

Существование классических решений нечетких дифференциальных включений

Наталия В. Скрипник

(Представлена С. Я. Махно)

Аннотация. Для нечетких дифференциальных включений вводится понятие классического решения и доказываются теоремы существования и непрерывной зависимости решения от параметра.

2000 MSC. 03E72, 34A12, 34A60.

Ключевые слова и фразы. Нечеткие дифференциальные включения.

Работа L. A. Zadeh [21] в 1965 г. положила начало развитию теории нечетких множеств. В 1983 г. М. L. Puri и D. A. Ralescu [17] ввели понятие производной и интеграла для нечетких отображений. В 1987 г. О. Kaleva [13] рассмотрел нечеткие дифференциальные уравнения, которые в дальнейшем изучались в [14, 15, 18–20].

Пусть $conv(\mathbb{R}^n)$ — метрическое пространство непустых компактных выпуклых подмножеств \mathbb{R}^n . Метрика в этом пространстве определяется с помощью расстояния по Хаусдорфу

$$h(F,G) = \max \Big\{ \max_{f \in F} \min_{g \in G} \|f - g\|, \max_{g \in G} \min_{f \in F} \|f - g\| \Big\},$$

где под $\|\cdot\|$ понимается евклидова норма в пространстве $\mathbb{R}^n.$

Введем в рассмотрение пространство ${\rm E}^n$ отображений $x:{\mathbb R}^n \to [0,1],$ удовлетворяющих следующим условиям:

1) x — нормально, то есть существует вектор $y_0 \in \mathbb{R}^n$ такой, что $x(y_0) = 1;$

Статья поступила в редакцию 15.05.2008

- 2) x нечетко выпукло, то есть для любых $y,z\in\mathbb{R}^n$ и любого $\lambda\in[0,1]$ справедливо неравенство $x(\lambda y+(1-\lambda)z)\geq \min\{x(y),x(z)\};$
- 3) x полунепрерывно сверху, то есть для любого вектора $y_0 \in \mathbb{R}^n$ и любого $\varepsilon > 0$ существует $\delta(y_0, \varepsilon) > 0$ такое, что для всех $y \in \mathbb{R}^n$, удовлетворяющих условию $||y y_0|| < \delta$, справедливо неравенство $x(y) < x(y_0) + \varepsilon$;
- 4) замыкание множества $\{y \in \mathbb{R}^n : x(y) > 0\}$ компактно.

Нулем в пространстве E^n является отображение

$$\hat{0}(y) = \begin{cases} 1, & y = 0, \\ 0, & y \in \mathbb{R}^n \backslash 0. \end{cases}$$

Определение 1. α -срезкой $[x]^{\alpha}$ отображения $x \in E^n$ при $0 < \alpha \le 1$ назовем множество $\{y \in \mathbb{R}^n : x(y) \ge \alpha\}$. Нулевой срезкой отображения $x \in E^n$ назовем замыкание множества $\{y \in \mathbb{R}^n : x(y) > 0\}$.

Теорема 1 ([16]). *Если* $x \in E^n$, *mo*

- 1) $[x]^{\alpha} \in conv(\mathbb{R}^n)$ для всех $0 \le \alpha \le 1$;
- 2) $[x]^{\alpha_2} \subset [x]^{\alpha_1}$ dis $acex \ 0 \le \alpha_1 \le \alpha_2 \le 1$;
- 3) если $\{\alpha_k\} \subset [0,1]$ неубывающая последовательность, сходящаяся $\kappa \ \alpha > 0, \ mo \ [x]^{\alpha} = \bigcap_{k \geq 1} [x]^{\alpha_k}.$

Наоборот, если $\{A^{\alpha}: 0 \leq \alpha \leq 1\}$ — семейство подмножеств R^{n} , удовлетворяющих условиям 1)-3), то существует $x \in E^{n}$ такое, что $[x]^{\alpha} = A^{\alpha}$ для $0 < \alpha \leq 1$ и $[x]^{0} = \overline{\bigcup_{0 < \alpha \leq 1} A^{\alpha}} \subset A^{0}$.

Определим в пространстве \mathbf{E}^n метрику $D: \mathbf{E}^n \times \mathbf{E}^n \to [0,+\infty),$ полагая

$$D(x, v) = \sup_{0 \le \alpha \le 1} h([x]^{\alpha}, [v]^{\alpha}).$$

Пусть I — промежуток в \mathbb{R} .

Определение 2 ([16]). Отображение $f: I \to E^n$ называется сильно измеримым на I, если для всех $\alpha \in [0,1]$ многозначное отображение $f_{\alpha}(t) = [f(t)]^{\alpha}$ измеримо.

Определение 3 ([16]). Отображение $f: I \to \mathbb{E}^n$ называется непрерывным в точке $t_0 \in I$, если для любого $\varepsilon > 0$ существует $\delta(t_0, \varepsilon) > 0$ такое, что $D(f(t), f(t_0)) < \varepsilon$ для всех $t \in I$ таких, что $|t - t_0| < \delta$. Отображение $f: I \to \mathbb{E}^n$ называется непрерывным на I, если оно непрерывно в каждой точке $t \in I$.

Определение 4 ([16]). Отображение $f: I \to \mathbb{E}^n$ называется интегрально ограниченным на I, если существует интегрируемая по Лебегу функция k(t) такая, что $||x|| \le k(t)$ для всех $x \in f_0(t)$, $t \in I$.

Определение 5 ([16]). Интегралом от отображения $f: I \to E^n$ по множеству I называется элемент $g \in E^n$ такой, что $[g]^{\alpha} = \int_I f_{\alpha}(t) dt$ для всех $0 < \alpha \le 1$, где интеграл от многозначного отображения $f_{\alpha}(t)$ понимается в смысле Ауманна [10].

Теорема 2 ([7]). Если отображение $f: I \to E^n$ сильно измеримо и интегрально ограничено, то f интегрируемо на I.

Теорема 3 ([7]). Пусть отображения $f, g: I \to \mathbb{E}^n$ интегрируемы на I и $\lambda \in \mathbb{R}$. Тогда

- 1) $\int_{I} (f(t) + g(t)) dt = \int_{I} f(t) dt + \int_{I} g(t) dt$;
- 2) $\int_I \lambda f(t) dt = \lambda \int_I f(t) dt$;
- 3) функция D(f(t), g(t)) интегрируема по Лебегу на I;
- 4) $D\left(\int_I f(t) dt, \int_I g(t) dt\right) \leq \int_I D(f(t), g(t)) dt$.

Определение 6 ([16]). Отображение $f: I \to E^n$ называется дифференцируемым в точке $t_0 \in I$, если для всех $\alpha \in [0,1]$ многозначное отображение $f_{\alpha}(t)$ дифференцируемо по Хукухаре [8] в точке t_0 , его производная равна $Df_{\alpha}(t_0)$ и семейство множеств $\{Df_{\alpha}(t_0): \alpha \in [0,1]\}$ определяет элемент $f'(t_0) \in E^n$. Если отображение $f: I \to E^n$ дифференцируемо в точке $t_0 \in I$, то $f'(t_0)$ называют нечеткой производной f(t) в точке t_0 . Отображение $f: I \to E^n$ называется дифференцируемым на I, если оно дифференцируемо в каждой точке $t \in I$.

Теорема 4 ([16]). Пусть отображение $f: I \to \mathbb{E}^n$ дифференцируемо на I и предположим, что его нечеткая производная $f': I \to \mathbb{E}^n$ интегрируема на I. Тогда для любого $t \in I$ имеем $f(t) = f(t_0) + \int_{t_0}^t f'(s) \, ds$.

Рассмотрим пространство $conv(\mathbf{E}^n)$, состоящее из всех подмножеств F пространства \mathbf{E}^n таких, что для любого $\alpha \in [0,1]$ множество, составленное из α -срезок элементов множества F, является непустым выпуклым компактом в пространстве $conv(\mathbb{R}^n)$ (то есть элементом пространства $cocc(\mathbb{R}^n)$ [5]). В этом пространстве определим операции суммы и умножения на скаляр.

Определение 7. Суммой двух множеств F и G из пространства $conv(\mathbb{E}^n)$ называется множество $F + G = \{f + g : f \in F, g \in G\}.$

Определение 8. Произведением множества $F \in conv(\mathbf{E}^n)$ на число $\lambda \in \mathbb{R}$ называется множество

$$G = \lambda F = \{g = \lambda f : f \in F\}.$$

Лемма 1. Если $F, G \in conv(\mathbf{E}^n)$, то $F + G \in conv(\mathbf{E}^n)$.

Доказательство. В силу определения пространства $conv(\mathbf{E}^n)$, множества $F^{\alpha} = \{[f]^{\alpha}: f \in F\}$ и $G^{\alpha} = \{[g]^{\alpha}: g \in G\}$ являются непустыми выпуклыми компактами в пространстве $conv(\mathbb{R}^n)$ для любого $\alpha \in [0,1]$. Покажем, что множество

$$(F+G)^{\alpha} = \{ [f+g]^{\alpha} : f \in F, \ g \in G \}$$
$$= \{ [f]^{\alpha} + [g]^{\alpha} : f \in F, \ g \in G \} = F^{\alpha} + G^{\alpha}$$

также является элементом пространства $cocc(\mathbb{R}^n)$ для любого $\alpha \in [0,1].$

Множество $F^{\alpha}+G^{\alpha}$ непусто как сумма двух непустых множеств. Докажем, что множество $F^{\alpha}+G^{\alpha}$ замкнуто. Пусть дана сходящаяся последовательность $\{x_k^{\alpha}\}_{k=1}^{\infty}\subset F^{\alpha}+G^{\alpha}$ и $\lim_{k\to\infty}x_k^{\alpha}=x^{\alpha}$. Требуется показать, что $x^{\alpha}\in F^{\alpha}+G^{\alpha}$. По определению суммы имеем $x_k^{\alpha}=f_k^{\alpha}+g_k^{\alpha}$, где $f_k^{\alpha}\in F^{\alpha},g_k^{\alpha}\in G^{\alpha}$. Все элементы последовательности $\{f_k^{\alpha}\}_{k=1}^{\infty}$ принадлежат компактному множеству F^{α} , следовательно, найдется такая подпоследовательность данной последовательности (обозначим ее $\{f_{k_m}^{\alpha}\}_{m=1}^{\infty}$), что $\lim_{m\to\infty}f_{k_m}^{\alpha}=f^{\alpha}\in F^{\alpha}$. Аналогично из подпоследовательности $\{g_{k_m}^{\alpha}\}_{m=1}^{\infty}$ выделим такую подпоследовательность (которую обозначим $\{g_{k_{m_p}}^{\alpha}\}_{p=1}^{\infty}$), что $\lim_{p\to\infty}g_{k_{m_p}}^{\alpha}=g^{\alpha}\in G^{\alpha}$. Таким образом, для вектора x^{α} имеем:

$$\begin{split} x^{\alpha} &= \lim_{k \to \infty} (f_k^{\alpha} + g_k^{\alpha}) = \lim_{p \to \infty} (f_{k_{m_p}}^{\alpha} + g_{k_{m_p}}^{\alpha}) \\ &= \lim_{p \to \infty} f_{k_{m_p}}^{\alpha} + \lim_{p \to \infty} g_{k_{m_p}}^{\alpha} = f^{\alpha} + g^{\alpha}, \end{split}$$

то есть $x^{\alpha} \in F^{\alpha} + G^{\alpha}$ и тем самым замкнутость множества $F^{\alpha} + G^{\alpha}$ доказана.

Введем в рассмотрение множества $F_{\alpha}=co\overline{\bigcup_{f\in F}[f]^{\alpha}}$ и $G_{\alpha}=co\overline{\bigcup_{g\in G}[g]^{\alpha}}$, которые являются непустыми выпуклыми компактами в

пространстве \mathbb{R}^n для любого $\alpha \in [0,1]$. Множество $F_\alpha + G_\alpha$ является непустым выпуклым компактом в пространстве \mathbb{R}^n [3]. Множество H_α , состоящее из всевозможных подмножеств множества $F_\alpha + G_\alpha$, является компактом [7] в пространстве $conv(\mathbb{R}^n)$. Кроме того, множество $F^\alpha + G^\alpha$ является подмножеством множества H_α по построению. Следовательно, множество $F^\alpha + G^\alpha$ компактно как замкнутое подмножество компактного множества.

Остается показать выпуклость множества $F^{\alpha}+G^{\alpha}$. Выберем произвольные множества $x,y\in F^{\alpha}+G^{\alpha}$, число $\lambda\in[0,1]$ и рассмотрим множество $\lambda x+(1-\lambda)y$. В силу определения существуют $[f_1]^{\alpha},[f_2]^{\alpha}\in F^{\alpha}$ и $[g_1]^{\alpha},[g_2]^{\alpha}\in G^{\alpha}$ такие, что $x=[f_1]^{\alpha}+[g_1]^{\alpha},y=[f_2]^{\alpha}+[g_2]^{\alpha}$. Тогда

$$\lambda x + (1 - \lambda)y = \lambda ([f_1]^{\alpha} + [g_1]^{\alpha}) + (1 - \lambda) ([f_2]^{\alpha} + [g_2]^{\alpha})$$
$$= (\lambda [f_1]^{\alpha} + (1 - \lambda)[f_2]^{\alpha}) + (\lambda [g_1]^{\alpha} + (1 - \lambda)[g_2]^{\alpha}) \in F^{\alpha} + G^{\alpha}$$

в силу выпуклости множеств F^{α} и G^{α} . Лемма доказана.

Лемма 2. Если $F \in conv(\mathbf{E}^n)$, то $\lambda F \in conv(\mathbf{E}^n)$.

Доказательство. Аналогично доказательству леммы 1.

Непосредственно по определению проверяется, что для любых $\alpha, \beta \in \mathbb{R}$ и любых множеств $F, G, H \in conv(\mathbf{E}^n)$ выполняются следующие свойства:

- 1) F + G = G + F:
- 2) F + (G + H) = (F + G) + H;
- 3) относительно операции суммы существует нулевой элемент $\{\widehat{0}\}$: $F+\{\widehat{0}\}=F;$
- 4) в общем случае у множества F нет обратного элемента относительно введенной операции алгебраической суммы множеств;
- 5) $\alpha(\beta F) = (\alpha \beta) F;$
- 6) $1 \cdot F = F$:
- 7) $\alpha(F+G) = \alpha F + \beta G$;

8) если $\alpha \geq 0$, $\beta \geq 0$, то $(\alpha + \beta)F = \alpha F + \beta F$, в противном случае $(\alpha + \beta)F \subset \alpha F + \beta F$.

Определение 9. Метрикой, или расстоянием, между двумя множествами $F, G \in conv(\mathbb{E}^n)$ назовем величину

$$d(F,G) = \max \Big\{ \max_{f \in F} \min_{g \in G} D(f,g), \ \max_{g \in G} \min_{f \in F} D(f,g) \Big\}.$$

Определим также расстояние от элемента $x \in E^n$ до множества $F \in conv(E^n)$:

$$\theta(x, F) = \min_{f \in F} D(x, f).$$

Определение 10. Многозначным отображением будем называть произвольное отображение $F: I \to conv(\mathbb{E}^n)$.

Определение 11. Многозначное отображение F(t) называется непрерывным в точке $t_0 \in I$, если для любого $\varepsilon > 0$ существует $\delta(t_0, \varepsilon) > 0$ такое, что неравенство $d(F(t), F(t_0)) < \varepsilon$ выполняется для всех $t \in I$ таких, что $|t - t_0| < \delta(\varepsilon)$. Многозначное отображение F(t) называется непрерывным на I, если оно непрерывно в любой точке $t_0 \in I$.

Определение 12. Функция $f: I \to E^n$ называется однозначным селектором многозначного отображения $F: I \to conv(E^n)$, если для всех $t \in I$ выполняется включение $f(t) \in F(t)$.

Ясно, что однозначный селектор f(t) всегда существует, поскольку множество F(t) непусто при всех $t \in I$.

Из классической теоремы Майкла о непрерывном селекторе (см., например, [4]) вытекает следующее утверждение:

Теорема 5. Пусть X — паракомпактное пространство, Y — банахово пространство. Тогда каждое непрерывное многозначное отображение $F: X \to conv(Y)$ имеет непрерывный однозначный селектор.

Рассмотрим нечеткое дифференциальное включение

$$x' \in F(t, x), \qquad x(t_0) = x_0, \tag{1}$$

где $t \in I$ — время, $x \in S \subset \mathbb{E}^n$ — фазовый вектор, $t_0 \in I$, $x_0 \in S$, $F: I \times S \to conv(\mathbb{E}^n)$.

Определение 13. Непрерывно дифференцируемая функция x(t), $x(t_0) = x_0$, определенная на промежутке $I_0 \subset I$, называется классическим решением нечеткого дифференциального включения (1), если $x(t) \in S$ и $x'(t) \in F(t, x(t))$ всюду на I_0 .

Рассмотрим вопрос существования классического решения нечеткого дифференциального включения (1).

Теорема 6. Пусть в области $Q = \{(t,x) : |t-t_0| \le a, \ d(x,x_0) \le b\}$ многозначное отображение F(t,x) непрерывно. Тогда при $|t-t_0| \le \sigma$, где $\sigma \in (0,a]$, существует решение дифференциального включения (1).

Доказательство. Как было отмечено в [6], существует изометрическое отображение $\gamma(\cdot)$ между пространством \mathbf{E}^n и пространством Ω [6,8]. Обозначим через $X=\gamma(x),\ X_0=\gamma(x_0),\ \tilde{F}(t,X)=\gamma(F(t,x))=\{\gamma(f):\ f\in F(t,x)\}\in conv(\Omega)$. Тогда включение (1) эквивалентно следующему включению

$$DX \in \widetilde{F}(t, X), \ X(t_0) = X_0 \tag{2}$$

в том смысле, что если x(t) — решение включения (1), то $X(t)=\gamma(x(t))$ — решение включения (2), и наоборот. В силу того, что многозначное отображение F(t,x) непрерывно в области Q, то многозначное отображение $\widetilde{F}(t,X)$ непрерывно при $\{(t,x): |t-t_0| \leq a, \rho(X,X_0) \leq b'\}$, где $\rho(\cdot,\cdot)$ — метрика в пространстве Ω . Тогда в силу теоремы 5 у отображения $\widetilde{F}(t,X)$ существует непрерывный однозначный селектор, который обозначим через f(t,X). Рассмотрим дифференциальное уравнение

$$DX = f(t, X), X(t_0) = X_0.$$
 (3)

В силу [8] существует решение $\widetilde{X}(t)$ уравнения (3), определенное при $|t-t_0| \leq \sigma$, где $\sigma \in (0,a]$. Тогда $\widetilde{X}(t)$ является решением дифференциального включения (2), а следовательно, функция $\widetilde{x}(t) = \gamma^{-1}(\widetilde{X}(t))$ является решением нечеткого дифференциального включения (1), что и требовалось доказать.

Замечание 1. Подход, который использовался при доказательстве существования решений для нечетких дифференциальных уравнений [16] (то есть переход к дифференциальным уравнениям с производной Хукухары по α -срезкам), здесь не может быть использован,

так как при выборе однозначного селектора в соответствующей α -срезке можно получить семейство множеств, не удовлетворяющих условиям теоремы 1, то есть являющихся α -срезками различных нечетких множеств.

Следующая теорема является теоремой существования и непрерывной зависимости решений нечеткого дифференциального включения (1) от параметра.

Теорема 7. Пусть многозначное отображение $F: Q \to conv(\mathbb{E}^n)$ удовлетворяет следующим условиям:

- 1) F(t,x) непрерывно;
- 2) $F(t,\cdot)$ липшицево по x с постоянной k>0, то есть для любых точек $(t,x),(t,y)\in Q$ справедливо неравенство

$$d(F(t,x), F(t,y)) \le kD(x,y);$$

3) существует непрерывно дифференцируемое отображение y(t), $y(t_0) = y_0$, такое, что $D(y(t), x_0) \le b$ и $\theta(y'(t), F(t, y(t))) \le \eta(t)$ для всех $t : |t - t_0| \le a$, где функция $\eta(t)$ непрерывна.

Тогда на отрезке $[t_0, t_0 + \sigma]$ существует решение x(t) нечеткого дифференциального включения (1) такое, что $D(x(t), y(t)) \le r(t)$, где

$$r(t) = r_0 e^{k(t-t_0)} + \int_{t_0}^t e^{k(t-s)} \eta(s) \, ds, \, r_0 = D(x_0, y_0),$$

$$\sigma = \min \Big\{ a, \frac{b}{M} \Big\}, \qquad M = \max_{(t,x) \in Q} d(F(t,x), \{\widehat{0}\}).$$

Доказательство. Построим две последовательности отображений $y_m, v_m: [t_0, t_0 + \sigma] \to \mathbf{E}^n$ следующим образом:

$$y_0(t) = y(t), v_0(t) = y'(t),$$

 $y_m(t) = x_0 + \int_0^t v_m(s) ds, m = 1, 2, ...,$ (4)

а непрерывное отображение $v_m(t) \in F(t,y_{m-1}(t)), \ m=1,2,\ldots,$ выбирается так, чтобы

$$D(v_{m-1}(t), v_m(t)) = \theta(v_{m-1}(t), F(t, y_{m-1}(t))).$$
 (5)

В силу выбора σ все отображения $y_m(t)$ определены при $t \in [t_0, t_0 + \sigma]$ и удовлетворяют условию $D(y_m(t), x_0) \leq b$. Используя (4) и (5), оценим:

$$D(v_0(t), v_1(t)) = \theta(v_0(t), F(t, y_0(t))) = \theta(y'(t), F(t, y(t))) \le \eta(t),$$

$$D(y_0(t), y_1(t)) = D\left(y_0 + \int_{t_0}^t v_0(s) \, ds, \ x_0 + \int_{t_0}^t v_1(s) \, ds\right)$$

$$\leq D(x_0, y_0) + \int_{t_0}^t D(v_0(s), v_1(s)) \, ds \leq r_0 + \int_{t_0}^t \eta(s) \, ds. \quad (6)$$

Поскольку многозначное отображение F(t,x) по фазовой переменной удовлетворяет условию Липшица, получим

$$D(v_1(t), v_2(t)) = \theta(v_1(t), F(t, y_1(t))) \le d(F(t, y_0(t)), F(t, y_1(t)))$$

$$\le kD(y_0(t), y_1(t)) \le kr_0 + k \int_{t_0}^{t} \eta(s) \, ds, \quad (7)$$

$$D(y_{1}(t), y_{2}(t)) = D\left(x_{0} + \int_{t_{0}}^{t} v_{1}(s) ds, x_{0} + \int_{t_{0}}^{t} v_{2}(s) ds\right)$$

$$\leq \int_{t_{0}}^{t} D(v_{1}(s), v_{2}(s)) ds \leq \int_{t_{0}}^{t} \left(kr_{0} + k \int_{t_{0}}^{s} \eta(\tau) d\tau\right) ds$$

$$= kr_{0}(t - t_{0}) + \int_{t_{0}}^{t} \int_{t_{0}}^{s} k\eta(\tau) d\tau ds = kr_{0}(t - t_{0}) + \int_{t_{0}}^{t} \int_{\tau}^{t} k\eta(\tau) ds d\tau$$

$$= kr_{0}(t - t_{0}) + k \int_{t_{0}}^{t} (t - s)\eta(s) ds. \quad (8)$$

Используя метод полной математической индукции, установим оценки

$$D(v_m(t), v_{m+1}(t)) \le \frac{k^m r_0(t - t_0)^{m-1}}{(m-1)!}$$

$$+\frac{k^m}{(m-1)!} \int_{t_0}^t (t-s)^{m-1} \eta(s) \, ds, \quad (9)$$

$$D(y_m(t), y_{m+1}(t)) \le \frac{k^m r_0(t - t_0)^m}{m!} + \frac{k^m}{m!} \int_{t_0}^t (t - s)^m \eta(s) \, ds, \qquad m = 1, 2, \dots$$
 (10)

При m=1 неравенства (9) и (10) справедливы в силу (7) и (8). Предположим, что неравенства (9) и (10) имеют место при некотором натуральном m. Покажем, что они остаются справедливыми при m+1. Имеем

$$\begin{split} D(v_{m+1}(t), v_{m+2}(t)) &\leq \theta(v_{m+1}(t), F(t, y_{m+1}(t))) \\ &\leq d(F(t, y_m(t)), F(t, y_{m+1}(t))) \leq kD(y_m(t), y_{m+1}(t)) \\ &\leq \frac{k^{m+1}r_0(t-t_0)^m}{m!} + \frac{k^{m+1}}{m!} \int\limits_{t_0}^t (t-s)^m \eta(s) \, ds, \end{split}$$

$$D(y_{m+1}(t), y_{m+2}(t))$$

$$= D\left(x_0 + \int_{t_0}^t v_{m+1}(s) \, ds, x_0 + \int_{t_0}^t v_{m+2}(s) \, ds\right)$$

$$\leq \int_{t_0}^t D(v_{m+1}(s), v_{m+2}(s)) \, ds$$

$$\leq \int_{t_0}^t \left(\frac{k^{m+1} r_0 (s - t_0)^m}{m!} + \frac{k^{m+1}}{m!} \int_{t_0}^s (s - \tau)^m \eta(\tau) \, d\tau\right) ds$$

$$= \frac{k^{m+1} r_0 (t - t_0)^{m+1}}{(m+1)!} + \frac{k^{m+1}}{m!} \int_{t_0}^t \int_{t_0}^s (s - \tau)^m \eta(\tau) \, d\tau \, ds$$

$$= \frac{k^{m+1} r_0 (t - t_0)^{m+1}}{(m+1)!} + \frac{k^{m+1}}{m!} \int_{t_0}^t \int_{\tau}^t (s - \tau)^m \eta(\tau) \, ds \, d\tau$$

$$= \frac{k^{m+1}r_0(t-t_0)^{m+1}}{(m+1)!} + \frac{k^{m+1}}{(m+1)!} \int_{t_0}^t (t-s)^{m+1} \eta(s) \, ds,$$

что и требовалось доказать.

В силу (9) функциональный ряд $\sum_{m=1}^{\infty} D(v_m(t),v_{m+1}(t))$ мажорируется сходящимся числовым рядом $\sum_{m=1}^{\infty} c_m$, где

$$c_m = k(r_0 + \zeta) \frac{(k\sigma)^{m-1}}{(m-1)!}, \qquad \zeta = \int_{t_0}^{t_0 + \sigma} \eta(s) \, ds.$$

Поэтому последовательность отображений $v_m(t)$ сходится равномерно на отрезке $[t_0,t_0+\sigma]$ к некоторому непрерывному отображению v(t). Аналогично, последовательность отображений $y_m(t)$ сходится равномерно на отрезке $[t_0,t_0+\sigma]$ к некоторому непрерывному отображению x(t). Переходя в (4) к пределу при $m\to\infty$, получим

$$x(t) = x_0 + \int_{t_0}^t v(s) ds, \qquad v(t) \in F(t, x(t)).$$
 (11)

Предельное отображение x(t) является непрерывно дифференцируемым в силу (11), следовательно, x(t) — решение нечеткого дифференциального включения (1). Осталось показать, что имеет место оценка $D(x(t), y(t)) \le r(t)$. На основании (6) и (10) имеем

$$\begin{split} D(x(t),y(t)) &\leq D(y(t),y_1(t)) + \sum_{m=1}^{\infty} D(y_m(t),y_{m+1}(t)) \\ &\leq r_0 + \int_{t_0}^t \eta(s) \, ds + \sum_{m=1}^{\infty} \left(\frac{k^m r_0(t-t_0)^m}{m!} + \frac{k^m}{m!} \int_{t_0}^t (t-s)^m \eta(s) \, ds \right) \\ &= r_0 \sum_{m=0}^{\infty} \frac{(k(t-t_0))^m}{m!} + \int_{t_0}^t \left(\sum_{m=0}^{\infty} \frac{(k(t-s))^m}{m!} \right) \eta(s) \, ds \\ &= r_0 e^{k(t-t_0)} + \int_{t_0}^t e^{k(t-s)} \eta(s) \, ds, \end{split}$$

что и требовалось доказать.

Следствие 1. Пусть x_0 и $y_0 - \partial 6a$ начальных множества, $D(x_0, y_0) = r_0$. Тогда любому решению y(t) включения (1), $y(t_0) = y_0$, можно поставить в соответствие такое решение x(t) включения (1), $x(t_0) = x_0$, что справедливо неравенство $D(x(t), y(t)) \leq r_0 e^{k\sigma}$ для всех $t \in [t_0, t_0 + \sigma]$, то есть имеет место непрерывная зависимость решений от начальных данных (в предыдущей теореме положим $\eta(t) \equiv 0$).

Следствие 2. Пусть многозначные отображения $F,G:Q\to conv(\mathbf{E}^n)$ удовлетворяют условиям 1) и 2) теоремы 7 и $d(F(t,x),G(t,x))\leq \eta(t)$ для всех $t:|t-t_0|\leq a$, где функция $\eta(t)$ непрерывна. Тогда любому решению y(t) включения $y'\in G(t,y),\ y(t_0)=x_0$, можно поставить в соответствие такое решение x(t) включения $(1),\ x(t_0)=x_0,\$ что справедливо неравенство $D(x(t),y(t))\leq \int_{t_0}^t e^{k(t-s)}\eta(s)\,ds$ для всех $t\in [t_0,t_0+\sigma],$ то есть имеет место непрерывная зависимость решений от правых частей.

Следствие 3. Пусть многозначное отображение $F: Q \to conv(\mathbf{E}^n)$ удовлетворяет условиям 1) и 2) теоремы 7. Тогда существует классическое решение нечеткого дифференциального включения (1) (в качестве отображения y(t) достаточно выбрать $y(t) \equiv x_0$).

Замечание 2. Доказательство теоремы 7 можно также провести, используя подход, который был применен для доказательства теоремы 6, то есть переход в пространство Ω .

Замечание 3. Нечеткие дифференциальные включения в работах [1,2,9,12,15] возникают в результате перехода к α — срезкам нечеткого отображения $F:I\times\mathbb{R}^n\to \mathbb{E}^n$, в данной же статье рассматриваются дифференциальные включения, когда $F:I\times\mathbb{E}^n\to conv(\mathbb{E}^n)$, что является обобщением результатов, полученных в [5,6] для дифференциальных включений с производной Хукухары на нечеткий случай. В случае, когда $F:I\times\mathbb{E}^n\to\mathbb{E}^n$, рассматриваемые дифференциальные включения вырождаются в дифференциальные уравнения, введенные в [13].

Литература

- В. А. Байдосов, Дифференциальные включения с нечеткой правой частью // Доклады АН СССР. 309 (1989), N 4, 781–783.
- [2] В. А. Байдосов, Нечеткие дифференциальные включения // Прикладная математика и механика. **54** (1990), вып. 1, 12–17.
- [3] В. И. Благодатских, Введение в оптимальное управление. М.: Высш. шк., 2001, 239 с.

- [4] Ю. Г. Борисович, Б. Д. Гельман, А. Д. Мышкис, В. В. Обуховский, Введение в теорию многозначных отображений и дифференциальных включений. М.: КомКнига, 2005, 216 с.
- [5] Т. А. Комлева, А. В. Плотников, Дифференциальные включения с производной Хукухары // Нелінійні коливання. 10 (2007), N 2, 229–246.
- [6] Т. А. Комлева, А. В. Плотников, Н. В. Скрипник, Ω-пространство и его связь с теорией нечетких множеств // Труды Одесского политехнического университета. 28 (2007), вып. 2, 182–191.
- [7] Е. С. Половинкин, Теория многозначных отображений. М.: Изд-во МФТИ, 1983, 108 с.
- [8] Н. В. Скрипник, Т. А. Комлева, *Hevemkue дифференциальные уравнения* // Dynamical Systems Modelling and Stability Investigation: Thesis of conference reports (May 22–25, 2007). Kyiv: Kiev Nat. University named after Taras Shevchenko, 2007. P. 91.
- [9] J.-P. Aubin, Fuzzy differential inclusions // Problems of control and information theory. 19 (1990), N 1, 55–67.
- [10] R. J. Aumann, Integrals of set-valued functions // J. Math. Anal. Appl. (1965), N 12, 1–12.
- [11] M. Hukuhara, Integration des applications mesurables dont la valeur est un compact convexe // Func. Ekvacioj. (1967), N 11, 205–223.
- [12] E. Hullermeier, An approach to modelling and simulation of uncertain dynamical system // Internat. J. Uncertainty, Fuzziness Knoeledge-Based Systems. (1997), N 7, 117–137.
- [13] O. Kaleva, Fuzzy differential equations // Fuzzy sets and systems. 24 (1987), N 3, 301–317.
- [14] O. Kaleva, The Cauchy problem for fuzzy differential equations // Fuzzy sets and systems. 35 (1990), N 3, 389–396.
- [15] V. Laksmikantham, A. A. Tolstonogov, Existence and interrelation between set and fuzzy differential equations // Nonlinear Analysis. 55 (2003), 255–268.
- [16] J. Y. Park, H. K. Han, Existence and uniqueness theorem for a solution of fuzzy differential equations // Internat. J. Math. and Math. Sci. 22 (1999), N 2, 271– 279.
- [17] M. L. Puri, D. A. Ralescu, Differential of fuzzy functions // J. Math. Anal. Appl. 91 (1983), 552–558.
- [18] M. L. Puri, D. A. Ralescu, Fuzzy random variables // J. Math. Anal. Appl. 114 (1986), N 2, 409–422.
- [19] S. Seikkala, On the fuzzy initial value problem // Fuzzy Sets and Systems. 24 (1987), N 3, 319–330.
- [20] S. J. Song, C. X. Wu, Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations // Fuzzy Sets and Systems. 111 (2000), 55–67.
- [21] L. Zadeh, Fuzzy sets // Inform. and Control. (1965), N 8, 338–353.

Сведения об авторах

Наталия Викторовна Скрипник Одесский национальный университет им. И. И. Мечникова, ул. Дворянская 2, 65026, Одесса,

Украина

 $E ext{-}Mail:$ natalia.scripnik@gmail.com