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ON THE UNIQUENESS OF THE VARIATIONAL SOLUTION FOR

THE PROBLEM OF EQUILIBRIUM OF THE PENDING DROP

In this paper we study the uniqueness of the equilibrium forms of the axisymmetrical drops
pending from the horizontal plane. In our considerations we take into account the intermediate
layer separating the liquid phase from that of the vapor. We prove the uniqueness of the variational
solution describing the equilibrium forms.
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1. Formulation of the Problem.

In this paper we study the uniqueness of the equilibrium form of the drop
pending from horizontal plane P . In the classical case the form satisfy the Laplace
condition. This condition affirms that for equilibrium form the mean curvature of
the pending drop is to be constant [1]. Now it is well known that this condition
fails when one of the principal curvatures of the drop is sufficiently large. As far
as in the classical equilibrium case we don’t take into account the intermediate
layer separating the phases then it is quite natural to try to surpass the difficulties
connected with applying Laplace condition by introducing the intermediate layer’s
width into the consideration. It seems that F. Neumann was the first to do it [2], see
also [3]. In the contemporary theories on the subject instead of the Laplace condition
there appears a sufficiently complicated function depending on mean and Gauss
curvatures [4], see also [5, 6]. But in the case when the width of the intermediate
layer and potential functions determining the state of equilibrium are constant we
get a simple condition affirming that equilibrium surface has linear combination of
mean and Gauss curvatures equal to the constant, see, for example, [7],

H + lpK = λ∗, λ∗ = λ +
1

σ
Γρ

λ =
1

πr2

[

2πr cos γ +
lpπr2

2
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2

[

γ − sin 2γ
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= β
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Here H, K are mean and Gauss curvatures respectively, r is the radii of the
projection of the surface S over the plane P , Γ – the function describing the
gravitational potential, ρ – the fluid’s density, β – the coefficient of the relative
adhesion, W – drop’s interior part and V – the volume of the domain W , lp the
width of the intermediate layer. We repair that in the case of the width lp being
equal to zero we get the classical condition. Besides when lp 6= 0 we get that the
wetting angle γ is different from the classical one. This partly solves the problem
of the wetting angle γ, see [1], where this problem is thoroughly discussed.

In the paper [8] of the first of the authors the variational problem generalizing
that of the classical case was formulated and solved. We do not discuss the solution
of it here. But as we are interested in the uniqueness of the variational solution
of equilibrium problem we formulate it now. Let us denote through S the drop’s
surface and through S∗ its projection onto the plane P from which the drop is
pending. Let Σ be the circle of the contact of the two surfaces S and S∗. We
suppose that the line L generating the surface S is a rectifiable curve whose length
is equal to l. We introduce Cartesian coordinates (x, y) in the meridian section of
the drop orienting the axis x along the line perpendicular to the plane P and we
denote through w = w (s) = (x (s) , y (s)) , 0 6 s 6 l, the natural parameterization
of the curve L. Let S be the area of the surface S. In the variational study of the
equilibrium problem we consider the functional F = F (S) represented as follows

F (S) = σ



S + lpΞ − β

∫

S∗

ds + λV + σ−1

∫∫∫

W

Γρ dv



 (1)

Here

Ξ (S) = 2π

∫

L

f (ẏ) ds, ẏ = dy/ds,

with the function f having the following representation

f (ẏ) =
1

2

{

−
√

1 − ẏ2

|ẏ|
∫

0

(

arcsin σ + σ
√

1 − σ2 − π

2

)

(

1 − σ2
)−3/2

dσ+

+ E0

√

1 − ẏ2

}

(2)

The functional (1) differs from the classical one by the term Ξ which is responsible
for the appearance of the Gauss curvature in the Euler condition for the extremal
surface [9].

Variational Problem. Let M be the class of the surfaces we have described.
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For a given values of the layer’s width lp, the coefficient of the relative adhesion
β and for a given volume V it is necessary to find a surface Se ∈ M and a constant
λ such that

F (Se) = inf {F (S) , S ∈ M}

2. The study of the uniqueness problem.

We are interested in the investigation of the uniqueness problem for variational
solutions of the variational problem we have just formulated. In this section we’ll
give detailed proof of the uniqueness theorem based on the ideas exposed in the
paper [10]. Let

S1, S2

be two different solutions of the variational problem described by the graphs of the
functions y1 : [0, r1] → R, y2 : [0, r2] → R which are monotone over their domains
of definition. In the sequel we’ll suppose that the functions y1, y2 are defined over
the same interval [0, r0], r0 = max {r1, r2}.

Let us consider the following homotopy of y1 into y2

y2 (x, θ) = (1 − θ) y2
1 (x) + θy2

2 (x) , 0 6 θ 6 1 (3)

First of all we prove the following lemma.

Lemma 1. The functional S satisfies the following condition of the convexity

S (yθ) − (1 − θ)S (y1) − θS (y2) 6 0 (4)

Proof. Let zi = zi (x, y) be nonparametric representation of the surface S (yi), i =
1, 2, which is located in the upper half-space

{

(x, y, z) ∈ R3
∣

∣ z > 0
}

,

zi (x, y) =
√

y2
i − y2 (5)

Let us consider the surface S∗
1/2 with the following non-parametric representation

z∗ = z∗ (x, y) = [z1 (x, y) + z2 (x, y)] 2−1 (6)

We’ll suppose that the functions z1 = z1 (x, y), z2 = z2 (x, y), z∗ = z∗ (x, y) are
defined over the same domain.

We’ll denote as S1/2 the union of the surface S∗
1/2 and its mirror’s reflection

in the plane (x, y). The surface S1/2 is not axisymmetrical one. We consider the
domain B1/2 bounded by the surface S1/2.

We consider Shwartz symmetrization [11] of the body B1/2. Due to this sym-
metrization we substitute each x-section

(

B1/2

)

x
of the body B1/2 by the disc lying

in the plane orthogonal to the x-axis, centered at the point of intersection of this



On the uniqueness of the variational solution 155

plane with the axis and having the same measure as this section. Let us calculate
the radii r = r (x) of this disc.

πr2 = 2

r∗(x)
∫

0

z∗ (x, y) dy =

y1(x)
∫

0

√

y2
1 (x) − y2 dy +

y2(x)
∫

0

√

y2
2 (x) − y2 dy =

=
[

y2
1 (x) + y2

2 (x)
]

π (7)

Here |0, r∗(x)| is the projection of x-section of the body B1/2 over the y-axis.
We now get from the equality (7) that the radii r = r (x) satisfies the following

condition

r2 (x) =
1

2

[

y2
1 + y2

2

]

.

These calculations show that the area of the x-section of the body B
(

y1/2

)

coincides
with that of the B∗

1/2.
The surface S∗

1/2 is the boundary of the domain B∗
1/2 which is the Shwartz

symmetrrization of the domain B1/2 bounded by the surface S1/2. As under such
a symmetrization the area of the surface does not increase we get the following
inequality

2π

a
∫

0

y (x, 1/2)
√

1 + y′2 (x, 1/2) dx 6

6 2

∫∫

pr(x,y)S
∗

1/2

√

1 + z∗2x (x, y) + z∗2y (x, y) dx dy (8)

Here the segment [0, a] is the projection of the surface S1/2 over the x-axis and
pr(x,y)S

∗
1/2 is the projection of the surface S∗

1/2 onto the plane (x, y).
The functional

∫∫

√

1 + z2
x + z2

y dx dy

is convex relatively to the linear homotopy (1 − θ)z1 + θx2, 0 6 θ 6 1. Using
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inequality (8) we arrive at the following condition

2π

a
∫

0

y (x, 1/2)
√

1 + y′2 (x, 1/2) dx 6

6

∫∫

pr(x,y)S1

√

1 + z2
1x (x, y) + z2

1y (x, y) dx dy+

+

∫∫

pr(x,y)S2

√

1 + z2
2x (x, y) + z2

2y (x, y) dx dy =

= π

a
∫

0

y1 (x)

√

1 + y′1
2 (x) dx + π

a
∫

0

y2 (x)

√

1 + y′2
2 (x) dx. (9)

Here pr(x,y)Si is the projection of the surface Si, i = 1, 2, onto the plane (x, y).
>From the definition of homotopy yθ it now follows that

y2
θ′+θ′′

2

=
1

2

(

y2
θ′ + y2

θ′′
)

(10)

We now get from the conditions (9) and (10) the convexity of the functional S.
The lemma is proved.
Let us now compare the following functionals

S (y) =

∫∫

√

1 + z2
ξ + z2

η dξ dη, S0 (y) =

∫

√

1 + y′2 dx

First of all we’ll prove the following lemma

Lemma 2. Let

δ∗ :=
√

1 + z2
ξ (1/2; ξ, η) + z2

η (1/2; ξ, η)−

− (1/2)
√

1 + z2
1ξ + z2

1η − (1/2)
√

1 + z2
2ξ + z2

2η

zk (ξ, η) =
√

y2
k − η2, k = 1, 2, z (1/2) = [z1 (ξ, η) + z2 (ξ, η)] (1/2)

and

δ :=

√

1 + [(y′1 + y′2) (1/2)]2 − (1/2)

√

1 + y′1
2 − (1/2)

√

1 + y′2
2

Then we have the following inequality

(−δ∗) >
1

8
(−δ) . (11)
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Proof. Let us denote as e∗1, e∗2 the following quantities

e∗1 :=

√

1 + (∇z)2 (1/2; ξ, η)+

+ (1/2)

√

1 + (∇z1)
2 (ξ, η) + (1/2)

√

1 + (∇z2)
2 (ξ, η)

e∗2 = (1/2)

[

1 + ∇z1∇z2 +

√

[

1 + (∇z1)
2
] [

1 + (∇z1)
2
]

]

.

Then we have

δ∗ =

{

− 1

4
(z1ξz2η − z2ξz1η)

2 −

− 1

4

[

(z1ξ − z2ξ)
2 + (z1η − z2η)

2
]

}

(e∗1e
∗
2)

−1 (12)

In conformity with the definition of z1, z2 we obtain now the following representations

z1ξ − z2ξ =
y1y

′
1

√

y2
1 − η2

− y2y
′
2

√

y2
2 − η2

z1η − z2η = − η
√

y2
1 − η2

+
η

√

y2
2 − η2

z1ξz2η − z1ηz2ξ = − η (y1y
′
1 − y2y

′
2)

√

y2
1 − η2

√

y2
2 − η2

(13)

Using formulas (13) we estimate now the quantity −δ∗ from below. Let δz be the
following expression

δz := (z1ξz2η − z2ξz1η)
2 + (z1ξ − z2η)

2

The direct calculations give us the equation

δz =

[

y2
1y

2
2y

′
1
2
+ y2

1y
2
2y

2
2 − 2y1y2y

′
1y

′
2

√

y2
1 − η2

√

y2
2 − η2−

− 2y1y2η
2y′1y

′
2

]

[(

y2
1 − η2

) (

y2
2 − η2

)]−1
(14)

Let δy be the following expression

δy :=

[

√

y2
1 − η2

√

y2
2 − η2 + η2 − y1y2

]

(15)
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then we get

η−2δy = −
(

y2
1 − y2

2

)2
δy∗1δy

∗
2 (16)

>From the representations (15), (16) we arrive at the inequality

y1y2 >

√

y2
1 − η2

√

y2
2 − η2 + η2 (17)

The inequality (17) implies that

δz > y2
1y

2
2

(

y′1 − y′2
)2 [(

y2
1 − η2

) (

y2
2 − η2

)]−1
(18)

Using now the definition (12) of δ∗ and inequality (18) we get

−δ∗ >
(

y′1 − y′2
) 1

4
y2
1y

2
2

[(

y2
1 − η2

) (

y2
1 − η2

)]−1
(e∗1e

∗
2)

−1 (19)

As the quantity −δ is equal to the following expression

−δ =
1

4

(

y′1 − y′2
)2

(e1e2)
−1

where

e1 =

√

1 +

(

y′1 + y′2
2

)2

+
1

2

√

1 + y′1
2 +

1

2

√

1 + y′2
2

e2 =
1

2
+

1

2
y′1y

′
2 +

1

2

√

1 + y2
1

√

1 + y2
2

then in order to compare −δ∗ and −δ it is sufficient now to compare the quantities

y2
1y

2
2

[(

y2
1 − η2

) (

y2
2 − η2

)]−1
(e∗1e

∗
2)

−1

and
(e1e2)

−1

In these calculations we suppose that neither y1 nor y2 are equal to zero. The
case when one of these functions could be equal to zero will be considered later.
Now using the definitions of the quantities e∗1, e∗1 we easily arrive at the following
estimations

(

y2
1 − η2

) (

y2
2 − η2

)

e∗1e
∗
2 6

6

{[

y2
1y

2
2 + y2

1y
2
2

( |y′1| + |y′2|
2

)

+
y2
1y

2
2

4

]1/2

+
1

2
y1y2

(

1 + y′1
2
)1/2

+

+
1

2
y1y2

(

1 + y′2
2
)1/2

}

√

(

y2
1 − η2

) (

y2
2 − η2

)

e∗2 6

6

√
5

2
y1y2e1

√

(

y2
1 − η2

) (

y2
2 − η2

)

e∗2 6

√
5

2
y2
1y

2
2e1e2 (20)
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Using the inequality (20) and definitions of δ∗ and δ we arrive at the following
inequality

−δ∗ (x) > −2
√

5

5
δ (x) (21)

The inequality (21) takes place for values of the variable x for which neither y1 nor
y2 are equal to zero.

Let us suppose now that, for example, the equation y1 (x) = 0 takes place. In
this case we easily get the following inequalities

−δ∗ >
1

8

y′2
2

1 + y′2
2 , −δ 6

y′2
2

1 + y′2
2

The last inequalities mean that the following estimation takes place

−δ∗ (x) >
1

8
(−δ (x)) (22)

>From the estimations (21), (22) we conclude that the inequality (11) is valid for
all the values of x,

x ∈ [0, a] .

The lemma is proved.

Let us now consider linear combination of the functionals of the following type

Q (y) :=

a
∫

0

y
√

1 + y′2 dx − κ∗

a
∫

0

√

1 + y′2dx, κ∗ > 0. (23)

We’ll prove now the following lemma

Lemma 3. Let y = y (x), x ∈ [0, a] , be a function whose graph represents the line
L generating the surface S delivering the minimum value to the functional F . Let
us suppose that the following inequality takes place

κ∗ < r0/8 (24)

Then the functional Q is convex under the transformations (3).

Proof. Let us consider difference

∆ :=
1

2
Q (y1) +

1

2
Q (y2) − Q (y (x, 1/2))
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Using inequality (9) we see that

∆ >
1

2

a
∫

0

r0
∫

0

√

1 + z2
1x (x, y) + z2

1y (x, y) dx dy+

+
1

2

a
∫

0

r0
∫

0

√

1 + z2
2x (x, y) + z2

2y (x, y) dx dy−

−
a
∫

0

r0
∫

0

√

1 + z∗2x (x, y) + z∗2y (x, y) dx dy−

− κ∗

[

−
a
∫

0

√

1 + y′2 (x, 1/2) dx+

+
1

2

a
∫

0

√

1 + y′1
2 (x) dx +

1

2

a
∫

0

√

1 + y′2
2 (x) dx

]

>

>

a
∫

0

r0
∫

0

{

[−δ∗ (x)] − κ∗r−1
0 [−δ (x)]

}

dx dy >

>

a
∫

0

r0
∫

0

[

1

8
− κ∗r−1

0

]

[−δ (x)] dx dy > 0

The lemma is proved.

We proceed now with the investigation of the principal parts of the functionals
constituting the body of the functional F . To this end we study the behavior
of the functional Ξ under homotopies defined by the expression (3). In order to
formulate a proposition describing this behavior we introduce some notations. First
of all we express this functional in terms of the functions written in the rotated
coordinate system. Let us consider (σ, τ) – coordinate system rotated by the angle
−45 ◦ relatively the (x, y) – coordinate system. The coordinate transformation has
the following form

x =

√
2

2
(σ + h (σ)) , y =

√
2

2
(−σ + h (σ)) (25)

Let h = h (σ) be the representation of the function y = y (x) in this system. The
functional Ξ acquires now the following representation

Ξ (h) =
1

2

∫

∆







√
2

2

(

1 + h′
)

(σ)

N(h′)
∫

0

f0 (u) du






dσ +

√
2

4

∫

∆

E0

(

1 + h′
)

dσ
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Here ∆ is the projection of the graph of the function of the function h (we assume
that all the functions participating in the calculations to follow are defined over the
same domain),

N = N

(

t =

√
2

2

1 − t√
1 + t2

)

f0 (u) =

(

arcsin u + u

√

1 − u2 − π

2

)

(

1 − u2
)− 3

2 , u ∈ (0, 1) .

Alongside with the functional Ξ we also consider the modification Ξ∗ of it,

Ξ∗ :=

∫

∆

Λ3

(

h′
)

(σ) dσ +
1

2

∫

∆

E0

(

1 + h′ (σ)
)

dσ, (26)

Λ3 = Λ3 (t) = κ∗
√

1 + t2 +

√
2

2
lp (1 + t)

N(t)
∫

0

f0 (u) du.

Now the following functions will be used in the future

Λ′
3 = Λ′

3 (t) = κ∗ t√
1 + t2

+

√
2

2
lp

N(t)
∫

0

f0 (u) du+

+

√
2

2
lp (1 + t) f0 (N (t))N ′ (t)

q (t) = 3
(

1 − t2
) f0 (N (t))

2 (1 + t2)
5
2

−
√

2 (1 + t)3
f ′
0 (N (t))

4 (1 + t2)3

Λ′′
3 (t) = κ∗p (t) − lpq (t) , p (t) =

(

1 + t2
)− 3

2

Let
c0 = sup {q (t) , t ∈ [−1, 1]}

Lemma 4. Let κ∗, lp be the numbers connected by the inequality

κ∗ − 2c0lp > 0 (27)

Let h = h (1/2, σ) be the representation of the function y = y (1/2, x) defined by the
functions y1 = y1 (x), y2 = y2 (x) in conformity with the condition

y2 (1/2, x) =
1

2

(

y1
1 + y2

2

)

and hk = hk (σ) – representation of the function yk = yk (x), k = 1, 2, in the rotated
coordinate system.
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Then the following inequality takes place

Ξ∗ (h (1/2, σ)) 6
1

2
Ξ∗ (h1 (σ)) +

1

2
Ξ∗ (h2 (σ)) (28)

Proof. First of all let us note that the functional
∫

∆

E0lp
(

1 + h′ (σ)
)

dσ (29)

behaves itself like the linear functional. Really as the homotopy in question leaves
the endpoints of curves fixed the following equation takes place
∫

∆

E0

(

1 + h′ (1/2, σ)
)

dσ − 1

2

∫

∆

E0

(

1 + h′
1 (σ)

)

dσ−

− 1

2

∫

∆

E0

(

1 + h′
2 (σ)

)

dσ = 0.

This property of the functional (29) implies that we can select the sign of the first
derivative of the function Λ3 at our will. In the classical case this means that we
can add an arbitrary linear function to the function under consideration and this
would not affect its convexity. At the same time it permits us to change the signal
of its first derivative.

In the study of the function δΛ3,

δΛ3 = Λ3

(

h′ (1/2, σ)
)

− 1

2
Λ3

(

h′
1 (σ)

)

− 1

2
Λ3

(

h′
2 (σ)

)

,

it is necessary to take into account the different relations between the functions
y1, y2 and their derivatives. As we suppose that the functions y1, y2 are monotone
ones there exists not more than countable set of the arcs where these functions are
comparable. The union of this arcs covers the union of the curves in question.

Let us consider an arc where y1 < y2 and y′1 < y′2. On this arc the functions
h′ = h′ (1/2, σ), h′

1 = h′
1 (σ), h′

2 = h′
2 (σ) are connected by the following inequalities

h′
1 (σ) 6 h′ (1/2, σ) 6 h′

2 (σ) (30)

Really

h′
1 (σ) − h′ (1/2, σ)

2
=

=

(

1 + y′1 (x)

1 − y′1 (x)
− 1 + y′ (1/2, x)

1 − y′ (1/2, x)

)

1

2
=

y′1 (x) − y′ (1/2, x)

(1 − y′1 (x)) (1 − y′ (1/2, x))
<

<
y1y

′
1 − 2y1y

′ (1/2, x)

y1 (1 − y′1 (x)) (1 − y′ (1/2, x))
6

(

y2
1

)′ − 2
(

y2 (1/2, x)
)′

y1 (1 − y′1 (x)) (1 − y′ (1/2, x))
< 0 (31)
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>From the inequality (31) we get the left part of the inequality (30). In the same
manner we arrive at the following evaluation

h′
2 (σ) − h′ (1/2,σ)

2
=

y′2 (x) − y′ (1/2, x)

(1 − y′2 (x)) (1 − y′ (1/2, x))
=

=
y2y

′
2 − y2y

′ (1/2, x)

y2 (1 − y′2 (x)) (1 − y′ (1/2, x))
>

2
(

y2
2

)′ −
(

y2 (1/2, x)
)′

y2 (1 − y′2 (x)) (1 − y′ (1/2, x))
> 0 (32)

>From the inequality (32) we get the right part of the expression (30). Using the
same arguments we arrive at the following equation

h′
1 (σ) − h′ (1/2, σ)

2
+

h′
2 (σ) − h′ (1/2, σ)

2
=

y′1 − y′2
(1 − y′1) ((1 − y′2))

(33)

>From the condition (33) we deduce the following possibilities for the relations
between h′ = h′ (1/2, σ) , h′

1 = h′
1 (σ) , h′

2 = h′
2 (σ) and y′1, y

′
2:

a) y′1 6 y′2 ⇒
h′

1 (σ) + h′
2 (σ)

2
− h′ (1/2, σ) 6 0

b) y′1 > y′2 ⇒
h′

1 (σ) + h′
2 (σ)

2
− h′ (1/2, σ) > 0

When investigating the functional Ξ∗ we take into account each of these cases
separately. As it was already said the signal of the constant E0 can be selected at
our will. In the case a) we select this signal being negative so that the derivative of
the function

Λ∗
3 (t) = Λ3 (t) +

E0

2
√

2
(1 + t)

is also negative. Taking this property into account we arrive at the following inequality

δΛ∗
3 = (Λ∗

3)
′ (τ1)

h′ (1/2, σ) − h′
1 (σ)

2
− (Λ∗

3)
′ (τ2)

−h′ (1/2, σ) + h′
2 (σ)

2
6

6
[

(Λ∗
3)

′ (τ1) − (Λ∗
3)

′ (τ2)
] h′

2 (σ) − h′ (1/2, σ)

2
=

= (Λ∗
3)

′′ (τ3) (τ1 − τ2)
h′

2 (σ) − h′ (1/2, σ)

2
(34)

Here

h′
1 (σ) 6 τ1 6 h′ (1/2, σ) 6 τ2 6 h′

2 (σ) , τ1 6 τ3 6 τ2 (35)

From the formulas (34), (35) we get the inequality

δΛ∗
3 (σ) 6 0, σ ∈ ∆1 (36)

at the points of the subset ∆1 of the set ∆ where the condition a) takes place.
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Let us consider now the set ∆2 = ∆\∆1 consisting of the points where the
condition b) takes place. Using Taylor formula we get

− δΛ∗
3 = Λ∗′

3 (h (1/2, σ))
h′

1 − h′ (1/2, σ)

2
+ Λ∗′

3 (h (1/2, σ))
h′

2 − h′ (1/2, σ)

2
+

+ Λ∗′
3 (τ1)

[h′
1 − h′ (1/2, σ)]2

2
+ Λ∗′

3 (τ2)
[h′

2 − h′ (1/2, σ)]2

2
(37)

In the expression for Λ∗
3 the constant E0 is selected in such a manner that the

derivative Λ∗′
3 is positive. Of course we construct another function but we preserve

the same denotation for it.
Now from the condition (37) we get the inequality

δΛ∗
3 (σ) 6 0, σ ∈ ∆2 (38)

Let us now note that

δΞ∗ = Ξ∗ (h (1/2, σ)) − 1

2
Ξ∗ (h1) −

1

2
Ξ∗ (h2) =

=

∫

∆

δΛ3 (σ) dσ =

∫

∆1∪∆2

δΛ∗
3 (σ) dσ (39)

Using now the equations (36) and (38) we arrive at the inequality (28).
The lemma is proved.

Now we can prove the main theorem

Theorem 1. Let the coefficients

σ, λ, ρ, β, lp

are such that the following inequality takes place

r0

8
− 2c0lp > 0, r0 < 1

Then the solution of the variational problem is unique in the class of the surfaces
represented by the graph of the monotone functions.

Proof. Let y1, y2 two monotone functions defined over [0, a] with the homotopy (3)
between them. First of all let us note that for the functionals

I1 =

∫

S∗

ds, I2 = λV, I3 =

∫∫∫

W

Γρ dv

the following equation takes place

Ik (h (1/2, σ)) − 1

2
Ik (h1 (σ)) − 1

2
Ik (h2 (σ)) = 0, k = 1, 2, 3. (40)
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We note also that the functionals

λV,

∫

S∗

ds

are invariant under homotopical transformation (3). Besides the condition r0 < 1
permits us to consider the variation of Ξ of the linear homotopy of the derivatives y′1,
y′2 instead of considering it on the nonlinear (3). Now let us represent the functional
F in the following form

F (S) = σ



Q + lpΞ
∗ − β

∫

S∗

ds + λV + σ−1

∫∫∫

W

Γρ dv





From lemma 3 it follows that the functional

Q (y) :=

a
∫

0

y
√

1 + y′2 dx − κ∗

a
∫

0

√

1 + y′2 dx,

is strictly convex for any value of

κ∗ <
r0

8

Now using lemma 4 and the condition (40) we get that

F (S (1/2)) < inf {F (S) , S ∈ M}

The contradiction we get means that

y1 = y2

The theorem is proved.
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