© 2008. A.Val. Antoniouk

C^{∞}-REGULARITY OF NON-LIPSCHITZ HEAT SEMIGROUPS ON NONCOMPACT RIEMANNIAN MANIFOLDS

Abstract

We obtain the applications of approach $[2,5,6]$ to the high order regularity of solutions to the parabolic Cauchy problem with globally non-Lipschitz coefficients growing at the infinity of a noncompact manifold.

In comparison to [2], where the semigroup properties were studied by application of nonlinear estimates on variations with use of local arguments of [11], i.e. for manifolds with the C^{2} metric distance function, the developed below approach works for the general noncompact manifold with possible non-unique geodesics between distant points.

Keywords and phrases: heat parabolic equations, nonlinear diffusions on manifolds, regular properties
MSC (2000): $35 \mathrm{~K} 05,47 \mathrm{~J} 20,53 \mathrm{~B} 21,58 \mathrm{~J} 35,60 \mathrm{H} 07,60 \mathrm{H} 10,60 \mathrm{H} 30$

1.Introduction.

Below we discuss C^{∞}-regularity with respect to the space parameter x for solutions of the second order heat parabolic equation

$$
\begin{array}{r}
\frac{\partial u(t, x)}{\partial t}=\left\{\frac{1}{2} \sum_{\sigma=1}^{d}\left(\left\langle A_{\sigma}(x), \frac{\partial}{\partial x}\right\rangle\right)^{2}+\left\langle A_{0}(x), \frac{\partial}{\partial x}\right\rangle\right\} u(t, x), \tag{1}\\
(t, x) \in \mathbb{R}_{+} \times M
\end{array}
$$

with initial data $u(0, x)=f(x)$. The nonlinear, growing on the infinity coefficients A_{σ}, A_{0} represent C^{∞} smooth vector fields on the noncompact oriented C^{∞}-smooth complete connected Riemannian manifold without boundary M.

To obtain C^{∞}-regularity properties of solutions to heat equations (1) in the spaces of continuously differentiable functions we use that the solution to (1) can be represented

$$
\begin{equation*}
u(t, x)=\left(P_{t} f\right)(x)=\mathbf{E} f\left(y_{t}^{x}\right) \tag{2}
\end{equation*}
$$

as a mean \mathbf{E} of solution to the heat diffusion equation in the Ito-
Research is partially supported by grants of National Committee on Science and Technolopgy Ukraine

Stratonovich form

$$
\begin{equation*}
\delta y_{t}^{x}=A_{0}\left(y_{t}^{x}\right) d t+\sum_{\sigma=1}^{d} A_{\sigma}\left(y_{t}^{x}\right) \delta W_{t}^{\sigma}, \quad y_{0}^{x}=x \tag{3}
\end{equation*}
$$

Here W^{σ} denote the independent Wiener processes on \mathbb{R}^{d}, the mean \mathbf{E} is taken with respect to the corresponding Wiener measure on space $\Omega=C_{0}\left([0, \infty), \mathbb{R}^{d}\right)$. Under solutions to (3) it is understood a continuous adapted integrable random process $\mathbb{R}_{+} \times M \ni(t, x) \rightarrow$ $y_{t}^{x} \in M$ such that $\forall f \in C_{0}^{\infty}(M)$

$$
\begin{equation*}
f\left(y_{t}^{x}\right)=f(x)+\int_{0}^{t}\left(A_{0} f\right)\left(y_{s}^{x}\right) d s+\sum_{\sigma=1}^{d} \int_{0}^{t}\left(A_{\sigma} f\right)\left(y_{s}^{x}\right) \delta W_{s}^{\sigma} . \tag{4}
\end{equation*}
$$

Since $f\left(y_{t}^{x}\right)$ and (A.f) $\left(y_{t}^{x}\right)$ are \mathbb{R}^{1}-valued process, (4) represents Stratonovich equation on real line \mathbb{R}^{1}.

The approach of diffusion processes relates the C^{∞} properties of semigroup P_{t} with the regularity properties of process y_{t}^{x} since

1. from representation (2) and majorant theorem it is evident that for continuous with respect to the initial data process $x \rightarrow y_{t}^{x}$ from $f \in C_{b}(M)$ follows that the solution $u(t, x)=\left(P_{t} f\right)(x)$ to (1) is also a continuous bounded function $u(t, x) \in C_{b}(M)$ for all $t>0$
and
2. due to (2) the derivatives of solution $u(t, x)$ with respect to the space parameter $x \in M$ can be directly expressed via the derivatives of initial function f and derivatives of process y_{t}^{x} with respect to the initial data x.

The already known approaches to the high order regularity of solutions to (1), e.g. [8] and references within, were based on the interpretation of the high order derivatives of process $x \rightarrow y_{t}^{x}$ with respect to the initial data x as elements $y_{t}^{(n)}(x)=T^{(n)} y_{t}^{x}$ of the high order tangent bundles $T^{n} M$. However, due to the complicate structure of the high order tangent bundles, the actual study of the high order regularity of process y_{t}^{x} and its semigroup P_{t} was conducted in the local coordinate vicinities of manifold, leading to the globally Lipschitz assumptions on the coefficients A_{σ}, A_{0} and boundedness of curvature and all their derivatives. In comparison to
the case of linear manifold $M=\mathbb{R}^{n}$, when under some monotone assumptions on the coefficients of diffusion equation $[10,12]$ it is possible to have a nonlinear growth of coefficients on the infinity, the elaborated approach to the C^{∞}-regularity of diffusions on noncompact manifolds has not permitted to single out some kind of monotone conditions.

In $[2,3]$ we noticed that, since, evolving in time, process y_{t}^{x} travels through different coordinate vicinities of manifold, its first order derivative with respect to the initial data $\frac{\partial y_{t}^{x}}{\partial x}=\left\{\frac{\partial\left(y_{t}^{x}\right)^{m}}{\partial x^{k}}\right\}_{m, k=1}^{\operatorname{dim} M}$ represents a covector field with respect to the local coordinates $\left(x^{k}\right)$ in the vicinity of initial point x and becomes a vector field with respect to the local coordinates $\left(y^{m}\right)$ in the vicinity where now travels process y_{t}^{x}, i.e. $\frac{\partial y_{t}^{x}}{\partial x} \in T_{y_{t}^{x}}^{1,0} M \otimes T_{x}^{0,1} M$.

To preserve this tensorial invariance property with respect to the coordinate systems $\left(y^{m}\right)$ in the image of flow $x \rightarrow y_{t}^{x}$, the new high order variations $\left\{\mathbb{W}^{(n)} y_{t}^{x}\right\}$ of process y_{t}^{x} were introduced

$$
\begin{align*}
& 1^{s t} \text { variation. } \quad\left\{\mathbb{\nabla}^{(1)} y_{t}^{x}\right\}_{k}^{m}=\frac{\partial\left(y_{t}^{x}\right)^{m}}{\partial x^{k}}, \\
& \text { high variations. } \quad\left\{\mathbb{V}^{(n+1)} y_{t}^{x}\right\}_{k, j_{1}, \ldots, j_{n}}^{m}= \tag{5}\\
& =\nabla_{k}^{x}\left\{\mathbb{W}^{(n)} y_{t}^{x}\right\}_{j_{1}, \ldots, j_{n}}^{m}+\Gamma_{p}^{m}{ }_{q}^{m}\left(y_{t}^{x}\right)\left\{\mathbb{W}^{(n)} y_{t}^{x}\right\}_{j_{1}, \ldots, j_{n}}^{p} \frac{\partial\left(y_{t}^{x}\right)^{q}}{\partial x^{k}},
\end{align*}
$$

where $\nabla_{k}^{x}\left\{\mathbb{\nabla}^{(n)} y_{t}^{x}\right\}_{j_{1}, \ldots, j_{n}}^{m}$ denotes a classical covariant derivative on variable x

$$
\begin{equation*}
\nabla_{k}^{x}\left\{\mathbb{\nabla}^{(n)} y_{t}^{x}\right\}_{\gamma}^{m}=\partial_{k}^{x}\left\{\mathbb{\nabla}^{(n)} y_{t}^{x}\right\}_{\gamma}^{m}-\sum_{j \in \gamma} \Gamma_{k}{ }_{j}(x)\left\{\mathbb{\nabla}^{(n)} y_{t}^{x}\right\}_{\left.\gamma\right|_{j=h}}^{m} \tag{6}
\end{equation*}
$$

and $\left\{\mathbb{\nabla}^{(n)} y_{t}^{x}\right\}_{\left.\gamma\right|_{j=h}}^{m}$ means substitution of index j in multi-index $\gamma=$ $\left\{j_{1}, \ldots, j_{n}\right\}$ by h. Above indexes m, p, q correspond to the coordinates in the vicinities, where travels process y_{t}^{x}, indexes k, j, h to the coordinate vicinities of initial data x.

In comparison to the approach of high order tangent bundles and due to the presence of additional connection term $\Gamma\left(y_{t}^{x}\right)$ in (5), the $n^{\text {th }}$ order variation now represents a vector field with respect to
variable y_{t}^{x} and $n^{t h}$ order covariant field with respect to variable x

$$
\mathbb{V}^{(n)} y_{t}^{x}=\left\{\mathbb{W}_{\gamma}\left(y_{t}^{x}\right)^{m}\right\}_{|\gamma|=n} \in T_{y_{t}^{x}} M \otimes\left(T_{x}^{*} M\right)^{\otimes n}
$$

i.e. it is understood as a tensor and does not belong to the high order tangent bundle $T^{(n)} M$.

In this article we are going to apply results of [5, 6] to the high order regularity of semigroup. The main tool for research gives the following relation between high order covariant derivatives of semigroup and initial function [2]

$$
\begin{equation*}
\nabla_{x}^{(n)} P_{t} f(x)=\sum_{j_{1}+\ldots+j_{\ell}=n, \ell \geq 1} \mathbf{E}\left\langle\nabla_{y_{t}^{x}}^{(\ell)} f\left(y_{t}^{x}\right), \mathbb{W}^{\left(j_{1}\right)} y_{t}^{x} \otimes \ldots \otimes \mathbb{W}^{\left(j_{\ell}\right)} y_{t}^{x}\right\rangle_{T_{y_{t}^{0}}^{0, \ell} M} \tag{7}
\end{equation*}
$$

where arise variations $\mathbb{\nabla}_{x}^{(n)} y_{t}^{x}$.
Unfortunately, the approach of nonlinear estimates on variations [2] works only for manifolds with smooth Riemannian structures, in particular, when the metric distance function is twice continuously differentiable. It is not so for many C^{∞} manifolds with non-unique geodesics between distant points, therefore the approach of [2] should be modified.

The main result is the following. Suppose that the coefficients of diffusion equation (3) and curvature of manifolds fulfill the following conditions:

- coercitivity: $\exists o \in M$ such that $\forall C \in \mathbb{R}_{+} \exists K_{C} \in \mathbb{R}^{1}$ such that $\forall x \in M$

$$
\begin{equation*}
\left\langle\widetilde{A_{0}}(x), \nabla^{x} \rho^{2}(o, x)\right\rangle+C \sum_{\sigma=1}^{d}\left\|A_{\sigma}(x)\right\|^{2} \leq K_{C}\left(1+\rho^{2}(o, x)\right), \tag{8}
\end{equation*}
$$

where $\rho(x, o)$ denotes the shortest geodesic distance between points $x, o \in M$;

- dissipativity: $\forall C, C^{\prime} \in \mathbb{R}_{+} \exists K_{C} \in \mathbb{R}^{1}$ such that $\forall x \in M$,

$$
\begin{array}{r}
\forall h \in T_{x} M \quad\left\langle\nabla \widetilde{A_{0}}(x)[h], h\right\rangle+C \sum_{\sigma=1}^{d}\left\|\nabla A_{\sigma}(x)[h]\right\|^{2}- \\
-C^{\prime} \sum_{\sigma=1}^{d}\left\langle R_{x}\left(A_{\sigma}(x), h\right) A_{\sigma}(x), h\right\rangle \leq K_{C}\|h\|^{2} \tag{9}
\end{array}
$$

where $\widetilde{A_{0}}=A_{0}+\frac{1}{2} \sum_{\sigma=1}^{d} \nabla_{A_{\sigma}} A_{\sigma}$ and

$$
[R(A, B) C]^{m}=R_{i}{ }_{j k}^{m} A^{i} B^{j} C^{k}
$$

denotes curvature operator, related with curvature tensor

$$
R_{i}{ }_{j}^{m}=\frac{\partial \Gamma_{i}{ }_{j}^{m}}{\partial x^{k}}-\frac{\partial \Gamma_{i}{ }_{k}^{m}}{\partial x^{j}}+\Gamma_{i}^{\ell}{ }_{j} \Gamma_{\ell}{ }_{k}^{m}-\Gamma_{i}{ }_{k} \Gamma_{\ell}{ }_{\ell}^{m} .
$$

Due to the presence of additional curvature term conditions (8)(9) generalize the classical dissipativity and coercitivity conditions $[10,12]$ from the linear Euclidean space to manifold and represent a kind of monotonicity condition for diffusion processes.

- nonlinear behaviour of coefficients and curvature: for any n there are constants $\mathbf{k}_{\text {. }}$ such that for all $j=1, . ., n$ and $\forall x \in M$

$$
\begin{align*}
& \left\|(\nabla)^{j} \widetilde{A_{0}}(x)\right\| \leq(1+\rho(x, o))^{\mathbf{k}_{0}}, \\
& \left\|(\nabla)^{j} A_{\alpha}(x)\right\| \leq(1+\rho(x, o))^{\mathbf{k}_{\alpha}}, \tag{10}\\
& \left\|(\nabla)^{j} R(x)\right\| \leq(1+\rho(x, o))^{\mathbf{k}_{R}} .
\end{align*}
$$

Let $\vec{q}_{\mathbf{k}}=\left(q_{0}, q_{1}, \ldots, q_{n}\right), q_{i} \geq 1$ be a family of monotone functions on \mathbb{R}_{+}of polynomial behaviour, that fulfill hierarchy

$$
\begin{equation*}
\forall i \geq 1 \quad q_{i}(b)(1+b)^{\mathbf{k} / 2} \leq q_{i+1}(b) \quad \forall b \geq 0 \tag{11}
\end{equation*}
$$

related with some parameter \mathbf{k}.
Denote by $C_{\vec{q}(\mathbf{k})}^{n}(M)$ the space of n-times continuously covariantly differentiable functions on M, equipped with a norm

$$
\begin{equation*}
\|f\|_{C_{\bar{q}(\mathbf{k})}^{n}}(M)=\max _{i=0, \ldots, n} \sup _{x \in M} \frac{\left\|\left(\nabla^{x}\right)^{i} f(x)\right\|}{q_{i}\left(\rho^{2}(x, o)\right)} . \tag{12}
\end{equation*}
$$

Theorem 1. Under conditions (8)-(10) for any $n \in \mathbb{N}$ there is \mathbf{k} such that the scale of spaces $C_{\vec{q}(\mathbf{k})}^{n}(M)$ is preserved under the action of semigroup

$$
\forall t \geq 0 \quad P_{t}: C_{\vec{q} \mathbf{(k)}}^{n}(M) \rightarrow C_{\vec{q}(\mathbf{k})}^{n}(M)
$$

and there are constants K, M such that

$$
\begin{equation*}
\forall f \in C_{\vec{q}}^{n}(M) \quad\left\|P_{t} f\right\|_{C_{\vec{q}}^{n}(M)} \leq K e^{M t}\|f\|_{C_{\vec{q}}^{n}(M)} \tag{13}
\end{equation*}
$$

Proof is conducted in the following Sections.

2. Preliminary study of C^{∞}-regularity of process y_{t}^{x} with respect to the initial data x.

Since by (7) the existence of the high order derivatives of semigroup P_{t} is related with C^{∞}-regularity of process y_{t}^{x} with respect to x, we first discuss the necessary regular properties of variations.

Let us introduce a necessary definition for the parallel transport h, y_{t}^{h} $\boldsymbol{\mathbb { T }}{ }_{a}^{b}$ of high order variations. It is specially designed in order to preserve the tensorial transformation law of $T_{y_{t}^{h(z)}}^{1,0} M \otimes T_{h(z)}^{0, n} M$-tensors in the both domain and image of diffusion flow $x \rightarrow y_{t}^{x}$, when such tensors move along random path $[a, b] \ni z \rightarrow\left(h(z), y_{t}^{h(z)}\right) \in M \times M$.
Definition 2. The parallel transport of tensor $u_{\left(h(a), y_{t}^{h(a)}\right)} \in T_{h(a)}^{p, q} M \otimes$ $T_{y_{t}^{h(a)}}^{r, s} M$ from point $\left(h(a), y_{t}^{h(a)}\right)$ along path $\left(h(\cdot), y_{t}^{h(\cdot)}\right) \in \operatorname{Lip}([a, b], M)$ represents a $T_{h(z)}^{p, q} M \otimes T_{y_{t}^{h(z)}}^{r, s} M$-tensor at each point $\left(h(z), y_{t}^{h(z)}\right), z \in$ $[a, b]$ of this path. It is denoted by $\underset{\left(h(a), y_{t}^{h(a)}\right)}{h_{1} y_{t}^{h}\left(h(z), y_{t}^{h(z)}\right)} u_{\left(h(a), y_{t}^{h(a)}\right)}=\Psi(z)$ and for its absolute derivative

$$
\begin{gathered}
\frac{\mathbb{D}}{\mathbb{D} z} \Psi_{(j / \beta)}^{(i / \alpha)}(z) \stackrel{\text { def }}{=} \frac{\partial}{\partial z} \Psi_{(j / \beta)}^{(i / \alpha)}(z)+ \\
+\sum_{s=1}^{i} \Gamma_{k}^{i_{s}}(h(z)) \Psi_{(j / \beta)}^{i_{1}, \ldots, i_{s-1}, k, i_{s+1}, \ldots, i_{p} / \alpha}(z)\left[h^{\prime}(z)\right]^{\ell}- \\
-\sum_{s=1}^{j} \Gamma_{j_{s}}^{k}(h(z)) \Psi_{j_{1}, \ldots, j_{s-1}, k, j_{s+1}, ., j_{q} / \beta}^{(i / \alpha)}(z)+ \\
+\sum_{\ell=1}^{r} \Gamma_{m}^{\alpha_{\ell}}\left(y_{t}^{h(z)}\right) \Psi_{(j / \beta)}^{\left(i / \alpha_{1}, \ldots, \alpha_{\ell-1}, m, \alpha_{\ell+1}, \ldots, \alpha_{r}\right)}(z) \frac{\partial\left(y_{t}^{h(z)}\right)^{n}}{\partial h(z)^{k}}\left[h^{\prime}(z)\right]^{k}- \\
-\sum_{\ell=1}^{s} \Gamma_{\beta_{\ell} n}^{m}\left(y_{t}^{h(z)}\right) \Psi_{\left(j / \beta_{1}, \ldots, \beta_{\ell-1}, m, \beta_{\ell+1}, \ldots, \beta_{s}\right)}^{(i / \alpha)}(z) \frac{\partial\left(y_{t}^{h(z)}\right)^{n}}{\partial h(z)^{k}}\left[h^{\prime}(z)\right]^{k}
\end{gathered}
$$

the norm $\left\|\frac{\mathbb{D}}{\mathbb{D} z} \Psi(z)\right\|_{T_{h(z)}^{p, q} M \otimes T_{\substack{r, s \\ y_{t}^{h(z)}}} M=0 \text { vanishes in } L^{\infty}([a, b]) \text { for }, ~(j)}$ a.e. random $\omega \in \Omega$. Here multi-indexes $(i)=\left(i_{1}, \ldots, i_{p}\right),(j)=$ $\left(j_{1}, \ldots, j_{q}\right)$ correspond to the $T_{h(z)}^{p, q}$-tensorness of $\Psi(z)$, correspondingly $(\alpha)=\left(\alpha_{1}, \ldots, \alpha_{r}\right),(\beta)=\left(\beta_{1}, \ldots, \beta_{s}\right)$ to $T_{y_{t}^{h(z)}}^{r, s}$-tensorness of $\Psi(z)$ in the domain and image of mapping $x \rightarrow y_{t}^{x}$.

Remark that the first two lines in the definition of the absolute derivative $\frac{\mathbb{D}}{\mathbb{D} z} \Psi_{(j / \beta)}^{(i / \alpha)}(z)$ along path $\left\{h(z), y_{t}^{h(z)}\right\}_{z \in[a, b]}$ correspond to the classical absolute derivative $\frac{D}{D z} \Psi_{(j / \beta)}^{(i / \alpha)}(z)$ along path $\{h(z)\}_{z \in[a, b]}$. The remaining two lines make the resulting expression to become the invariantly defined tensor with respect to the coordinate transformations in vicinities, where travels process $\left\{y_{t}^{h(z)}\right\}_{z \in[a, b]}$.

Using the autoparallel property of the Riemannian connection

$$
\begin{equation*}
\partial_{k} g_{i j}(x)=\Gamma_{k}^{\ell}{ }_{i}(x) g_{\ell j}(x)+\Gamma_{k}^{\ell}{ }_{j}(x) g_{i \ell}(x), \tag{14}
\end{equation*}
$$

it is easy to check that the derivative of scalar product of $T_{x}^{p, q} M \otimes$ $T_{y_{t}^{t}}^{r, s} M$-tensors can be expressed in terms of the new type absolute derivatives

$$
\begin{align*}
& \frac{d}{d z}\langle u(h(z)), v(h(z))\rangle_{T_{h(z)}^{p, q} M \otimes T_{\substack{h(z) \\
y_{t}, s}} M}= \\
& \quad=\left\langle\frac{\mathbb{D}}{\mathbb{D} z} u(h(z)), v(h(z))\right\rangle_{T_{h(z)}^{p, q} M \otimes T_{\substack{r, h \\
y_{t}(z)}}^{r} M}+ \\
& \quad+\left\langle u(h(z)), \frac{\mathbb{D}}{\mathbb{D} z} v(h(z))\right\rangle_{T_{h(z)}^{p, q} M \otimes T_{\substack{h, s \\
y_{t}^{h(z)}}} M} \tag{15}
\end{align*}
$$

and parallel transport operator $\stackrel{h, y_{t}^{h}}{\mathbb{T}}$ constitutes a group $\forall c, d, e \in$ $[a, b] \stackrel{h, y_{t}^{h}}{\boldsymbol{T}}{ }_{d}{ }_{d}^{h, y_{t}^{h}}{ }_{c}^{d}=\stackrel{H}{\boldsymbol{T}}_{c}^{h, y_{t}^{h}}{ }_{c}$.

Then, taking any mixed tensor $\psi_{h(a)} \in T_{h(a)}^{p, q} \otimes T_{y_{t}}^{r, s}$, at point $\left(h(a), y_{t}^{h(a)}\right)$ we have
where we used that the derivative of parallel transport vanishes $\frac{I D}{\mathbb{D} z} \stackrel{h, y_{t}^{h}}{\mathbb{T}}{ }_{a}^{z} \psi_{h(a)}=0$.

Integrating on variable $z \in[a, b]$ we obtain

$$
<\psi_{h(a)}, \int_{a}^{b} \stackrel{h, y_{t}^{h}}{\boldsymbol{T}_{z}^{a}}\left[\frac{\mathbb{D}}{\mathbb{D} z} u_{h(z)}\right] d z>=\int_{a}^{b} \frac{d}{d z}<\psi_{h(a)}, \stackrel{h, \boldsymbol{T}_{t}^{h}}{\mathbb{T}_{z}} u_{h(z)}>d z=
$$

Since $\psi_{h(a)}$ was arbitrary, this implies the invariant formula for the increment of mixed tensors along Lipschitz paths
and, in particular, recovers a sense of the new type mixed absolute derivative of $T_{h}^{p, q} \otimes T_{y_{t}^{h}}^{r, s}$-tensors

$$
\begin{align*}
& \frac{d}{d z}{\stackrel{y}{\boldsymbol{T}} \boldsymbol{y}_{t}^{h}}_{{ }_{z}}^{a} u_{h(z)}=\stackrel{h, y_{t}^{h}}{\mathbb{T}_{a}^{a}}{ }_{z}^{a}\left[\frac{\mathbb{D} u_{h(z)}}{\mathbb{D} z}\right] \quad \text { or } \tag{17}
\end{align*}
$$

Therefore, since the high order variations $\mathbb{W}^{(n)} y_{t}^{x}$ represent a particular case of $T_{x}^{0, n} \otimes T_{y_{t}^{x}}^{1,0}$-tensors, they should be related by similar to (16) formulas. To find the sufficient monotone conditions on the existence of the high order derivatives $\mathbb{W}^{(n)} y_{t}^{x}$ of process $x \rightarrow y_{t}^{x}$ we first construct the solutions $y_{t, x}^{(n)}$ of the associated with (3) variational system and then verify that they represent the high order \mathbb{Z}-derivatives: $y_{t, x}^{(n)}=\mathbb{\nabla}^{(n)} y_{t}^{x}, \quad \forall n \in \mathbb{N}$.

The main result about the C^{∞}-regularity of process y_{t}^{x} follows. Here we also precise the influence of nonlinearity parameter \mathbf{k} (10) on the growth of high order derivatives.

Lemma 3. Under the conditions of Theorem 1 the new type variations are related by a.e. integral formulas $\forall f \in C_{0}^{\infty}(M), \forall n \in \mathbb{N}$

$$
\begin{align*}
& f\left(y_{t}^{h(b)}\right)-f\left(y_{t}^{h(a)}\right)=\int_{a}^{b}<\nabla f\left(y_{t}^{h(z)}\right), \mathbb{\nabla} y_{t}^{h(z)}\left[h^{\prime}(z)\right]>_{T_{y_{t}(z)}} d z, \tag{18}\\
& \mathbb{Z}^{(n)} y_{t}^{h(b)}-{\stackrel{h \boldsymbol{T}_{t}^{h}}{\boldsymbol{T}}}_{a}^{b}\left[\mathbb{\nabla}^{(n)} y_{t}^{h(a)}\right]=\int_{a}^{b}{\stackrel{h, y_{t}^{h}}{\mathbb{T}}}_{z}^{b}\left[\left[\mathbb{\nabla}^{(n+1)} y_{t}^{h(z)}\right]\left[h^{\prime}(z)\right]\right] d z \tag{19}
\end{align*}
$$

for any Lipschitz continuous path $h \in \operatorname{Lip}([a, b], M)$.
Moreover, they fulfill estimates

$$
\begin{equation*}
\forall n \in \mathbb{N} \exists M_{n} \quad \mathbf{E}\left\|\mathbb{\nabla}^{(n)} y_{t}^{x}\right\|^{2 q} \leq e^{2 q M_{n} t}\left(1+\rho^{2}(x, o)\right)^{q(n-1) \mathbf{k}} \tag{20}
\end{equation*}
$$

Remark that estimate (20) actually replaces the tool of nonlinear estimate on variations, discussed e.g. in [2], for manifolds with not everywhere C^{2}-smooth square of metric distance function $\rho^{2}(x, z)$, $(x, z) \in M \times M$.
Proof. First note that under conditions of Theorem 1 there is a unique strong solution y_{t}^{x} to equation (3), which fulfills estimates on the boundedness and continuity: $\exists M \forall q \geq 1$

$$
\begin{array}{ll}
{[5, \text { Th. } 5]:} & \mathbf{E}\left(1+\rho^{2}\left(y_{t}^{x}, o\right)\right)^{q} \leq e^{M q t}\left(1+\rho^{2}(x, o)\right)^{q}, \\
{[6, \text { Th.6]: }} & \mathbf{E} \rho^{2 q}\left(y_{t}^{x}, y_{t}^{z}\right) \leq e^{M q t} \rho^{2 q}(x, z) . \tag{21}
\end{array}
$$

Moreover, relation (18) was proved in [6, Th.8].
It remains to demonstrate (19) and estimate (20). Remark that estimate (20) for $i=1$ gives an alternative proof of [6, Th.7].

Recall that the differential equations on variations have form $[2$, Th.9]

$$
\begin{equation*}
\delta\left(\left[\mathbb{\nabla} y_{t}^{x}\right]_{\gamma}^{m}\right)=-\Gamma_{p}^{m}\left(y_{t}^{x}\right)\left[\mathbb{\nabla} y_{t}^{x}\right]_{\gamma}^{p} \delta y^{q}+M_{\gamma}{ }^{m} \delta W^{\alpha}+N_{\gamma}^{m} d t \tag{22}
\end{equation*}
$$

with coefficients $M_{\gamma}{ }^{m}{ }_{\alpha}, N_{\gamma}^{m}$, determined by

1. recurrence base for $|\gamma|=1, \gamma=\{k\}$:

$$
\begin{equation*}
M_{k \alpha}^{m}=\nabla_{\ell} A_{\alpha}^{m}\left(y_{t}^{x}\right) \mathbb{\nabla}_{k} y^{\ell}, \quad N_{k}^{m}=\nabla_{\ell} A_{0}^{m}\left(y_{t}^{x}\right) \mathbb{\nabla}_{k} y^{\ell} \tag{23}
\end{equation*}
$$

2. recurrence step

$$
\begin{gather*}
M_{\gamma \cup\{k\} \alpha}^{m}=\mathbb{\nabla}_{k} M_{\gamma \alpha}^{m}+R_{p \ell q}^{m}\left(\mathbb{\nabla}_{\gamma} y^{p}\right)\left(\mathbb{W}_{k} y^{\ell}\right) A_{\alpha}^{q}, \tag{24}\\
N_{\gamma \cup\{k\}}^{m}=\mathbb{\nabla}_{k} N_{\gamma}^{m}+R_{p \ell q}^{m}\left(\mathbb{\nabla}_{\gamma} y^{p}\right)\left(\mathbb{\mathbb { }}_{k} y^{\ell}\right) A_{0}^{q} . \tag{25}
\end{gather*}
$$

The unique strong solution of variational system (22) can be constructed either by gluing together the solutions of variational equations, localized to the local coordinate vicinities of $U \subset M$ on the random time intervals of entering and leaving such vicinities, or with the use of monotone approximations of system (22), similar to [1].

Taking the differential of norm of variational process we have [2, Lemma 10]

$$
\begin{gathered}
d\left\|\mathbb{W}^{(i)} y_{t}^{x}\right\|^{2}=g^{\gamma \varepsilon}(x)\left\{g_{m n}\left(\mathbb{W}_{\gamma} y^{m} M_{\varepsilon}{ }^{n}{ }_{\alpha}+\mathbb{W}_{\varepsilon} y^{n} M_{\gamma}{ }^{m}{ }_{\alpha}\right) d W^{\alpha}+\right. \\
+g_{m n}\left(\mathbb{W}_{\gamma} y^{m} N_{\varepsilon}^{n}+\mathbb{\nabla}_{\varepsilon} y^{n} N_{\gamma}^{m}+M_{\gamma}{ }_{\alpha}{ }_{\alpha} M_{\varepsilon}{ }^{n}{ }_{\alpha}\right) d t+
\end{gathered}
$$

$$
\begin{equation*}
\left.+\frac{1}{2} g_{m n}\left(\mathbb{W}_{\gamma} y^{m} P_{\varepsilon}^{n}+\mathbb{W}_{\varepsilon} y^{n} P_{\gamma}^{m}\right) d t\right\} \tag{26}
\end{equation*}
$$

with $|\gamma|=|\varepsilon|=i$ and expressions P_{γ}^{m} are recurrently defined by

$$
\begin{gather*}
P_{k}^{m}=\nabla_{\ell}^{y} \nabla_{A_{\alpha}} A_{\alpha}^{m} \cdot \mathbb{W}_{k} y^{\ell}-R\left(A_{\alpha}, \mathbb{W}_{k} y\right) A_{\alpha} \tag{27}\\
P_{\gamma \cup\{k\}}^{m}=\mathbb{\nabla}_{k} P_{\gamma}^{m}+2 R_{p \ell q}^{m} M_{\gamma}^{p}\left(\mathbb{W}_{k} y^{\ell}\right) A_{\alpha}^{q}+ \\
+\left(\nabla_{s} R_{p \ell q}^{m}\right)\left(\mathbb{W}_{\gamma} y^{p}\right)\left(\mathbb{W}_{k} y^{\ell}\right) A_{\alpha}^{q} A_{\alpha}^{s}+R_{p \ell q}^{m}\left(\mathbb{W}_{\gamma} y^{p}\right)\left(\mathbb{W}_{k} A_{\alpha}^{\ell}\right) A_{\alpha}^{q}+ \tag{28}\\
+R_{p \ell q}^{m}\left(\mathbb{W}_{\gamma} y^{p}\right)\left(\mathbb{W}_{k} y^{\ell}\right)\left(\nabla_{A_{\alpha}} A_{\alpha}\right)
\end{gather*}
$$

Since in (28) $P_{\gamma \cup\{k\}}^{m}=\mathbb{W}_{k} P_{\gamma}^{m}+\ldots$, the high order coefficient permits representation

$$
\begin{aligned}
& P_{\gamma}^{m}=\nabla_{\ell} \nabla_{A_{\alpha}} A_{\alpha}^{m} \cdot \mathbb{W}_{\gamma} y^{\ell}-R\left(A_{\alpha}, \mathbb{W}_{\gamma} y\right) A_{\alpha}+ \\
& \quad+\sum_{\beta_{1} \cup . . \cup \beta_{s}=\gamma, s \geq 2} K_{\beta_{1}, . ., \beta_{s}}\left(\mathbb{W}_{\beta_{1}} y, \ldots, \mathbb{W}_{\beta_{s}} y\right)
\end{aligned}
$$

with coefficients $K_{\beta_{1}, \ldots, \beta_{s}}$, depending on A_{0}, A_{α}, R and their covariant derivatives.

In the same way, due to (23)-(25), we have similar asymptotic

$$
\begin{align*}
& M_{\gamma}{ }^{m}=\nabla_{\ell}^{y} A_{\alpha}^{m}\left[\mathbb{\nabla}_{\gamma} y^{\ell}\right]+\sum_{\beta_{1} \cup \ldots \cup \beta_{s}=\gamma, s \geq 2} K_{\beta_{1}, \ldots, \beta_{s}}^{\prime}\left(\mathbb{\mathbb { }}_{\beta_{1}} y, \ldots, \mathbb{\nabla}_{\beta_{s}} y\right) ; \tag{29}\\
& N_{\gamma}{ }^{m}=\nabla_{\ell}^{y} A_{\alpha}^{0}\left[\mathbb{\nabla}_{\gamma} y^{\ell}\right]+\sum_{\beta_{1} \cup \ldots \cup \beta_{s}=\gamma, s \geq 2} K_{\beta_{1}, \ldots, \beta_{s}}^{\prime \prime}\left(\mathbb{\mathbb { }}_{\beta_{1}} y, \ldots, \mathbb{\nabla}_{\beta_{s}} y\right)
\end{align*}
$$

with multilinear coefficients $K^{\prime}, K^{\prime \prime}$, depending on A_{0}, A_{α}, R and their covariant derivatives.

Therefore from (26) the principal part of differential is

$$
\begin{gather*}
d\left\|\mathbb{W}^{(i)} y_{t}^{x}\right\|^{2}=2\left\langle\mathbb{W}^{(i)} y, \nabla_{\ell}^{y} A_{\alpha}\left[\mathbb{W}^{(i)} y^{\ell}\right]\right\rangle d W^{\alpha}+ \\
+\left\{2\left\langle\mathbb{W}^{(i)} y, \nabla_{\ell}^{y} \widetilde{A_{0}}\left[\mathbb{W}^{(i)} y^{\ell}\right]\right\rangle+\sum_{\alpha=1}^{d}\left\|\nabla A_{\alpha}\left[\mathbb{W}^{(i)} y\right]\right\|^{2}-\right. \\
\left.-\sum_{\alpha=1}^{d}\left\langle R\left(A_{\alpha}, \mathbb{W}^{(i)} y\right) A_{\alpha}, \mathbb{W}^{(i)} y\right\rangle\right\} d t+ \\
+\sum_{j_{1}+\ldots+j_{s}=i, s \geq 2}\left\langle\mathbb{W}^{(i)} y,\left\{K_{j_{1}, \ldots, j_{s}, \alpha}^{1}\left(\mathbb{W}^{\left(j_{1}\right)} y, \ldots, \mathbb{W}^{\left(j_{s}\right)} y\right) d W^{\alpha}+\right.\right. \\
\left.\left.+K_{j_{1}, \ldots, j_{s}}^{2}\left(\mathbb{W}^{\left(j_{1}\right)} y, \ldots, \mathbb{Z}^{\left(j_{s}\right)} y\right) d t\right\}\right\rangle \tag{30}
\end{gather*}
$$

i.e. the dissipativity condition arises in the principal part. Like before the coefficients K^{1}, K^{2} depend on covariant derivatives of A_{0}, A_{α}, R.

Using asymptotic (30) we come to the dissipativity condition (9) in principal part and additional terms with lower order variations

$$
\begin{align*}
& h(t)=\mathbf{E}\left\|\mathbb{\nabla}^{(i)} y_{t}^{x}\right\|^{2 q} \leq h(0)+ \\
& +K \mathbf{E} \iint_{0}^{t}\left\|\mathbb{W}^{(i)} y_{t}^{x}\right\|^{2(q-1)}\{\text { dissipativity }\}_{C, C^{\prime}}\left(\mathbb{W}^{(i)} y_{t}^{x}, \mathbb{\nabla}^{(i)} y_{t}^{x}\right) d t+ \\
& +\sum_{j_{1}+\ldots+j_{s}=i, s \geq 2} \mathbf{E} \int_{0}^{t}\left\|\mathbb{V}^{(i)} y_{t}^{x}\right\|^{2(q-1)}\left\langle\mathbb{W}^{(i)} y, K_{j_{1}, \ldots, j_{s}}\left(\mathbb{W}^{\left(j_{1}\right)} y, \ldots, \mathbb{Z}^{\left(j_{s}\right)} y\right)\right\rangle d t . \tag{31}
\end{align*}
$$

By inequality $\left|x^{q-1} y\right| \leq|x|^{q} / q+(q-1)|y|^{q} / q$ and (10)

$$
\begin{gathered}
\mathbf{E}\left\|\mathbb{W}^{(i)} y\right\|^{2(q-1)}\left|K_{i, j_{1}, \ldots, j_{s}}\left(\mathbb{W}^{(i)} y ; \mathbb{W}^{\left(j_{1}\right)} y, \ldots, \mathbb{W}^{\left(j_{s}\right)} y\right)\right| \leq \\
\leq \mathbf{E}\left(1+\rho^{2}\left(o, y_{t}^{x}\right)\right)^{\mathbf{k} / 2}\left\|\mathbb{W}^{(i)} y\right\|^{2 q-1}\left\|\mathbb{W}^{\left(j_{1}\right)} y\right\| \ldots\left\|\mathbb{\nabla}^{\left(j_{s}\right)} y\right\| \leq \\
\leq C \mathbf{E}\left\|\mathbb{\nabla}^{(i)} y\right\|^{2 q}+C^{\prime} \mathbf{E}\left(1+\rho^{2}\left(o, y_{t}^{x}\right)\right)^{q \mathbf{k}}\left\|\mathbb{W}^{\left(j_{1}\right)} y\right\|^{2 q} \ldots\left\|\mathbb{W}^{\left(j_{s}\right)} y\right\|^{2 q}
\end{gathered}
$$

with \mathbf{k} determined by nonlinearity parameters (10).
To transform the last term let us use the inductive assumption (20) for lower order variations. By Gronwall-Bellmann and Hölder inequalities (31) implies

$$
\begin{align*}
& h(t) \leq e^{C t} h(0)+\sum_{j_{1}+\ldots+j_{s}=i, s \geq 2} C^{\prime} \int_{0}^{t} e^{C(t-s)} \mathbf{E}\left(1+\rho^{2}\left(o, y_{t}^{x}\right)\right)^{q \mathbf{k}} \times \\
& \times\left\|\mathbb{\mathbb { W }}^{\left(j_{1}\right)} y_{t}^{x}\right\|^{2 q} \ldots \ldots\left\|\mathbb{W}^{\left(j_{s}\right)} y_{t}^{x}\right\|^{2 q} \leq \\
& \leq e^{C t} h(0)+\sum_{j_{1}+\ldots+j_{s}=i, s \geq 2} e^{\left(C+C^{\prime}\right) t} \sup _{s \in[o, t]}\left(\mathbf{E}\left(1+\rho^{2}\left(o, y_{t}^{x}\right)\right)^{q} \mathbf{k}_{r_{0}}\right)^{1 / r_{0}} \times \\
& \quad \times \prod_{p=1}^{s}\left(\mathbf{E}\left\|\mathbb{\nabla}^{\left(j_{p}\right)} y_{t}^{x}\right\|^{2 q r_{p}}\right)^{1 / r_{p}} \leq \\
& \leq e^{\left(C+C^{\prime}+2 q M\right) t} \quad \sum_{j_{1}+\ldots+j_{s}=i, s \geq 2}\left(1+\rho^{2}\right)^{q \mathbf{k}} \prod_{p=1}^{s}\left(1+\rho^{2}\right)^{q\left(j_{p}-1\right) \mathbf{k} \leq} \tag{32}\\
& \leq e^{2 q M^{\prime} t}\left(1+\rho^{2}\left(o, y_{t}^{x}\right)\right)^{q(i-1) \mathbf{k}},
\end{align*}
$$

which leads to (20).

Finally, let us show how to prove (19). Making assumption that the differential equation on the parallel transport ${ }^{h, y_{t}^{h}}{ }_{a}^{z} y_{t, h(a)}^{(n)}$ of the high order variation has similar to (22) form:
the following relations are found: $\forall z \in[a, b]$

$$
\left\{\begin{array}{l}
\frac{\mathbb{D}}{\mathbb{D} z} K_{\alpha}^{z}=R\left(\Psi^{z}, A_{\alpha}\left(y_{t}^{h(z)}\right)\right) y_{t, h(z)}^{(1)}\left[h^{\prime}(z)\right] ; \tag{34}\\
\frac{\mathbb{D}}{\mathbb{D} z} L^{z}=R\left(\Psi^{z}, A_{0}\left(y_{t}^{h(z)}\right)\right) y_{t, h(z)}^{(1)}\left[h^{\prime}(z)\right] .
\end{array}\right.
$$

with the initial data $K_{\alpha}^{(n)}(a)=M_{\alpha}^{(n)}, L^{(n)}(a)=N^{(n)}$ defined in (22) due to $\stackrel{h, y_{t}^{h}}{\mathbb{T}}{ }_{a}^{a}=I d$. These relations are proved in analogue to the proof of [3, Th.7]. Indeed, taking the integral version of the parallel transport equation $\frac{\mathbb{D}}{\mathbb{D} z}\left({\underset{\mathbb{T}}{a}}_{h, y_{t}^{h}}^{a} y_{t, h(a)}^{(n)}\right)=0$, the expression $\frac{\partial}{\partial z}\left(\mathbb{T}_{a}^{h, y_{t}^{h}} y_{t, h(a)}^{(n)}\right)$ is written via the connection terms. The further application of NewtonLeibnitz formula gives the local increments of $\stackrel{h, y_{t}^{h}}{\mathbb{T}}{ }_{a}^{z} y_{t, h(a)}^{(n)}-y_{t, h(a)}^{(n)}$ as the integrals on $[a, z]$ of these connection terms. Finally, calculating the Stratonovich differential of these integral formulas, comparing them with the representation (33) and proceeding further by scheme [2, (3.11)-(3.19)] the relation (34) is found.

After that the application of (16) to (34) leads to

To obtain relation (19), by schemes of [1] and [7, Sect.4.4-4.5] the following two estimates on the continuity and regularity of variations are required: for any Lipschitz continuous path $h \in \operatorname{Lip}([a, b], M)$

$$
\begin{align*}
& \mathbf{E}\left\|y_{t, h(b)}^{(n)}-\stackrel{h, y_{t}^{h}}{\mathbb{T}_{a}^{b}} y_{t, h(a)}^{(n)}\right\|_{T_{y_{t}^{1,0}(b)}^{p} \otimes T_{h(b)}^{0, n}}^{p} \leq|b-a|^{p} \|\left.\left|h^{\prime}\right|\right|_{L^{\infty}([a, b], T M)} ^{p} e^{K_{p, n} t} \\
& \times \operatorname{pol}_{p, n}\left(1+\rho(h(a), o)+|b-a| \cdot\left\|h^{\prime}\right\|_{L^{\infty}([a, b], T M)}\right) ; \tag{36}\\
& \mathbf{E}\left\|y_{t, h(b)}^{(n)}-{\stackrel{h}{\mathbf{T}} \mathbf{y}_{t}^{h}}_{a}^{b} y_{t, h(a)}^{(n)}-y_{t, h(b)}^{(n+1)}\left[\int_{a}^{b} \stackrel{h}{\mathbf{T}}_{z}^{b} h^{\prime}(z) d z\right]\right\|_{T_{T_{t}^{1,0}(b)}^{p} \otimes T_{h(b)}^{0, n}}^{p} \leq \\
& \leq|b-a|^{2 p}| | h^{\prime} \|_{L^{\infty}([a, b], T M)}^{2 p} e^{K_{p, n} t} \tag{37}\\
& \times \operatorname{pol}_{p, n}\left(1+\rho(h(a), o)+|b-a| \cdot\left\|h^{\prime}\right\|_{L^{\infty}([a, b], T M)}\right)
\end{align*}
$$

with some polynomials $\operatorname{pol}_{p, n}(\cdot)$, depending on the order of nonlinearity $\mathbf{k}(10), \stackrel{h}{\mathbf{T}}_{z}^{b}$ denoting the classical parallel transport of tensor along path h from $h(z)$ to $h(b)$.

By the theory of absolute continuous functions, estimate (36) leads to the existence of derivative $\frac{\mathbb{D}}{\mathbb{D} z} \stackrel{h, y_{t}^{h}}{\mathbb{T}}{ }_{z}^{b} y_{t, h(z)}^{(n)}$ and estimate (37) calculates this derivative, leading to (19).

To obtain estimate (36), let us first note, that by (29)

$$
\begin{aligned}
& M_{\gamma}{ }_{\alpha}^{m}(b)-\stackrel{h, y_{t}^{h}}{\mathbb{T}_{a}^{b}} M_{\gamma}{ }_{\alpha}^{m}(a)=\nabla_{\ell}^{y} A_{\alpha}^{m}\left(y_{t}^{h(b)}\right)\left[\mathbb{\nabla}_{\gamma} y_{t, h(b)}^{\ell}\right]- \\
& -{\stackrel{h}{h, y_{t}^{h}} \boldsymbol{T}_{a}^{b}}_{a}\left(\nabla_{\ell}^{y} A_{\alpha}^{m}\left(y_{t}^{h(a)}\right)\left[\mathbb{\nabla}_{\gamma} y_{t, h(a)}^{\ell}\right]\right)+ \\
& +\sum_{\beta_{1} \cup \ldots \cup \beta_{s}=\gamma, s \geq 2}\left\{K_{\beta_{1}, \ldots, \beta_{s}}^{\prime, h(b)}\left(\mathbb{\mathbb { }}_{\beta_{1}} y_{t, h(b)}, \ldots, \mathbb{\mathbb { W }}_{\beta_{s}} y_{t, h(b)}\right)-\right. \\
& \left.-{\stackrel{h, y_{t}^{h}}{\boldsymbol{T}}}_{a}^{b}\left(K_{\beta_{1}, \ldots, \beta_{s}}^{\prime, h(a)}\left(\mathbb{\mathbb { }}_{\beta_{1}} y_{t, h(a)}, \ldots, \mathbb{\nabla}_{\beta_{s}} y_{t, h(a)}\right)\right)\right\}= \\
& =\nabla_{\ell}^{y} A_{\alpha}^{m}\left(y_{t}^{h(b)}\right)\left[\mathbb{\nabla}_{\gamma} y_{t, h(b)}^{\ell}-{\left.\stackrel{h}{T_{t}}{ }_{a}^{b}{ }^{b}{ }_{\gamma} y_{t, h(a)}^{\ell}\right]+}^{\ell}\right. \\
& +\left\{\nabla_{\ell}^{y} A_{\alpha}^{m}\left(y_{t}^{h(b)}\right)-\stackrel{h, y_{t}^{h}}{\boldsymbol{T}_{a}^{b}}\left[\nabla_{\ell}^{y} A_{\alpha}^{m}\left(y_{t}^{h(a)}\right)\right]\right\}\left[\mathbb{T}_{a}^{h, y_{t}^{h}} \nabla_{\gamma} y_{t, h(a)}^{\ell}\right]+
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\beta_{1} \cup \ldots \cup \beta_{s}=\gamma, s \geq 2}\left\{K_{\beta_{1}, \ldots, \beta_{s}}^{\prime, h(b)}-{\stackrel{h}{h} \boldsymbol{T}_{t}^{h}}_{a}^{b} K_{\beta_{1}, \ldots, \beta_{s}}^{\prime \prime, h(a)}\right\}\left(\mathbb{\mathbb { }}_{\beta_{1}} y_{t, h(b)}, \ldots, \mathbb{\nabla}_{\beta_{s}} y_{t, h(b)}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathbb{\nabla}_{\beta_{j}} y_{t, h(b)}-\stackrel{h, y_{t}^{h}}{\boldsymbol{T}}{ }_{a}^{b} \mathbb{\nabla}_{\beta_{j}} y_{t, h(a)}, \mathbb{\nabla}_{\beta_{j+1}} y_{t, h(b)}, \ldots, \mathbb{\nabla}_{\beta_{s}} y_{t, h(b)}\right) .
\end{aligned}
$$

Due to (16) and the first order regularity of process y_{t}^{x} on initial data (18), multiples $\nabla_{\ell}^{y} A_{\alpha}^{m}\left(y_{t}^{h(b)}\right)-\stackrel{h, y_{t}^{h}}{\mathbb{T}_{a}^{b}} \nabla_{\ell}^{y} A_{\alpha}^{m}\left(y_{t}^{h(a)}\right)$ and $K_{\beta_{1}, \ldots, \beta_{s}}^{\prime, h(b)}-$ $\stackrel{h, y_{t}^{h}}{\boldsymbol{T}^{b}}{ }^{b}$ $\boldsymbol{T}_{a}^{b} K_{\beta_{1}, \ldots, \beta_{s}}^{1, h(a)}$ are represented as integrals on $[a, b]$ with linear dependence on factor h^{\prime}. Thus, by equations (22), (29), (33) and (35), the principal
parts of equations on the continuity difference $\epsilon_{t}^{(n)}=y_{t, h(b)}^{(n)}-\stackrel{h, y_{t}^{h}}{\boldsymbol{T}}$ ${ }_{a}^{b} y_{t, h(a)}^{(n)}$ has form

$$
\begin{aligned}
& \delta\left(\epsilon_{t}^{(n)}\right)=-\Gamma\left(\epsilon_{t}^{(n)}, \delta y_{t}^{(h(b)}\right)+ \\
& +\sum_{\alpha}\left\{\nabla A_{\alpha}\left[\epsilon_{t}^{(n)}\right]+P_{\alpha}^{(n)}\left(A_{\alpha}, R, \epsilon^{(1)}, \ldots, \varepsilon^{(n-1)}\right)\right\} \delta W^{\alpha}+ \\
& +\left\{\nabla A_{0}\left[\epsilon_{t}^{(n)}\right]+P_{\alpha}^{(n)}\left(A_{\alpha}, R, A_{0} \epsilon^{(1)}, \ldots, \varepsilon^{(n-1)}\right)\right\} d t,
\end{aligned}
$$

with linear with respect to factor h^{\prime} and integral on $[a, b]$ terms $P_{\alpha}^{(n)}, P_{0}^{(n)}$, depending in the polynomial way of coefficients A_{α}, A_{0}, curvature R and their covariant derivatives.

Therefore, proceeding like in the previous part of the proof (30)(32), singling out the dissipativity condition and using $e_{0}^{(n)}=0$, the inequality (36) is proved in the inductive on the order of variation way.

Similar, but more bookkeeping arguments work for the differentiability difference $\Delta_{t}^{(n)} \Rightarrow y_{t, h(b)}^{(n)}-\stackrel{h, y_{t}^{h}}{\underset{T}{b}}{ }_{a}^{b} y_{t, h(a)}^{(n)}-y_{t, h(b)}^{(n+1)}\left[\int_{a}^{b} \stackrel{h}{\mathbf{T}}_{z}^{b} h^{\prime}(z) d z\right]$ in (37), however there are applied relation like

$$
\begin{gathered}
S_{\beta_{1}, \ldots, \beta_{s}}\left(y_{t}^{h(b)}\right)-{\stackrel{h, y_{t}^{h}}{\mathbb{T}_{a}^{b}} S_{\beta_{1}, \ldots, \beta_{s}}\left(y_{t}^{h(b)}\right)-}^{-\mathbb{\mathbb { V }}^{y} S_{\beta_{1}, \ldots, \beta_{s}}\left(y_{t}^{h(b)}\right)\left[\int_{a}^{b} \stackrel{T}{\mathbb{T}}_{a}^{h, y_{t}^{h}} y_{t, h(z)}^{(1)}\left[h^{\prime}(z)\right] d z\right]=} \\
=\int_{a}^{b} \mathbb{\mathbb { }}^{y} S_{\beta_{1}, \ldots, \beta_{s}}\left(y_{t}^{h(z)}\right)\left[{\underset{\mathbb{T}}{a}}_{a}^{h, y_{t}^{h}} y_{t, h(z)}^{(1)}\left[h^{\prime}(z)\right]\right] d z-
\end{gathered}
$$

$$
\begin{aligned}
& -\mathbb{\nabla}^{y} S_{\beta_{1}, \ldots, \beta_{s}}\left(y_{t}^{h(b)}\right)\left[\int_{a}^{b} \stackrel{h, y_{t}^{h}}{\mathbb{T}_{a}^{b}} y_{t, h(z)}^{(1)}\left[h^{\prime}(z)\right] d z\right]= \\
& =\int_{a}^{b} d z \int_{z}^{b} d u\left(\begin{array}{l}
h, y_{t}^{h} \\
\left.\mathbb{T}_{u}^{z} \mathbb{\nabla}^{y} \mathbb{W}^{y} S_{\beta_{1}, \ldots, \beta_{s}}\left(y_{t}^{h(u)}\right)\right) \times \\
)
\end{array}\right.
\end{aligned}
$$

to conclude that the differentials of difference expressions have form

$$
\begin{aligned}
& \delta\left(\Delta_{t}^{(n)}\right)=-\Gamma\left(\epsilon_{t}^{(n)}, \delta y_{t}^{h(b)}\right)+ \\
& +\sum_{\alpha}\left\{\nabla A_{\alpha}\left[\Delta_{t}^{(n)}\right]+Q_{\alpha}^{(n)}\left(A_{\alpha}, R, \Delta^{(1)}, \ldots, \Delta^{(n-1)}\right)\right\} \delta W^{\alpha}+ \\
& +\left\{\nabla A_{0}\left[\epsilon_{t}^{(n)}\right]+Q_{\alpha}^{(n)}\left(A_{\alpha}, R, A_{0} \Delta^{(1)}, \ldots, \Delta^{(n-1)}\right)\right\} d t
\end{aligned}
$$

with quadratic with respect to factor h^{\prime} and integral on $[a, b]^{2}$ multiples $Q_{\alpha}^{(n)}, Q_{0}^{(n)}$. Due to $\Delta_{0}^{(n)}=0$ this leads to (37) with powers $2 p$ in the r.h.s.

3.Proof of C^{∞}-regularity of semigroup P_{t} (Theorem 1).

First we are going to obtain the representation formula for derivatives of semigroup via new type variations (7).
Theorem 4. For any $f \in C_{\vec{q}}^{n}(M)$ the semigroup $P_{t} f$ is n-times continuously differentiable on x for any $t \geq 0$. Its high order derivatives are defined by (7).

Proof. Introduce notations

$$
\begin{equation*}
\delta_{m}(f, x, t)=\sum_{j_{1}+\ldots+j_{\ell}=m, \ell \geq 1} \mathbf{E}\left\langle\nabla_{y_{t}^{x}}^{(\ell)} f\left(y_{t}^{x}\right), \mathbb{\nabla}^{\left(j_{1}\right)} y_{t}^{x} \otimes \ldots \otimes \mathbb{\nabla}^{\left(j_{\ell}\right)} y_{t}^{x}\right\rangle_{T_{y_{t}^{x}}^{0, \ell} M} \tag{38}
\end{equation*}
$$

for the left hand sides of (7). First we are going to demonstrate that for any $f \in C_{\vec{q}}^{n}(M)$ expressions $\delta_{m}(f, x, t) \in T_{x}^{0, m} M$ are continuous on $x \in M$ for any $m=1, \ldots, n, t \geq 0$.

Let $h \in \operatorname{Lip}([a, b], M)$ be any Lipschitz path. Let's apply (20) to find majorant function for terms under expectation \mathbf{E} in $[a, b] \ni z \rightarrow$ $\delta_{m}(f, h(z), t)$. From (18) and $\left\|\nabla_{x} \rho(x, o)\right\| \leq 1$ follows estimate

$$
\rho\left(o, y_{t}^{h(z)}\right) \leq \rho\left(o . y_{t}^{h(a)}\right)+\int_{a}^{z}\left\|\nabla_{y_{t}^{h(\theta)}} \rho\left(o, y_{t}^{h(\theta)}\right)\right\| \cdot\left\|\frac{d y_{t}^{h(\theta)}}{d \theta}\right\| d \theta \leq
$$

$$
\leq \rho\left(o, y_{t}^{h(a)}\right)+\int_{a}^{b}\left\|\mathbb{W}^{(1)} y_{t}^{h(\theta)}\right\| \cdot\left\|h^{\prime}(\theta)\right\| d \theta
$$

Due to $f \in C_{\vec{q}}^{n}(M)$ it leads to

$$
\begin{gather*}
\left\|\nabla^{(\ell)} f\left(y_{t}^{h(z)}\right)\right\| \leq\|f\|_{C_{\bar{q}}^{n}} p_{\ell}\left(\rho^{2}\left(o, y_{t}^{h(z)}\right)\right) \leq \\
\leq K_{p_{\ell}}\|f\|_{C_{\bar{q}}^{n}}\left(1+\rho\left(o, y_{t}^{h(z)}\right)\right)^{2 \operatorname{deg}\left(p_{\ell}\right)} \leq \\
\leq K_{p_{\ell}}\|f\|_{C_{\bar{q}}^{n}}\left(1+\rho\left(o, y_{t}^{h(a)}\right)+\left\|h^{\prime}\right\|_{L^{\infty}[a, b]} \int_{a}^{b}\left\|\mathbb{\nabla}^{(1)} y_{t}^{h(\theta)}\right\| d \theta\right)^{2 \operatorname{deg}\left(p_{\ell}\right)} \tag{39}
\end{gather*}
$$

and the last expression provides uniform on $z \in[a, b]$ majorant, which is integrable due to estimates (20) and (21).

In a similar way we find majorant for variational processes in expression $\delta_{m}(f, h(z), t), z \in[a, b]$. Due to (19)

$$
\begin{align*}
& \forall z \in[a, b] \quad\left\|\mathbb{V}^{(j)} y_{t}^{h(z)}\right\|_{y_{t}^{h(z)}} \leq \tag{40}\\
& \leq\left\|\mathbb{W}^{(j)} y_{t}^{h(a)}\right\|_{y_{t}^{h(a)}}+\left\|h^{\prime}\right\|_{L^{\infty}[a, b]} \int_{a}^{b}\left\|\mathbb{V}^{(\ell+1)} y_{t}^{h(\theta)}\right\|_{y_{t}^{h(\theta)}} d \theta
\end{align*}
$$

and the right hand side of (40) is integrable in any power due to (20).
Property (19) and majorants (39),(40) lead to a.e. continuity on parameter $z \in[a, b]$ of expressions under expectation \mathbf{E} in $\delta_{m}(f, h(z), t), m=0, \ldots, n$ for $f \in C_{\vec{q}}^{n}(M)$. The further application of Lebesgue majorant theorem demonstrates the continuity of mappings

$$
[a, b] \ni z \rightarrow \delta_{m}(f, h(z), t), \quad m=0, \ldots, n,
$$

for any Lipschitz path $h \in \operatorname{Lip}([a, b], M)$ and $f \in C_{\vec{q}}^{n}(M)$.
Since such continuity along paths h represents one of possible characterizations of continuous mappings, we conclude the a.e. continuity of expressions δ_{m}
mapping $M \ni x \rightarrow \delta_{m}(f, x, t) \in T^{0, m} M$ is continuous
for any $f \in C_{\vec{q}}^{n}(M)$ and $t \geq 0, m=0, \ldots, n$.
Now we can recurrently prove the required relation $\nabla^{(m)} P_{t} f(x)=$ $\delta_{m}(f, x, t)$.

Base of recurrence $(m=1)$. Using representation $P_{t} f(x)=$ $\mathbf{E} f\left(y_{t}^{x}\right)$ and (41) for $\ell=0$ we obtain

$$
P_{t} f(h(b))-P_{t} f(h(a))=\mathbf{E}\left[f\left(y_{t}^{h(b)}\right)-f\left(y_{t}^{h(a)}\right)\right]=
$$

$$
=\mathbf{E} \int_{a}^{b}<\nabla f\left(y_{t}^{h(z)}\right), \mathbb{\nabla}^{(1)} y_{t}^{h(z)}\left[h^{\prime}(z)\right]>d z
$$

Due to the existence of majorants (39) and (40) for $\ell=1$, the expectation and integral can be changed in order. We obtain that for any $h \in \operatorname{Lip}([a, b], M)$

$$
P_{t} f(h(b))-P_{t} f(h(a))=\int_{a}^{b} \mathbf{E}<\nabla f\left(y_{t}^{h(z)}\right), \mathbb{W}^{(1)} y_{t}^{h(z)}\left[h^{\prime}(z)\right]>d z
$$

and by the theory of absolutely continuous functions conclude the existence of derivative

$$
\frac{d P_{t} f(h(z))}{d z}=\mathbf{E}\left\langle\nabla f\left(y_{t}^{h(z)}\right), \mathbb{\nabla}^{(1)} y_{t}^{h(z)}\left[h^{\prime}(z)\right]\right\rangle=\left\langle\delta_{1}(f, h(z), t), h^{\prime}(z)\right\rangle .
$$

Since $\delta_{1}(f, x, t)$ is continuous on x, this leads to the existence of continuous first order derivative $\nabla P_{t} f(x)$ and identity $\nabla_{x} P_{t} f(x)=$ $\delta_{1}(f, x, t)$.

Recurrence step. Suppose that we already proved relation $\nabla_{x}^{(\ell)} P_{t} f(x)=\delta_{\ell}(f, x, t)$ for any $\ell=0, \ldots, m<n$. Let us show it for $m+1$.

First note that from property $\frac{d y_{t}^{h(z)}}{d z}=\mathbb{W}^{(1)} y_{t}^{h(z)}\left[h^{\prime}(z)\right]$ (18) and a.e. relations (19) follows a.e. relation

$$
\begin{align*}
& \forall \ell=\overline{0, n-1} \quad \nabla^{(\ell)} f\left(y_{t}^{h(b)}\right)-{\stackrel{h y_{t}^{h}}{\mathbb{T}_{a}^{b}}}_{a}^{b}\left[\nabla^{(\ell)} f\left(y_{t}^{h(a)}\right)\right]= \tag{41}\\
& \quad=\int_{a}^{b}{\underset{\mathbb{T}}{z}}_{h, y_{t}^{h}}^{\boldsymbol{T}_{z}^{h}}\left(\nabla^{(\ell+1)} f\left(y_{t}^{h(z)}\right)\left[\mathbb{\nabla}^{(1)} y_{t}^{h(z)}\left[h^{\prime}(z)\right]\right]\right) d z
\end{align*}
$$

for any $f \in C_{0}^{n}(M)$. Taking cutoffs $f \chi_{U}$ with $\left.\chi_{U}\right|_{U}=1, \chi_{U} \in$ $C_{0}^{\infty}(M,[0,1])$ and tending $U \nearrow M$, representation (41) can be closed to any $f \in C_{\vec{q}}^{n}(M)$.

Consider the corresponding difference

$$
\begin{gathered}
\nabla^{(m)} P_{t} f(h(b))-\stackrel{h}{\mathbf{T}}_{a}^{b}\left[\nabla^{(m)} P_{t} f(h(a))\right]= \\
=\underset{j_{1}+\ldots+j_{\ell}=m, \ell \geq 1}{\mathbf{E}} \sum\left[\left\langle\nabla^{(\ell)} f\left(y_{t}^{h(b)}\right),\left[\mathbb{\nabla}^{\left(j_{1}\right)} y_{t}^{h(b)}\right] \otimes \ldots \otimes\left[\mathbb{\nabla}^{\left(j_{\ell}\right)} y_{t}^{h(b)}\right]\right\rangle_{T_{y_{t}^{0, \ell}(b)}^{y_{t}}}-\right. \\
\left.-\stackrel{乌}{\mathbf{T}}_{a}^{b}\left\langle\nabla^{(\ell)} f\left(y_{t}^{h(a)}\right),\left[\mathbb{\nabla}^{\left(j_{1}\right)} y_{t}^{h(a)}\right] \otimes \ldots \otimes\left[\mathbb{\nabla}^{\left(j_{\ell}\right)} y_{t}^{h(a)}\right]\right\rangle_{T_{y_{t}^{0, \ell}}^{y_{t}(a)}}\right] .
\end{gathered}
$$

Relations (41) and (19) lead to

$$
\begin{gathered}
\sum_{j_{1}+\ldots+j_{\ell}=m, \ell \geq 1}\left[\left\langle\nabla^{(\ell)} f\left(y_{t}^{h(b)}\right),\left[\mathbb{\nabla}^{\left(j_{1}\right)} y_{t}^{h(b)}\right] \otimes \ldots \otimes\left[\mathbb{\nabla}^{\left(j_{\ell}\right)} y_{t}^{h(b)}\right]\right\rangle-\right. \\
\left.-\stackrel{h}{\mathbf{T}}_{a}^{b}\left\langle\nabla^{(\ell)} f\left(y_{t}^{h(a)}\right),\left[\mathbb{\nabla}^{\left(j_{1}\right)} y_{t}^{h(a)}\right] \otimes \ldots \otimes\left[\mathbb{\nabla}^{\left(j_{\ell}\right)} y_{t}^{h(a)}\right]\right\rangle\right]= \\
=\int_{a}^{b} \sum_{j_{1}+\ldots+j_{\ell}=m+1, \ell \geq 1} \stackrel{h}{\mathbf{T}}_{z}^{b}\left[\left\langle\nabla^{(\ell)} f\left(y_{t}^{h(z)}\right),\left[\mathbb{\nabla}^{\left(j_{1}\right)} y_{t}^{h(z)}\right] \otimes \ldots\right.\right. \\
\left.\left.\otimes\left[\mathbb{\nabla}^{\left(j_{\ell}\right)} y_{t}^{h(z)}\right]\right\rangle\left[h^{\prime}(z)\right]\right] d z
\end{gathered}
$$

i.e. recover the structure of integrand in (38).

The existence of majorants (39) and (40) permits to change the order of integration and expectation, leading to

$$
\nabla^{(m)} P_{t} f(h(b))-\stackrel{乌}{\mathbf{T}}_{a}^{b}\left[\nabla^{(m)} P_{t} f(h(a))\right]=\int_{a}^{b} \mathbf{T}_{z}^{b}\left[\delta_{m+1}(f, h(z), t)\left[h^{\prime}(z)\right]\right] d z
$$

Therefore the mapping $[a, b] \ni z \rightarrow \stackrel{h}{\mathbf{T}}_{z}^{b}\left[\nabla^{(m)} P_{t} f(h(z))\right]$ is absolutely continuous with derivative

$$
\frac{d \stackrel{h}{\mathbf{T}}_{z}^{b}\left[\nabla^{(m)} P_{t} f(h(z))\right]}{d z}=\stackrel{h}{\mathbf{T}}{ }_{z}^{b}\left[\delta_{m+1}(f, h(z), t)\left[h^{\prime}(z)\right]\right]
$$

Since $\delta_{m+1}(f, x, t)$ is continuous on x, we conclude that the $(m+1)^{t h}$ derivative of semigroup is represented by $\delta_{m+1}(f, x, t)$.

The final step of the proof of Theorem 4 lies in the verification of estimate (13). It follows the scheme of [2, Th.15] with application of estimates (20) instead of nonlinear estimates on variations.

Theorem 5. Under conditions of Theorem 1 estimate (13) holds.
Proof. We apply (20) and (21) to estimate the corresponding
seminorms

$$
\begin{aligned}
& \frac{\left\|\left(\nabla^{x}\right)^{i} P_{t} f(x)\right\|_{T_{x}^{(0, i)}}}{q_{i}\left(\rho^{2}(x, o)\right)} \leq \\
& \leq \sum_{j_{1}+\ldots+j_{\ell}, \ell \geq 1} \frac{\left\|\mathbf{E}\left\langle\left(\nabla^{y}\right)^{\ell} f\left(y_{t}^{x}\right), \mathbb{\nabla}^{\left(j_{1}\right)} y_{t}^{x} \otimes \ldots \otimes \mathbb{V}^{\left(j_{\ell}\right)} y_{t}^{x}\right\rangle_{T_{y}^{(0, i)}}\right\|_{T_{x}^{(0, i)}}}{q_{i}\left(\rho^{2}(x, o)\right)} \leq \\
& \leq \sum_{j_{1}+\ldots+j_{\ell}, \ell \geq 1}\left(\sup _{y_{t}^{x} \in M} \frac{\left\|\left(\nabla^{y}\right)^{\ell} f\left(y_{t}^{x}\right)\right\|_{T_{y}^{(0, \ell)}}}{q_{\ell}\left(\rho^{2}\left(y_{t}^{x}, o\right)\right)}\right) \times \\
& \times \frac{\mathbf{E} q_{\ell}\left(\rho^{2}\left(y_{t}^{x}, o\right)\right)\left\|\mathbb{\nabla}^{\left(j_{1}\right)} y_{t}^{x}\right\| \ldots\left\|\mathbb{W}^{\left(j_{\ell}\right)} y_{t}^{x}\right\|}{q_{i}\left(\rho^{2}(x, o)\right)} \leq\|f\|_{C_{q}^{n}} \times \\
& \times \sum_{j_{1}+\ldots+j_{\ell}, \ell \geq 1} \frac{\left(\mathbf{E} q_{\ell}^{\ell+1}\left(\rho^{2}\left(y_{t}^{x}, o\right)\right)\right)^{1 /(\ell+1)} \prod_{m=1}^{\ell}\left(\mathbf{E}\left\|\mathbb{\nabla}^{\left(j_{m}\right)} y_{t}^{x}\right\|^{\ell+1}\right)^{1 /(\ell+1)}}{q_{i}\left(\rho^{2}(x, o)\right)} \leq \\
& \leq K^{2} e^{M^{\prime} t}\|f\|_{C_{q}^{n}} \sum_{j_{1}+\ldots+j_{\ell}, \ell \geq 1} \frac{q_{\ell}\left(\rho^{2}(x, o)\right) \prod_{m=1}^{\ell}\left(1+\rho^{2}(x, o)\right)^{\mathbf{k}\left(j_{m}-1\right) / 2}}{q_{i}\left(\rho^{2}(x, o)\right)} \leq \\
& \leq K^{2} e^{M^{\prime} t}\|f\|_{C_{q}^{n}} \sum_{j_{1}+\ldots+j_{\ell}, \ell \geq 1} \frac{q_{\ell}\left(\rho^{2}(x, o)\right)\left(1+\rho^{2}(x, o)\right)^{\mathbf{k}(i-\ell) / 2}}{q_{i}\left(\rho^{2}(x, o)\right)},
\end{aligned}
$$

leading to hierarchy (11). Above we also applied that for $q_{i} \geq 1$ of polynomial behaviour there is K such that $\frac{1}{K}(1+b)^{\operatorname{deg}\left(q_{i}\right)} \leq q_{i}(b) \leq$ $K(1+b)^{\operatorname{deg}\left(q_{i}\right)}$, so from (21) follows

$$
\begin{gathered}
\mathbf{E}\left[q_{i}\left(\rho^{2}\left(o, y_{t}^{x}\right)\right)\right]^{n} \leq K^{n} \mathbf{E}\left[1+\rho^{2}\left(o, y_{t}^{x}\right)\right]^{n \cdot \operatorname{deg}\left(q_{i}\right)} \leq \\
\leq K^{n} e^{n \cdot \operatorname{deg}\left(q_{i}\right) M t}\left[1+\rho^{2}(o \cdot x)\right]^{n \cdot \operatorname{deg}\left(q_{i}\right)} \leq K^{2 n} e^{n \cdot \operatorname{deg}\left(q_{i}\right) M t} q_{i}\left(\rho^{2}(o, x)\right)
\end{gathered}
$$

1. Antoniouk A.Val, Antoniouk A.Vict., Nonlinear estimates approach to the regularity properties of diffusion semigroups, In Nonlinear Analysis and Applications: To V.Lakshmikantham on his 80th birthday, in two volumes, Eds. Ravi P. Agarwal and Donal O'Regan, Kluwer, 2003, vol.1, 165-226 pp.
2. Antoniouk A.Val, Antoniouk A.Vict., Regularity of nonlinear flows on noncompact Riemannian manifolds: differential vs. stochastic geometry or what kind of variations is natural?, Ukrainian Math. Journal. - 2006. - 58, N 8. - p. 1011-1034.
3. Antoniouk A.Val., Antoniouk A.Vict., Nonlinear calculus of variations for differential flows on manifolds: geometrically correct introduction of covariant and stochastic variations. - Ukrainian Math. Bulletin. - 2004. - 1, N 4. - p. 449-484.
4. Antoniouk A.Val. Upper bounds on second order operators, acting on metric function. // Ukrainian Math. Bulletin - 2007. - 4, N 2. - p. 163-172.
5. Antoniouk A.Val, Antoniouk A.Vict., Non-explosion for nonlinear diffusions on noncompact manifolds // Ukrainian Math. Journal, - 2007. - 59, N 11. -1454-1472.
6. Antoniouk A.Val, Antoniouk A.Vict., Continuity with respect to initial data and absolute continuity approach to the first order regularity of nonlinear diffusions on noncompact manifold // to appear in Ukrainian Math. Journal, 15 pp .
7. Antoniouk A.Val., Antoniouk A.Vict., Nonlinear effects in the regularity problems for infinite dimensional evolutions of classical Gibbs systems. Kiev: Naukova Dumka (in Russian), 2006.
8. Belopolskaja Ya.I., Daletskii Y.L. Stochastic equations and differential geometry. - Berlin: Kluwer Acad. Publ., 1996.
9. Hsu E.P. Stochastic Analysis on Manifolds. - Rhode Island: American Math. Soc., 2002.- Graduate studies in Mathematics. - 38.
10. Krylov N.V., Rozovskii B.L. On the evolutionary stochastic equations. // Contemporary problems of Mathematics: Moscow: VINITI, 1979. - 14. - p. 71-146.
11. Kunita H. Stochastic flows and stochastic differential equations. - Cambridge Uni. Press, 1990.
12. Pardoux E. Stochastic partial differential equations and filtering of diffusion processes. // Stochastics. - 1979. - 3. - p. 127-167.
13. Stroock D. An introduction to the analysis of paths on a Riemannian manifold. - AMS Math. surveys and monographs, 2002. - 74.

Department of Nonlinear Analysis, Institute of Received 15.05.07 Mathematics NAS Ukraine, Tereschenkivska str. 3, 01601 MSP Kiev-4, Ukraine
antoniouk@imath.kiev.ua

