
Нелинейные граничные задачи 18, 245-255 (2008) 245

c©2008. Sidenko N.R.

AVERAGING OF THE DIRICHLET PROBLEM
FOR THE SPECIAL HYPERBOLIC
QUASILINEAR EQUATION

In this paper we establish sufficient conditions on the data of the problem
which guarantee a convergence of its solution to a limit solution. The domains
where we consider the problem has a fine-grained structure. We use S.I.Pohozhaev’s
method for the proof of the unique solvability in entire and the D.Cioranescu-
F.Murat hypothesis for the description of the domain milling.
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The hyperbolic Kirchhoff equation is named the following one

utt(x, t) − a
(

‖∇u(·, t)‖2
L2(Ω)

)

4u(x, t) = f(x, t),

x ∈ Ω ⊂ R
n, t ∈ R, (1)

where x = ( x1, . . . , xn ), ∇ = ( ∂/∂x1, . . . , ∂/∂xn ),

4 =
n
∑

i=1

∂2/∂x2
i , with positive continuous function a : R̄

+ → R
+.

The initial boundary value Dirichlet problem was considered to this
equation [1],[2] in a cylinder Q = Ω × (0, T ) where Ω is a bounded
domain in R

n, n > 3, with boundary ∂Ω, T is an arbitrary fixed
positive number, with boundary conditions

u(·, t) |∂Ω = 0 , t ∈ (0, T ),

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Ω. (2)

For an arbitrary function a(t) such that

a(t) ∈ C1(R̄+), a(t) > α0 > 0 ∀t ∈ R̄
+, α0 = const, (3)

the solvability of the problem in entire was ascertained first in paper
[1] for the special class of infinitely differentiable functions f, ϕ, ψ and
∂Ω of class C∞.



246 Sidenko N.R.

For the concrete function

a(t) = a0(t) := (C1t+ C2)
−2, Ci = const > 0, i = 1, 2, (4)

the solvability of the problem in entire was ascertained [2] for the
class of data having only second order derivatives summable in second
power and a boundary ∂Ω of class C2. It was showing [3],that function
(4) is the unique one in the class

a ∈ C2(R̄+), a > 0, (5)

for which the problem (1), (2) is solvable in entire in the set of data
having only second order derivatives summable in square.

We consider a bounded domain Ω ⊂ R
n, n > 3, and domain

Ω(s) ⊂ Ω which has a multiply connected boundary

∂Ω(s) =





N(s)
⋃

i=1

∂Ω
(s)
i



 ∪ ∂Ω,

where s ∈ N is a parameter, N (s) is a varying number of sets Ω
(s)
i ⊂ Ω

being closures of domains Ω̇
(s)
i with smooth singly connected boundaries

∂Ω
(s)
i of dimensions n− 1, Ω

(s)
i ∩ Ω

(s)
j = φ(i 6= j), Ω(s) ∩ ∂Ω = φ(i =

1, . . . , N (s)),

F (s) =
N(s)
⋃

i=1

Ω
(s)
i , Ω(s) = Ω \ F (s).

By notationQ(s) = Ω(s)×(0, T ), T = const > 0, ‖v(s)‖ = ‖v(s)‖L2(Ω(s)),

we study the following boundary value problem on Q(s) relatively to
a real function u(s)(x, t):

u
(s)
tt (x, t) − a0

(

‖∇u(s)(·, t)‖2
)

4u(s)(x, t) = f (s)(x, t),

(x, t) ∈ Q(s), (6)

u(s)(·, t)|∂Ω(s) = 0, t ∈ (0, T ), u(s)(x, 0) = ϕ(s)(x),

u
(s)
t (x, 0) = ψ(s)(x), x ∈ Ω(s).

We show conditions on Ω(s), f (s), ϕ(s), ψ(s) supplying a convergence
of u(s) as s → ∞ to the limit function u(x, t) defined on Q̄ when a
perforation becomes very small.



Averaging of the Dirichlet problem for the hyperbolic equation 247

We suppose that a boundary ∂Ω(s) is Lip–continuous and following
conditions are fulfilled

ϕ(s) ∈ D
(

4, L2(Ω(s))
)

∩
◦

H
1(Ω(s)), ψ(s) ∈

◦

H
1(Ω(s)),

f (s) ∈ L2
(

0, T ;D(4, L2(Ω(s))
)

∩
◦

H
1(Ω(s)). (7)

Moreover, let the norms

‖f (s)‖L2(Q(s)) + ‖4f (s)‖L2(Q(s)),

‖∇ϕ(s)‖ + ‖4ϕ(s)‖, ‖∇ψ(s)‖ < K0 ∀s (8)

to be bounded relatively to s. Then problem (6), as in [2], has the
unique solution such that

u(s) ∈ C
(

[0, T ];
◦

H
1(Ω(s))

)

, u
(s)
t ∈ L∞

(

0, T ;
◦

H
1(Ω(s))

)

,

4u(s) ∈ L∞
(

0, T ;L2(Ω(s))
)

, u
(s)
tt ∈ L2(Q(s)), (9)

moreover, following estimates are valid:

max
t∈[0,T ]

‖u
(s)
t (t)‖2

6 K1, max
t∈[0,T ]

‖∇u(s)(t)‖2
6 K2,

esssup
t∈(0,T )

‖∇u
(s)
t (t)‖2

6 C−1
2 K2, (10)

esssup
t∈(0,T )

‖4u(s)(t)‖2
6 K2(C1K2 + C2),

where constants K1, K2 do not depend on s ∈ N but depend only on
C1, C2, T,K0.

We describe the regularity of behaviour of domains Ω(s) when
s→ ∞ by the hypothesis of D.Cioranesku–F.Murat [4], [5]:

Hypothesis (A): let exists a sequence of real functions ws(x), s ∈
N, with following properties:

1) ws(x) ∈ H1(Ω) ∩ L∞(Ω),

2) ws(x) = 0, x ∈ F (s),

3) ws(x) → 1 weakly in H1(Ω), weakly* in L∞(Ω) and for almost
every x ∈ Ω when s→ ∞,
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4) −4ws(x) = µs(x) − γs(x) where µs, γs ∈ H−1(Ω), moreover
µs → µ strongly in H−1(Ω) when s → ∞, (γs, v)Ω = 0 for all

v ∈
◦

H 1(Ω) such that v = 0 on F (s),

herein

(u, v)Ω =

∫

Ω

u(x)v(x)dx.

Corollary [5]: under conditions 1)–4), we have

5) 0 6 µ(x) ∈ H−1(Ω) ∩ L1(Ω)that is µ(x) to be a finite positive
measure on Ω.

Remark 1. It is easy to prove [6] that conditions B1, B2, C in
monograph [7, ch.9] and in the paper [8] with the measure density
ν(x) ∈ Lr(Ω), r > n/2, formulated for the Laplace operator on
H1(Ω) are sufficient for validity of hypothesis (A) with a function
µ ∈ C(Ω̄) or µ ∈ Lr(Ω), r > n/2, accordingly and ws(x) > 0.

We denote v̂(s)(x) the prolongation on Ω of a function v(s)(x)
defined on Ω(s) by definition it by zero on F (s). We adopt some more
notations for duality relations of vector functions
~u(x, t) = (u1(x, t), . . . , un(x, t)):

〈~u,~v〉(s) =

∫

Q(s)

~u(x, t) · ~v(x, t)dxdt, 〈~u,~v〉 =

∫

Q

~u(x, t) · ~v(x, t)dxdt,

and the same notations for scalar ones and denote

Ns(t) = ‖∇u(s)(·, t)‖.

We multiply equation (6) by a function wsv, v ∈ C∞

0 (Q), and
integrate overQ(s). Then we obtain the integral identity for prolongations

〈f̂ (s), wsv〉 = 〈û
(s)
tt , wsv〉 − 〈a0(N

2
s )û(s), ws4v〉−

2〈a0(N
2
s )û(s)∇v,∇ws〉 + 〈a0(N

2
s )û(s)v, µs〉. (11)

We suppose additionally to (8) in order to average (11) that
following convergences as s→ ∞ take place

f̂ (s) −→ f weakly in L2(Q),

ϕ̂(s) −→ ϕ, ψ̂(s) −→ ψ both weakly in
◦

H
1(Ω). (12)
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We take into account as (8), (10) that for û(s) such estimates are
valid:

max
t∈[0,T ]

‖û
(s)
t (t)‖2

6 K1, max
t∈[0,T ]

‖∇û(s)(t)‖2
6 K2, (10′)

esssup
t∈(0,T )

‖∇û
(s)
t (t)‖2

6 C−1
2 K2,

‖û
(s)
tt ‖L2(Q) 6 C−2

2 [TK2(C1K2 + C2)]
1/2 +K0.

Moreover, some more estimate follows from (8), (10)

max
t∈[0,T ]

‖û(s)(t)‖2
6 K3, (13)

where K3 depends only on C1, C2, T,K0. Therefore we can choose
from N such sequence denoted {s} that following convergences take
place:

û(s) −→ u weakly in H1(Q) and strongly in L2(Q),

∇û
(s)
t −→ ∇ut weakly* in L∞(0, T ;L2(Ω)), (14)

û
(s)
tt −→ utt weakly in L2(Q).

We have here some more convergence

û(s) −→ u weakly* in W 1
∞

(0, T ;
◦

H
1(Ω)). (15)

It follows from (15), (14) the convergence [5]

û(s) −→ u in C1
sc([0, T ];

◦

H
1(Ω)), (16)

where we denote Csc([0, T ];V ) the space of scalar continuous functions
from [0, T ] into Banach space V [9, ch.3, 8.4].
Hence a limit function u(x, t) satisfies initial conditions

u |t=0 = ϕ, ut|t=0 = ψ. (17)

Let to ascertain (this is only a hypothesis for the present which
has to be proved) that the presence of (14) imply convergence

Ns(t) −→ N(t) strongly in C([0, T ]). (18)

Then using (14), (18) and properties 3), 4) of functions ws we pass
to the limit in integral identity (11) over the chosen sequence {s}. As
the result we obtain identity

〈f, v〉 = 〈utt, v〉 − 〈a0(N
2)u,4v〉+ 〈a0(N

2)uv, µ〉,
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or the same in differential form taking into account (17):

utt(x, t) − a0(N
2(t))4u(x, t) + a0(N

2(t))µ(x)u(x, t) = f(x, t),

(x, t) ∈ Q,

u(·, t)|∂Ω = 0, t ∈ (0, T ), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), (19)

x ∈ Ω.

It is clear from equation (19) that the following definition is probable

N2(t) = ‖u(·, t)‖2
V := ‖∇u(·, t)‖2 + ‖u(·, t)‖2

L2(Ω;µdx),

V =
◦

H
1(Ω) ∩ L2(Ω;µdx). (20)

Remark 2. In the case of conditions of remark 1 we have either
µ ∈ C(Ω̄) or µ ∈ L∞(Ω) if ν(x) ∈ L∞(Ω). Then

L2(Ω) ⊂ L2(Ω;µdx), V =
◦

H 1(Ω).
In this paper, we prove that assumptions (18), (20) are right and

problem (19) really is the limit one for problem (6) in the sense that
for solutions (6) convergences (14), (15) are valid to a limit function
u(x, t) being a solution of problem (19), (20). More precisely, the
following assertion is valid.

Theorem 1. Let us suppose that the boundary ∂Ω(s) is Lip-continuous
and hypothesis (A) with a limit function µ(x) ∈ L2(Ω) and conditions
(7), (8) are fulfiled. Let convergences (12) and following

‖f̂ (s) − f‖L1(0,T ;L2(Ω)) −→ 0, ‖∇(ϕ̂(s) − wsϕ)‖ −→ 0 (21)

have place as s→ ∞. Let also suppose to exist a solution of problem
(19), (20) having following properties

u ∈ C
(

[0, T ];
◦

W
1
n(Ω) ∩ L∞(Ω)

)

,

∇u ∈ L1(0, T ;L∞(Ω)), 4u ∈ L∞(0, T ;L2(Ω)),

∂2u =
(

∂2u/∂xi∂xj : i, j = 1, n
)

∈ L1 (0, T ;Ln(Ω)) , (22)

ut ∈ L∞(0, T ;
◦

H
1(Ω) ∩ L∞(Ω)), ∇ut ∈ L1(0, T ;Ln(Ω)).

Then for the complete sequence s ∈ N convergences (14)–(16), (18),
(20) and additional following ones

∇û(s) −→ ∇u in Csc([0, T ];L2(Ω)),
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û
(s)
t −→ ut strongly in C([0, T ];L2(Ω)) (23)

have place to the solution of problem (19), (20) which is unique in
class (22).

Remark 3. In order to fulfil convergence condition (21) to ϕ̂(s)

it is sufficient [5] by hypothesis (A) function ϕ(s) to be the solution
of problem

−4ϕ(s)(x) = g(s)(x), x ∈ Ω(s), ϕ(s) ∈
◦

H
1(Ω(s)), g(s) ∈ H−1(Ω(s)),

moreover, to exist a limit

lim
s→∞

‖ĝ(s) − g‖H−1(Ω) = 0

but the limit in the sense of (12) function ϕ being then the unique
solution of problem

−4ϕ(x) + µ(x)ϕ(x) = g(x), x ∈ Ω, ϕ ∈ V,

to belong still to C(Ω̄).
Proof of this theorem has been published [10].
Thus, validity of the assertion of theorem 1 depends on existence

of a solution to problem (19), (20) having properties (22). We consider
this problem separately denoting

Ju(t) = −C1 [(∇u(·, t),∇ut(·, t))Ω + (u(·, t), ut(·, t))Ω,µ]
2 +

+(C1N
2(t) + C2)

(

‖∇ut(·, t)‖
2 + ‖ut(·, t)‖

2
µ

)

+ (24)

(C1N
2(t) + C2)

−1‖4u(·, t)− µ(·)u(·, t)‖2,

(u, v)Ω,µ =

∫

Ω

u(x)v(x)µ(x)dx, ‖u‖2
µ = (u, u)Ω,µ,

Mu(x, t) = utt(x, t) − a2
0(N

2(t))(4u(x, t) − µ(x)u(x, t)).

Lemma 1. Let a function u(x, t) be such that

u ∈ C1([0, T ];V ), utt ∈ C([0, T ];L2(Ω)),
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4u− µu ∈ C1([0, T ];L2(Ω)), (25)

then we have Ju ∈ C1([0, T ]) and

dJu(t)

dt
= C1

dN2(t)

dt
(Mu(·, t),4u(·, t)− µ(·)u(·, t))Ω −

−2(C1N
2(t) + C2)(Mu(·, t),4ut(·, t) − µ(·)ut(·, t))Ω, (26)

moreover,

Ju(t) > C2‖ut(·, t)‖
2
V + (C1N

2(t) + C2)
−1‖4u(·, t) − µ(·, t)‖2,

t ∈ [0, T ]. (27)

Lemma 2. Let u(x, t) be a solution satisfying inclusions (25) of
problem (19), (20) with right hand sides such that

f ∈ L2(0, T ;V ), 4f − µf ∈ L2(Q), (28)

ψ ∈ V, ϕ ∈ V, 4ϕ− µϕ ∈ L2(Ω).

Then we have the estimate

max
t∈[0,T ]

Ju(t) 6 K4 (29)

and hence following estimates

max
t∈[0,T ]

N2(t) 6 K5, max
t∈[0,T ]

‖ut(·, t)‖V 6 K6,

max
t∈[0,T ]

‖4u(·, t) − µ(·)u(·, t)‖ 6 K7, (30)

where Ki, i = 4, 7 are known constants depending on (28).
The proofs of these lemmas in their basic features are similar to

Pohozhaev’s ones [2].
Next, we consider the spectral problem

−4ϕk(x) + µ(x)ϕk(x) = λkϕk(x), x ∈ Ω, ϕk ∈ V, ‖ϕk‖ = 1,

which is solvable because the energy space V ⊂ L2(Ω) compactly,
and consider the finite dimensional problem of the type (19), (20)

Mun = fn in Q, un(·, t) ∈ V n =< ϕ1, . . . , ϕn >⊂ V,



Averaging of the Dirichlet problem for the hyperbolic equation 253

un(x, 0) = ϕn(x), un
t (x, 0) = ψn(x), x ∈ Ω, n ∈ N, (31)

where fn(·, t), ϕn, ψn ∈ V n and are such that following convergences
have place as n→ ∞:

‖fn − f‖L2(Q) −→ 0, ‖ϕn − ϕ‖V −→ 0, ‖ψn − ψ‖ −→ 0, (32)

and by conditions (28), such estimates are valid uniformly on n:

‖4fn − µfn‖L2(Q) 6 K8, ‖ψ
n‖V 6 K9, ‖4ϕ

n − µϕn‖ 6 K10 ∀n.
(33)

Problem (31) has a solution un ∈ H2(0, T ;V n).
Then all conditions of lemma 2 are fulfiled for problem (31) and

hence the estimates (30) are right for un(x, t) uniformly on n ∈ N.
So we prove

Theorem 2. If ∂Ω is Lip–continuous, µ ∈ L2(Ω) and conditions (28)
are fulfiled, then problem (19), (20) has a solution u(x, t) with such
properties

u ∈ C([0, T ];V ), ut ∈ C([0, T ];L2(Ω)) ∩ L∞(0, T ;V ),

4u− µu ∈ L∞(0, T ;L2(Ω)), utt ∈ L2(Q), (34)

moreover, such convergence has place as n ∈ N, n→ ∞

max
t∈[0,T ]

‖un(·, t) − u(·, t)‖V + max
t∈[0,T ]

‖un
t (·, t) − ut(·, t)‖ −→ 0.

Now we are able to formulate some conditions to raise smoothness
of a solution to problem (19), (20).

Theorem 3. Let k = 1, 2, . . . , n = dimΩ and

1) n = 4k − 2, 4k − 1 and such additional conditions are fulfiled:

∂Ω ∈ C2m+1, µ ∈ W 2m−1
∞

(Ω), m = 1, 2, . . . ,

ϕ ∈ H2m+1(Ω), ψ ∈ H2m(Ω), f ∈ L2(0, T ;H2m(Ω)),

and boundary ones for them:

(−4+µI)`ϕ ∈
◦

H
1(Ω)(` = 0, 1, . . . , m), (−4+µI)rψ ∈

◦

H
1(Ω),

(−4 + µI)rf ∈ L2(0, T ;
◦

H
1(Ω))(r = 0, 1, . . . , m− 1),
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then problem (19),(20) has a solution u(x, t) such that following
inclusions take place:

u ∈ L∞(0, T ;H2m+1(Ω)), ut ∈ L∞(0, T ;H2m(Ω)),

utt ∈ L2(0, T ;H2m−1(Ω)),

which are sufficient for all inclusions (22) by

m >
n

4
;

2) n = 4k, 4k + 1 and following conditions are fulfiled:

∂Ω ∈ C2(m+1), µ ∈ W 2m
∞

(Ω), m = 0, 1, 2, . . . ,

ϕ ∈ H2(m+1)(Ω), ψ ∈ H2m+1(Ω), f ∈ L2(0, T ;H2m+1(Ω)),

(−4 + µI)`ϕ ∈
◦

H
1(Ω),

(−4 + µI)`ψ ∈
◦

H
1(Ω), (−4 + µI)`f ∈ L2(0, T ;

◦

H
1(Ω)),

` = 0, 1, . . . , m,

then a solution u(x, t) exists to problem (19), (20) which

u ∈ L∞(0, T ;H2(m+1)(Ω)), ut ∈ L∞(0, T ;H2m+1(Ω)),

utt ∈ L2(0, T ;H2m(Ω)),

and these inclusions are sufficient for all ones of (22) by

2m + 1 >
n

2
.
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