5

the following result which is due to Miklyukov and Suvorov [41] for the
case Kµ ∈ Lp

loc, p > 1.

Corollary 5.5. If Kµ ∈ Lp
loc for p ≥ 1 and (5.16) holds for Kµ(z) instead

of KT
µ (z, z0) for every point z0 ∈ D, then (1.1) has a W 1,s

loc homeomorphic
solution with s = 2p/(p+ 1).

Further corollaries from the generalization of the Lehto existence the-
orem can be found in the paper [54] and other discussions in the sur-
vey [58].
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6. Representation, factorization and uniqueness theorems

In Section 5 we have established a series of theorems on the existence
of ring solutions fµ for the Beltrami equation (1.1) for a variety of different
conditions on the complex coefficient µ. We now show that, in each of
these cases, fµ generates all W 1,2

loc solutions by composition with analytic
functions.

Lemma 6.1. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that for every z0 ∈ D there exist ε0 =
δ(z0) ≤ dist(z0, ∂D) and a one parameter family of measurable functions
ψz0,ε : (0,∞) → (0,∞), ε ∈ (0, ε0), such that

0 < Iz0
(ε) :=

ε0
∫

ε

ψz0,ε(t) dt <∞, ε ∈ (0, ε0), (6.1)

and such that
∫

ε<|z−z0|<ε0

KT
µ (z, z0) · ψ

2
z0,ε(|z − z0|) dx dy = o(I2

z0
(ε)) (6.2)

as ε→ 0 and let fµ be a ring solution of (1.1). Then every W 1,2
loc solution

g of (1.1) has the representation

g = h ◦ fµ (6.3)

for some holomorphic function h in fµ(D).

Proof. Let ϕ = f−1
µ and h = g ◦ ϕ. Since g ∈ W1,2

loc and ϕ ∈ W1,2
loc it

follows that h ∈ W1,1
loc(f(D)), see [33], p. 151. Thus, by Weyl’s lemma,

see e.g. [1, p. 33] it suffices to show that ∂h = 0 a.e. in fµ(D). Let E
denote the set of points z in D where either fµ or g do not satisfy (1.1)
or Jfµ

= 0. A direct computation, cf. [1, p. 9] shows that ∂h = 0 in

fµ(D) \ fµ(E). Moreover, ϕ ∈ W1,2
loc admits the change of variables, see

e.g. [33, p. 121, 128–130 and 150]:
∫∫

fµ(E)

|∂ϕ|2 du dv =

∫∫

fµ(E)

Jϕ(w)
dudv

1 − |µ(ϕ(w))|2
=

∫∫

E

dxdy

1 − |µ(z)|2
= 0

which implies that |∂ϕ| = 0 a.e. on fµ(E), and since a.e. |∂ϕ| ≤ |∂ϕ|
and

∂h = ∂ϕ · ∂g ◦ ϕ+ ∂ϕ · ∂g ◦ ϕ

it follows that |∂h| = 0 a.e. on fµ(E), and thus ∂h = 0 a.e. in fµ(D)
and, consequently, h is holomorphic in fµ(D) and (6.3) holds.
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Iwaniec and Sverak [29] showed that, if Kµ ∈ L1
loc, then every W1,2

loc

solution g of (1.1) has the representation g = h ◦ f for some holomorphic
function h and some homeomorphism f. The conditions in Lemma 6.1
are more restrictive, however, the representation in the lemma is more
specific and the proof is simpler.

Remark 6.1. Since all theorems on the existence of a ring solution fµ

in Section 5 are based on Lemma 5.1, where the conditions are as in
Lemma 6.1, every W1,2

loc solution g of the Beltrami equation (1.1) in each
of these theorems has the representation (6.3).

It is not clear, even if µ satisfies the conditions of Lemma 6.1, whether
an ACL homeomorphic solution of (1.1) is unique up to a composition
with a conformal mapping, namely whether, for any two ACL homeomor-
phic solutions f1 and f2 of (1.1), f2 ◦f

−1
1 is conformal. However, by (6.3)

in Lemma 6.1 the answer is affirmative if f1 and f2 are in W 1,2
loc and µ

is as in Lemma 6.1, see Corollary 6.1 below. Another type of conditions
for the uniqueness of a homeomorphic ACL solution can be obtained by
imposing some conditions on the “size” of the singular set of µ. This will
be done in Lemma 6.2 and Theorem 6.1 below.

Corollary 6.1. Suppose that µ satisfies the conditions of one of the
existence theorems in Section 5. If f1 and f2 are homeomorphic W 1,2

loc

solutions of (1.1), then f2 ◦ f
−1
1 is conformal.

Iwaniec and Martin have constructed ACL solutions for the Beltrami
equation which are not in W1,2

loc and not open and discrete and, thus,
are not generated by a homeomorphic solution in the sense of (6.3), see
e.g. [25]. However, for discrete open solutions, it is easy to obtain by
Stoilow’s theorem the following proposition.

Proposition 6.1. Let µ : D → C be a measurable function with |µ(z)| <
1 a.e. such that

Kµ(z) =
1 + |µ(z)|

1 − |µ(z)|
∈ L1

loc. (6.4)

Then every (continuous) discrete and open ACL solution g of the Bel-
trami equation (1.1) has the representation g = h◦f where f is a homeo-
morphic W 1,1

loc solution of (1.1) and h is a holomorphic function in f(D).

Remark 6.2. As a consequence of the proposition we obtain that, if
Kµ ∈ L1

loc, then either the Beltrami equation (1.1) has a homeomorphic

W 1,1
loc solution or has no continuous, discrete and open ACL solution.

Note that, for every p ∈ [1,∞), there are examples of measurable func-
tions µ : C → C such that |µ(z)| < 1 a.e. and Kµ(z) ∈ Lp

loc and for
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which the Beltrami equation (1.1) has no homeomorphic ACL solution,
see Proposition 6.3 in [50].

Let (X, d) be a metric space and let H = {hx(r)}x∈X be a family of
functions hx : (0, ρx) → (0,∞), ρx > 0, such that hx(r) → 0 as r → 0.
Let

Lρ
H(X) = inf Σhxk

(rk) (6.5)

where the infimum is taken over all finite collections of xk ∈ X and
rk ∈ (0, ρ) such that the balls

B(xk, rk) = {x ∈ X : d(x, xk) < rk} (6.6)

cover X. The limit
LH(X) := lim

ρ→0
Lρ

H(X) (6.7)

exists. We call LH(X) by H-length of X. In the particular case where
hx(r) = r for all x ∈ X and r > 0, H-length is the usual (Hausdorff)
length of X.

The singular set Sµ of µ : D → C is defined by

Sµ = {z ∈ D : lim
ε→0

‖Kµ‖L∞(D(z,ε)) = ∞}. (6.8)

Obviously that the set Sµ is closed relatively to the domain D.

Lemma 6.2. Let be as in Lemma 6.1 hold and let fµ be a ring solution
of (1.1). Suppose that the singular set Sµ is of H-length zero for H =
{hz0

(r)}z0∈Sµ with

hz0
(r) = exp

(

−
2π

ωz0
(r)

)

, z0 ∈ Sµ, r ∈ (0, δ(z0)) , (6.9)

and

ωz0
(ε) =

1

I2
z0

(ε)

∫

A(ε)

KT
µ (z, z0) · ψ

2
z0,ε(|z − z0|) dx dy. (6.10)

Then every homeomorphic ACL solution f of (1.1) has the represen-
tation f = h ◦ fµ for some conformal mapping h in fµ(D).

Proof. If LH(Sµ) = 0, then S′
µ = fµ(Sµ) is of length zero Lemma 4.2.

Consequently, S′
µ does not locally disconnect f(D), see e.g. [61], and

hence G = D\Sµ is a domain. The homeomorphisms f and fµ are locally
quasiconformal in the domain G and hence h = f ◦ f−1

µ is conformal in
the domain fµ(D) \ S′

µ. Since S′
µ is of the length zero it is removable

for h, i.e., h can be extended to a conformal mapping in fµ(D) by the
Painleve theorem, see e.g. [5].
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Theorem 6.1. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that every point z0 ∈ D has a neighborhood
Uz0

and a measurable function Qz0
(z) : Uz0

→ [0,∞] such that

KT
µ (z, z0) ≤ Qz0

(z) a.e. in Uz0
(6.11)

and that, for some δ(z0) > 0,

δ(z0)
∫

0

dt

tqz0
(t)

= ∞ (6.12)

where qz0
(t) is the mean of Qz0

(z) over the circle |z − z0| = t. Let fµ be
a ring solution of (1.1).

If the singular set Sµ has H-length zero for H = {hz0
(r)}z0∈Sµ where

hz0
(r) = exp

(

−

δ(z0)
∫

r

dt

tqz0
(t)

)

, z0 ∈ Sµ, r ∈ (0, δ(z0)), (6.13)

then every homeomorphic ACL solution f of (1.1) has the representation
f = h ◦ fµ for some conformal mapping h in fµ(D).

Proof. Theorem 6.1 follows from Lemma 6.2 with

ψz0,ε(t) ≡ ψz0
(t) :=

{

1/[tqz0
(t)], t ∈ (0, ε0),

0, otherwise
(6.14)

where ε0 = δ(z0) because

∫

ε<|z−z0|<ε0

Q(z) · ψ2
z0

(|z − z0|) dx dy = 2π

ε0
∫

ε

ψz0
(t) dt. (6.15)

Corollary 6.2. Let µ : D → C be a measurable function with |µ(z)| < 1
a.e. and Kµ ∈ L1

loc. Suppose that every point z0 ∈ D has a neighborhood
Uz0

where (6.11) holds with a function Qz0
(z) of finite mean oscillation

at z0 in the variable z. Suppose also that the singular set of Sµ is of
H-length zero for H = {hz0

(r)}z0∈Sµ ,

hz0
(r) =

(

log
δ(z0)

r

)−β(z0)
, z0 ∈ Sµ, r ∈ (0, δ(z0)), (6.16)
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where δ(z0) < dist(z0, ∂D) and 2β(z0) = (q(z0) + 6d(z0))
−1, q(z0) is

the mean value of Qz0
(z) over D(z0, δ(z0)/2) and d(z0) is the maximal

dispersion of Qz0
(z) in D(z0, δ(z0)/2). Let fµ be a ring solution of (1.1).

Then every homeomorphic ACL solution f of (1.1) has the represen-
tation f = h ◦ fµ for some a conformal mapping h in fµ(D).

Corollary 6.2 follows immediately from Lemmas 6.2 and 2.1.

Remark 6.3. In view of Remark 2.1, if the condition

Q∗(z0) := lim
ε→0

−

∫

D(z0,ε)

Qz0
(z) dx dy <∞ (6.17)

holds for all z0 ∈ D, then one may take β(z) = γ/Q∗(z) in (6.16) for any
γ < 1/26.

On the base of Lemma 6.2, for every existence theorem in Section 5,
one can formulate a corresponding uniqueness theorem in the spirit of
Theorem 6.1.
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