Том 25

УДК 512.552+519.713

©2012. В.В. Скобелев

ОБ АВТОМАТАХ НА ПОЛИНОМИАЛЬНО ПАРАМЕТРИЗОВАННОМ МНОГООБРАЗИИ НАД КОНЕЧНЫМ КОЛЬЦОМ

Исследованы автоматы Мили и Мура, определенные на траекториях на полиномиально параметризованном многообразии над конечным кольцом. Охарактеризованы множества детерминированных и недетерминированных автоматов. Исследованы те свойства детерминированных автоматов, которые вытекают только из наличия полиномиальной параметризации многообразия. Охарактеризованы следующие множества детерминированных автоматов: групповые автоматы, автоматы, имеющие состояния-источники, автоматы, имеющие состояния стоки, связные и сильно связные автоматы, автоматы, имеющие состояния-близнецы, а также 1-диагностируемые автоматы.

Ключевые слова: кольца, полиномиально параметризованные многообразия, автоматы.

1. Введение. Использование комбинаторно-алгебраических моделей при решении задач защиты информации [1-4] привело к изменению направлений исследований для ряда классических областей дискретной математики. В алгебраической теории автоматов [5, 6] произошел переход от исследования свойств конечно порожденной свободной полугруппы преобразований конечного множества к исследованию автоматных преобразований конечных алгебраических структур. Как следствие, начал формироваться новый раздел алгебраической теории автоматов — автоматы, определенные системами уравнений над конечными кольцами [7, 8], а на первый план вышли задачи анализа сложности идентификации автомата и анализа структуры множеств неподвижных точек автоматных отображений.

Применение эллиптических кривых над конечным полем при решении задач защиты информации [3, 4] естественно приводит к понятию автомата, определенного на многообразии над кольцом. В [9] выделены два типа таких автоматов (автоматы на многообразиях с алгеброй и автоматы на полиномиально параметризованных многообразиях), и охарактеризованы гомоморфизмы таких автоматов в терминах гомоморфизмов многообразий.

Целью настоящей работы является исследование таких свойств детерминированных автоматов Мили и Мура, определенных на траекториях на полиномиально параметризованном многообразии над конечным кольцом, которые вытекают только из наличия полиномиальной параметризации многообразия.

2. Исследуемые модели. Пусть $\mathcal{K} = (K, +, \cdot)$ ($|K| \ge 2$) – конечное кольцо, а $\mathcal{V}_{n,m}(\mathcal{K})$ ($n,m \in \mathbb{N}, m \le n$) – множество всех многообразий $\mathbf{V} \in K^n$ ($|\mathbf{V}| > 1$), для которых существует полиномиальная параметризация $h_1, \ldots, h_n \in K[\tau_1, \ldots, \tau_m]$, т.е. \mathbf{V} состоит из всех точек с координатами

$$\begin{cases} v_1 = h_1(\tau_1, \dots, \tau_m) \\ \dots \\ v_n = h_n(\tau_1, \dots, \tau_m) \end{cases} ((\tau_1, \dots, \tau_m) \in K^m).$$
 (1)

В дальнейшем, для краткости, будем записывать (1) в векторном виде, т.е. в виде $\mathbf{v} = \mathbf{h}(\overrightarrow{\tau}) \ (\overrightarrow{\tau} \in K^m)$, где $\mathbf{h} = (h_1, \dots, h_n)^T$.

Отметим, что если $\mathbf{v} = \mathbf{h}(\overrightarrow{\tau}) \ (\overrightarrow{\tau} \in K^m)$ – полиномиальная параметризация многообразия $\mathbf{V} \in \mathcal{V}_{n,m}(\mathcal{K})$, то $|\mathbf{V}| = |K^m/\ker \mathbf{h}|$.

Обозначим через $\mathcal{F}_m \ (m \in \mathbb{N})$ множество всех легко вычислимых отображений $f: K^m \to K^m$.

Пусть $\mathbf{v} = \mathbf{h}(\overrightarrow{\tau})$ ($\overrightarrow{\tau} \in K^m$) — полиномиальная параметризация многообразия $\mathbf{V} \in \mathcal{V}_{n,m}(\mathcal{K})$. Каждое отображение $f \in \mathcal{F}_m$ определяет на многообразии \mathbf{V} множество $\mathcal{T}_{\mathbf{V},f}$ траекторий

$$\mathbf{h}(P_0), \mathbf{h}(P_1), \dots, \mathbf{h}(P_i), \dots \quad (P_0 \in K^m), \tag{2}$$

где $P_{j+1} = f(P_j)$ для всех $j \in \mathbb{Z}_+$.

Так как $f \in \mathcal{F}_m$, а \mathbf{h} – фиксированный набор полиномов, то каждый элемент траектории (2) вычислим за полиномиальное время. Будем говорить, что траектория (2) исходит из точки $\mathbf{h}(P_0)$ многообразия \mathbf{V} . Обозначим через $\mathbf{h} \circ f$ суперпозицию отображений f и \mathbf{h} , т.е. $(\mathbf{h} \circ f)(P) = \mathbf{h}(f(P)) \ (P \in K^m)$.

Теорема 1. Пусть $\pmb{v} = \pmb{h}(\overrightarrow{\tau}) \ (\overrightarrow{\tau} \in K^m)$ – полиномиальная параметризация многообразия $V \in \mathcal{V}_{n,m}(\mathcal{K})$. Любые две различные траектории, принадлежащие множеству $\mathcal{T}_{V,f}$ $(f \in \mathcal{F}_m)$, исходят из различных точек многообразия V тогда и только тогда, когда не существуют такие $P_0^{(1)}, P_0^{(2)} \in K^m$, что $P_0^{(1)} \equiv P_0^{(2)}$ (ker \boldsymbol{h}) $u P_0^{(1)} \not\equiv P_0^{(2)} (\ker(\mathbf{h} \circ f)).$

 Доказательство. Из (2) вытекает, что $P_0^{(1)}, P_0^{(2)} \in K^m$ определяют, соответственно, принадлежащие множеству $\mathcal{T}_{\mathbf{V},f}$ траектории

$$\mathbf{h}(P_0^{(1)}), \mathbf{h}(P_1^{(1)}), \dots, \mathbf{h}(P_j^{(1)}), \dots,$$
 (3)

$$\mathbf{h}(P_0^{(2)}), \mathbf{h}(P_1^{(2)}), \dots, \mathbf{h}(P_i^{(2)}), \dots,$$
 (4)

где $P_{i+1}^{(i)} = f(P_{j}^{(i)}) \ (i=1,2)$ для всех $j \in \mathbf{Z}_{+}.$

Предположим, что существуют $P_0^{(1)}, P_0^{(2)} \in K^m$, удовлетворяющие условию: " $P_0^{(1)} \equiv P_0^{(2)}$ (ker \mathbf{h}) и $P_0^{(1)} \not\equiv P_0^{(2)}$ (ker \mathbf{h}), то $\mathbf{h}(P_0^{(1)}) = \mathbf{h}(P_0^{(2)})$.

А так как $P_0^{(1)} \not\equiv P_0^{(2)}$ (ker(**h** o f)), то

$$\mathbf{h}(P_1^{(1)}) = (\mathbf{h} \circ f)(P_0^{(1)}) \neq (\mathbf{h} \circ f)(P_0^{(2)}) = \mathbf{h}(P_1^{(2)}).$$

Из $\mathbf{h}(P_0^{(1)}) = \mathbf{h}(P_0^{(2)})$ и $\mathbf{h}(P_1^{(1)}) \neq \mathbf{h}(P_1^{(2)})$ вытекает, что (3) и (4) – две различные принадлежащие множеству $\mathcal{T}_{\mathbf{V},f}$ траектории, исходящие из одной и той же точки

многообразия \mathbf{V} , что и требовалось доказать. Предположим, что любые $P_0^{(1)}, P_0^{(2)} \in K^m \ (P_0^{(1)} \neq P_0^{(2)})$ не удовлетворяют условию: " $P_0^{(1)} \equiv P_0^{(2)} \ (\ker \mathbf{h})$ и $P_0^{(1)} \not\equiv P_0^{(2)} \ (\ker (\mathbf{h} \circ f))$ ".

Это предположение эквивалентно тому, что для любых $P_0^{(1)}, P_0^{(2)} \in K^m$ выполнено условие: " $P_0^{(1)} \not\equiv P_0^{(2)}$ (ker \mathbf{h}) или $P_0^{(1)} \equiv P_0^{(2)}$ (ker $(\mathbf{h} \circ f)$)". Возможны следующие два случая.

Случай 1. Пусть $P_0^{(1)}\not\equiv P_0^{(2)}$ (ker h). Так как $\mathbf{h}(P_0^{(1)})\not=\mathbf{h}(P_0^{(2)})$, то (3) и (4) являются двумя различными, принадлежащими множеству $\mathcal{T}_{\mathbf{V},f}$ траекториями, исходящими из различных точек многообразия

 \mathbf{V} , что и требовалось доказать. $\mathit{Cлучай}\ 2$. Пусть $P_0^{(1)} \equiv P_0^{(2)}\ (\ker\mathbf{h})$ и $P_0^{(1)} \equiv P_0^{(2)}\ (\ker(\mathbf{h}\circ f))$. Так как $P_0^{(1)} \equiv P_0^{(2)}\ (\ker\mathbf{h})$, то $\mathbf{h}(P_0^{(1)}) = \mathbf{h}(P_0^{(2)})$, т.е. (3) и (4) являются принадлежащими множеству $\mathcal{T}_{\mathbf{V},f}$ траекториями, исходящими из одной и той же точки многообразия V.

Докажем, что траектории (3) и (4) совпадают. Для этого достаточно доказать, что для каждого числа $j\in\mathbb{N}$ из равенств $\mathbf{h}(P_i^{(1)})=\mathbf{h}(P_i^{(2)})$ $(i\in\mathbb{Z}_j)$ вытекает равенство $\mathbf{h}(P_i^{(1)}) = \mathbf{h}(P_i^{(2)}).$

1. Пусть j=1, т.е. $\mathbf{h}(P_i^{(1)})=\mathbf{h}(P_i^{(2)})$ $(i\in\mathbb{Z}_1)$. Так как в рассматриваемом случае $P_0^{(1)} \equiv P_0^{(2)} \; (\ker(\mathbf{h} \circ f)), \text{ TO}$

$$\mathbf{h}(P_1^{(1)}) = (\mathbf{h} \circ f)(P_0^{(1)}) = (\mathbf{h} \circ f)(P_0^{(2)}) = \mathbf{h}(P_1^{(2)}),$$

что и требовалось доказать.

- 2. Предположим, что равенства $\mathbf{h}(P_i^{(1)}) = \mathbf{h}(P_i^{(2)}) \ (i \in \mathbb{Z}_i)$ истинны для некоторого числа $j \in \mathbb{N}$.
 - 3. Покажем, что истинно равенство $\mathbf{h}(P_i^{(1)}) = \mathbf{h}(P_i^{(2)})$.

Пусть
$$P_{i-1}^{(1)} = P_{i-1}^{(2)}$$
. Тогда

$$P_i^{(1)} = f(P_{i-1}^{(1)}) = f(P_{i-1}^{(2)}) = P_i^{(2)}.$$

Следовательно, $\mathbf{h}(P_j^{(1)}) = \mathbf{h}(P_j^{(2)})$, что и требовалось доказать. Пусть $P_{j-1}^{(1)} \neq P_{j-1}^{(2)}$. Так как $\mathbf{h}(P_{j-1}^{(1)}) = \mathbf{h}(P_{j-1}^{(2)})$, то $P_{j-1}^{(1)} \equiv P_{j-1}^{(2)}$ (ker \mathbf{h}). А так как $P_{j-1}^{(1)} \equiv P_{j-1}^{(2)}$ (ker \mathbf{h}) и $P_{j-1}^{(1)} \neq P_{j-1}^{(2)}$, то, по предположению, $P_{j-1}^{(1)} \equiv P_{j-1}^{(2)}$ (ker \mathbf{h}). Следовательно,

$$\mathbf{h}(P_j^{(1)}) = (\mathbf{h} \circ f)(P_{j-1}^{(1)}) = (\mathbf{h} \circ f)(P_{j-1}^{(2)}) = \mathbf{h}(P_j^{(2)}),$$

что и требовалось доказать. \square

Обозначим через $\mathcal{F}_{m,\mathbf{h}}$ множество всех таких отображений $f\in\mathcal{F}_m$, что для любых $P, P' \in K^m$ выполнено условие: " $P \not\equiv P'$ ($\ker \mathbf{h}$) или $P \equiv P'$ ($\ker (\mathbf{h} \circ f)$)".

Отметим, что это условие может быть записано в виде

$$(\forall P, P' \in K^m)(P \equiv P' \text{ (ker } \mathbf{h}) \Rightarrow P \equiv P' \text{ (ker } (\mathbf{h} \circ f))). \tag{5}$$

Из теоремы 1 вытекает, что именно отображения $f \in \mathcal{F}_{m,\mathbf{h}}$ определяют такие множества траекторий $T_{\mathbf{V},f}$, что любые две различные траектории, принадлежащие множеству $\mathcal{T}_{\mathbf{V},f}$, исходят из различных точек многообразия \mathbf{V} .

Пусть $\mathbf{V} \in \mathcal{V}_{n,m}(\mathcal{K}), \ \mathbf{v} = \mathbf{h}(\overrightarrow{\tau}) \ (\overrightarrow{\tau} \in K^m)$ – полиномиальная параметризация многообразия \mathbf{V} , а $k,l \in \mathbb{N}$ – фиксированные числа, а $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k}$ – фиксированное семейство элементов множества \mathcal{F}_m .

Рассмотрим системы уравнений:

$$\begin{cases}
P_{t+1} = \theta_{x_{t+1}}(P_t) \\
\mathbf{q}_{t+1} = \mathbf{h}(P_{t+1}) & (t \in \mathbb{Z}_+), \\
\mathbf{y}_{t+1} = \mathbf{r}_{x_{t+1}}(\mathbf{q}_t)
\end{cases}$$
(6)

$$\begin{cases} P_{t+1} = \theta_{x_{t+1}}(\mathbf{q}_t) \\ \mathbf{q}_{t+1} = \mathbf{h}(P_{t+1}) \\ \mathbf{y}_{t+1} = \mathbf{r}(\mathbf{q}_{t+1}) \end{cases} \quad (t \in \mathbb{Z}_+),$$

$$(7)$$

где $P_0 \in K^m$, $\mathbf{q}_0 = \mathbf{h}(P_0)$, $\mathbf{r}_i : K^n \to K^l$ $(i \in \mathbb{Z}_k)$ и $\mathbf{r} : K^n \to K^l$, а $x_{t+1} \in \mathbb{Z}_k$ $(t \in \mathbb{Z}_+)$. Системы уравнений (6) и (7) определяют, соответственно, множество $\mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)$ автоматов Мили и множество $\mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ автоматов Мура. При этом, x_t, \mathbf{q}_t и \mathbf{y}_t являются, соответственно, входным символом, состоянием автомата и выходным символом в момент t.

Таким образом, множество \mathbb{Z}_k – входной алфавит, а многообразие \mathbf{V} – множество состояний автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$. Выходной алфавит автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)$ – множество $\bigcup_{i \in \mathbb{Z}_k} Val\left(\mathbf{r}_i|_{\mathbf{V}}\right)$, а выходной алфавит автомата

 $M \in \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ – множество $Val\ (\mathbf{r}|_{\mathbf{V}}).$ При этом, из (6) и (7) вытекает, что состояния $\mathbf{q} = \mathbf{h}(P)\ (P \in K^m)$ и $\mathbf{q}' = \mathbf{h}(P')$ ($P' \in K^m$) автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)\ (\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k})$ под действием входного символа $i \in \mathbb{Z}_k$ переходят, соответственно, в состояния $\widetilde{\mathbf{q}} = \mathbf{h}(\theta_i(P))$ и $\widetilde{\mathbf{q}}' = \mathbf{h}(\theta_i(P'))$

3. Основные результаты. Из теоремы 1 непосредственно вытекает, что истинно следующее следствие.

Следствие 1. Пусть ${m v}={m h}(\overrightarrow{ au})$ $(\overrightarrow{ au}\in K^m)$ – полиномиальная параметризация многообразия $V \in \mathcal{V}_{n,m}(\mathcal{K})$. Тогда:

1) множество $\mathcal{A}_{k,l}^{(i)}(extbf{\emph{V}},\Theta)$ (i=1,2) состоит из детерминированных автоматов тогда и только тогда, когда Θ – семейство элементов множества $\mathcal{F}_{m,h}$;

2) множество $\mathcal{A}_{k,l}^{(i)}(V,\Theta)$ (i=1,2) состоит из недетерминированных автоматов тогда и только тогда, когда семейство Θ содержит хотя бы один элемент, принадлежащий множеству $\mathcal{F}_m \backslash \mathcal{F}_{m,h}$.

Обозначим через \mathfrak{I}_k множество всех семейств $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k}$ элементов множества $\mathcal{F}_{m,\mathbf{h}}$.

В дальнейшем рассматривается только множество детерминированных автоматов $\mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)\cup\mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ ($\mathbf{V}\in\mathcal{V}_{n,m}(\mathcal{K})$), т.е. предполагается, что $\Theta\in\mathfrak{I}_k$.

Охарактеризуем те свойства множества $\mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)\cup\mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ ($\mathbf{V}\in\mathcal{V}_{n,m}(\mathcal{K})$, $\Theta=\{\theta_i\}_{i\in\mathbb{Z}_k},\Theta\in\mathfrak{I}_k$), которые определяются исключительно в терминах графа переходов автомата.

Из (6) и (7) вытекает, что такие свойства полностью определяются системой уравнений

$$\begin{cases} P_{t+1} = \theta_{x_{t+1}}(P_t) \\ \mathbf{q}_{t+1} = \mathbf{h}(P_{t+1}) \end{cases} \quad (t \in \mathbb{Z}_+). \tag{8}$$

Автомат называется групповым, если каждый входной символ является подстановкой на множестве состояний.

Обозначим через $\mathcal{F}_{m,\mathbf{h}}^{(0)}$ множество всех таких отображений $f\in\mathcal{F}_{m,\mathbf{h}},$ что

$$(\forall P, P' \in K^m)(P \not\equiv P' (\ker \mathbf{h}) \Rightarrow P \not\equiv P' (\ker(\mathbf{h} \circ f))). \tag{9}$$

Теорема 2. Пусть $v = h(\overrightarrow{\tau})$ ($\overrightarrow{\tau} \in K^m$) – полиномиальная параметризация многообразия $V \in \mathcal{V}_{n,m}(\mathcal{K})$. Тогда:

- 1) множесство $\mathcal{A}_{k,l}^{(1)}(V,\Theta) \cup \mathcal{A}_{k,l}^{(2)}(V,\Theta) \ (\Theta \in \mathfrak{I}_k)$ состоит из групповых автоматов тогда и только тогда, когда Θ семейство элементов множесства $\mathcal{F}_{m,\mathbf{h}}^{(0)}$;
- 2) множество $\mathcal{A}_{k,l}^{(1)}(V,\Theta) \cup \mathcal{A}_{k,l}^{(2)}(V,\Theta) \ (\Theta \in \mathfrak{I}_k)$ состоит из автоматов, не являющихся групповыми автоматами тогда и только тогда, когда семейство Θ содержит хотя бы один элемент, принадлежащий множеству $\mathcal{F}_{m,h} \backslash \mathcal{F}_{m,h}^{(0)}$.

Доказательство. Из (8) вытекает, что любые состояния $\mathbf{q} = \mathbf{h}(P)$ ($P \in K^m$) и $\mathbf{q}' = \mathbf{h}(P')$ ($P' \in K^m$) автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$, где $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k}$ ($\Theta \in \mathfrak{I}_k$) под действием любого входного символа $i \in \mathbb{Z}_k$ переходят, соответственно, в состояния $\widetilde{\mathbf{q}} = \mathbf{h}(\theta_i(P))$ и $\widetilde{\mathbf{q}}' = \mathbf{h}(\theta_i(P'))$.

Докажем следующие два предложения.

Предложение 1. Множество $\mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)\cup\mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)\ (\Theta\in\mathfrak{I}_k)$ состоит из групповых автоматов, если Θ – семейство элементов множества $\mathcal{F}_{m,\mathbf{h}}^{(0)}$.

Доказательство. Предположим, что Θ – семейство элементов множества $\mathcal{F}_{m,\mathbf{h}}^{(0)}$. Рассмотрим произвольный автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$.

Для любых двух состояний $\mathbf{q}, \mathbf{q}' \in \mathbf{V} \ (\mathbf{q} \neq \mathbf{q}')$ автомата M существуют такие $P, P' \in K^m \ (P \neq P')$, что $\mathbf{q} = \mathbf{h}(P)$ и $\mathbf{q}' = \mathbf{h}(P')$.

Так как $P \not\equiv P'$ (ker h), а $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k}$ – семейство элементов множества $\mathcal{F}_{m,\mathbf{h}}^{(0)}$, то из (9) вытекает, что $P \not\equiv P'$ (ker (h $\circ \theta_i$)) для каждого входного символа $i \in \mathbb{Z}_k$, т.е. $\mathbf{h}(\theta_i(P)) \not\equiv \mathbf{h}(\theta_i(P'))$ для каждого входного символа $i \in \mathbf{Z}_k$.

Так как любые два состояния $\mathbf{q}, \mathbf{q}' \in \mathbf{V} \ (\mathbf{q} \neq \mathbf{q}')$ автомата M под действием каждого входного символа $i \in \mathbb{Z}_k$ переходят в различные состояния, то M – групповой автомат, что и требовалось доказать. \square

Предложение 2. Множество $\mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)\cup\mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ ($\Theta\in\mathfrak{I}_k$) состоит из автоматов, не являющихся групповыми автоматами, если семейство Θ содержит хотя бы один элемент, принадлежащий множеству $\mathcal{F}_{m,\mathbf{h}}\backslash\mathcal{F}_{m,\mathbf{h}}^{(0)}$.

 \mathcal{A} оказательство. Предположим, что семейство $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k}$ содержит элемент θ_r , принадлежащий множеству $\mathcal{F}_{m,\mathbf{h}} \backslash \mathcal{F}_{m,\mathbf{h}}^{(0)}$.

Так как $\theta_r \in \mathcal{F}_{m,\mathbf{h}} \backslash \mathcal{F}_{m,\mathbf{h}}^{(0)}$, то $\theta_r \not\in \mathcal{F}_{m,\mathbf{h}}^{(0)}$.

Из $\theta_r \notin \mathcal{F}_{m,\mathbf{h}}^{(0)}$ и условия (9), определяющего множество $\mathcal{F}_{m,\mathbf{h}}^{(0)}$ вытекает, что

$$(\exists P, P' \in K^m)(P \not\equiv P' \text{ (ker } \mathbf{h}) \& P \equiv P' \text{ (ker } (\mathbf{h} \circ \theta_r))).$$

Так как $P \not\equiv P'$ (ker \mathbf{h}), то $\mathbf{q} = \mathbf{h}(P)$ и $\mathbf{q}' = \mathbf{h}(P')$ различные состояния любого автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$. А так как $P \equiv P'$ (ker $(\mathbf{h} \circ \theta_r)$), то $\mathbf{h}(\theta_r(P)) = \mathbf{h}(\theta_r(P'))$, т.е. для любого автомата

А так как $P \equiv P'$ (ker($\mathbf{h} \circ \theta_r$)), то $\mathbf{h}(\theta_r(P)) = \mathbf{h}(\theta_r(P'))$, т.е. для любого автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ различные состояния $\mathbf{q} = \mathbf{h}(P)$ и $\mathbf{q}' = \mathbf{h}(P')$ под действием входного символа r переходят в одно и то же состояние. Отсюда вытекает, что ни один автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ не является групповым автоматом, что и требовалось доказать. \square

Так как $\{\mathcal{F}_{m,\mathbf{h}}^{(0)},\mathcal{F}_{m,\mathbf{h}}\setminus\mathcal{F}_{m,\mathbf{h}}^{(0)}\}$ – разбиение множества $\mathcal{F}_{m,\mathbf{h}}^{(0)}$, то из предложений 1 и 2 вытекает, что теорема 2 истинна. \square

Состояние автомата называется:

- 1) источником (или преходящим состоянием [10]), если это состояние не достижимо ни из какого состояния автомата;
- 2) стоком (или тупиковым состоянием [10]), если из этого состояния невозможен переход ни в какое другое состояние автомата.

Положим
$$K^m / \ker \mathbf{h} = \{B_1, \dots, B_{|\mathbf{V}|}\}.$$

Предложение 3. Множество $\mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ ($\Theta \in \mathfrak{I}_k$) состоит из автоматов, имеющих состояния-источники тогда и только тогда, когда $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k} -$ семейство элементов множества $\mathcal{F}_{m,\mathbf{h}} \backslash \mathcal{F}_{m,\mathbf{h}}^{(0)}$, для которого существует такое $j \in \mathbb{N}_{|\mathbf{V}|}$, что истинно включение $\bigcup_{i \in \mathbb{Z}_k} Val \ \theta_i \subseteq K^m \backslash B_j$.

Доказательство. Предположим, что семейство $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k}$ элементов множества $\mathcal{F}_{m,\mathbf{h}}$ содержит элемент $\theta_r \in \mathcal{F}_{m,\mathbf{h}}^{(0)}$.

Из теоремы 2 вытекает, что входной символ r является подстановкой на множестве состояний любого автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$. Следовательно, ни

один автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ не имеет состояний-источников, что и требовалось доказать.

Предположим, что $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k}$ – семейство элементов множества $\mathcal{F}_{m,\mathbf{h}} \setminus \mathcal{F}_{m,\mathbf{h}}^{(0)}$. Пусть включение $\bigcup_{i \in \mathbb{Z}_k} Val \ \theta_i \subseteq K^m \setminus B_j$ ложно для всех $j \in \mathbb{N}_{|\mathbf{V}|}$.

Рассмотрим произвольное состояние $\mathbf{q} = \mathbf{h}(P) \ (P \in K^m)$ любого автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$.

Обозначим через B_j такой элемент фактор-множества $K^m/\ker\mathbf{h}$, что $P\in B_j$. Так как включение $\bigcup_{i\in\mathbb{Z}_k}Val\ \theta_i\subseteq K^m\backslash B_j$ ложно, то существуют такие $\widetilde{P}\in K^m$

и $r \in \mathbb{Z}_k$, что $\theta_r(\widetilde{P}) \in B_j$. Отсюда вытекает, что $\mathbf{h}(\theta_r(\widetilde{P})) = \mathbf{h}(P)$, т.е. состояние $\widetilde{\mathbf{q}} = \mathbf{h}(\widetilde{P})$ автомата M под действием входного символа r переходит в состояние \mathbf{q} . Следовательно, ни один автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ не имеет состояний-источников, что и требовалось доказать.

Пусть существует такое $j \in \mathbb{N}_{|\mathbf{V}|}$, что истинно включение $\bigcup_{i \in \mathbb{Z}_k} Val \ \theta_i \subseteq K^m \backslash B_j$.

Рассмотрим в произвольном автомате $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ состояние $\mathbf{q} = \mathbf{h}(P) \ (P \in B_i)$.

Так как включение $\bigcup_{i\in\mathbb{Z}_k}Val\;\theta_i\subseteq K^m\backslash B_j$ истинно, то $\theta_i(\widetilde{P})\notin B_j$ для любых

 $\widetilde{P} \in K^m$ и $i \in \mathbb{Z}_k$, т.е. $\mathbf{h}(\theta_i(\widetilde{P})) \neq \mathbf{h}(P) = \mathbf{q}$ для всех $\widetilde{P} \in K^m$ и $i \in \mathbb{Z}_k$. Это означает, что под действием любого входного символа $i \in \mathbb{Z}_k$ ни одно состояние $\widetilde{\mathbf{q}} = \mathbf{h}(\widetilde{P})$ ($\widetilde{P} \in K^m$) автомата M не переходит в состояние \mathbf{q} . Следовательно, \mathbf{q} – состояние-источник для любого автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$, что и требовалось доказать. \square

Предложение 4. Множество $\mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta) \ (\Theta \in \mathfrak{I}_k)$ состоит из автоматов, имеющих состояния-стоки тогда и только тогда, когда $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k}$ – семейство элементов множества $\mathcal{F}_{m,\mathbf{h}}$, для которого существует такое $j \in \mathbb{N}_{|\mathbf{V}|}$, что включение $\bigcup_{i \in \mathbb{Z}_k} Val \ (\theta_i|_{B_j}) \subseteq B_j$ истинно.

Доказательство. Предположим, что существует такое $j \in \mathbb{N}_{|\mathbf{V}|}$, что включение $\bigcup_{i \in \mathbb{Z}_+} Val\left(\theta_i|_{B_j}\right) \subseteq B_j$ истинно.

Рассмотрим в произвольном автомате $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ состояние $\mathbf{q} = \mathbf{h}(P) \ (P \in B_j).$

Так как включение $\bigcup_{i\in\mathbb{Z}_k}Val\ (\theta_i|_{B_j})\subseteq B_j$ истинно, то $\theta_i(\widetilde{P})\in B_j$ для всех $\widetilde{P}\in B_j$

и $i \in \mathbf{Z}_k$. Это означает, что под действием любого входного символа $i \in \mathbb{Z}_k$ состояние \mathbf{q} переходит в себя. Следовательно, \mathbf{q} — состояние-сток для любого автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$, что и требовалось доказать.

Предположим, что включение $\bigcup_{i\in\mathbb{Z}_k}Val\ (\theta_i|_{B_j})\subseteq B_j$ ложно для всех $j\in\mathbb{N}_{|\mathbf{V}|}.$

Рассмотрим произвольное состояние $\mathbf{q} = \mathbf{h}(P)$ $(P \in K^m)$ любого автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$.

Обозначим через B_j такой элемент фактор-множества $K^m/\ker\mathbf{h},$ что $P\in B_j.$ Так как включение $\bigcup Val\left(\theta_i|_{B_j}\right)\subseteq B_j$ ложно, то существуют такие $\widetilde{P}\in B_j$

и $r \in \mathbb{Z}_k$, что $\theta_r(\widetilde{P}) \not\in B_j$. Отсюда вытекает, что $\mathbf{h}(\theta_r(\widetilde{P})) \neq \mathbf{q}$, т.е. состояние \mathbf{q} автомата M под действием входного символа r переходит в состояние, отличное от \mathbf{q} . Следовательно, ни один автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ не имеет состоянийстоков, что и требовалось доказать.

Из доказательства предложений 3 и 4 вытекает, что структура графа переходов автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ ($\Theta \in \mathfrak{I}_k$) может быть исследована в терминах следующей теоретико-графовой конструкции.

Назовем следом автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ ($\Theta \in \mathfrak{I}_k$) направленный граф (возможно, с петлями) [11] $G_M = (K^m/\ker\mathbf{h},\Gamma_M)$, где $(B_{j_1},B_{j_2}) \in \Gamma_M$ $(j_1,j_2 \in \mathbb{N}_{|\mathbf{V}|})$ тогда и только тогда, когда существует такое $r \in \mathbb{Z}_k$, что истинно включение $\theta_r(B_{j_1}) \subseteq B_{j_2}$.

Ясно, что направленный граф G_M изоморфен направленному графу, полученному из графа переходов автомата M в результате удаления отметок всех дуг (изоморфизм этих направленных графов устанавливает отображение h). Отсюда вытекает, что, в частности, истинны следующие утверждения о свойствах автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta) \ (\Theta \in \mathfrak{I}_k)$:

- 1) автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ $(\Theta \in \mathfrak{I}_k)$ связный (соответственно, сильно связный) тогда и только тогда, когда граф G_M связный (соответственно, сильно
- 2) число компонент связности (соответственно, сильной связности) автомата $M \in$ $\mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)\cup\mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ $(\Theta\in\mathfrak{I}_k)$ совпадает с числом компонент связности (соответственно, сильной связности) графа G_M ;

3) диаметр и радиус графа переходов автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ $(\Theta \in \mathfrak{I}_k)$ совпадают, соответственно, с диаметром и радиусом графа G_M . Охарактеризуем свойства автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ $(\Theta \in \mathfrak{I}_k)$, которые существенно зависят как от функции переходов, так и от функции выходов

Два различных состояния автомата называются близнецами, если по любому входному символу они переходят в одно и то же состояние, и при этом переходе автомат выдает один и тот же выходной символ.

Предложение 5. Множество $\mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)\cup\mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ ($\Theta\in\mathfrak{I}_k$) состоит из автоматов, не имеющих состояний-близнецов, если семейство Θ содержит хотя бы один элемент, принадлежащий множеству $\mathcal{F}_{m,\mathbf{h}}^{(0)}$

Доказательство. Предположим, что семейство $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k}$ содержит элемент θ_r , принадлежащий множеству $\mathcal{F}_{m,\mathbf{h}}^{(0)}$.

Из теоремы 2 вытекает, что входной символ r является подстановкой на множестве состояний любого автомата $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$. Следовательно, ни один автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ не имеет состояний-близнецов, что и требовалось доказать. 🗆

Установим условия, при которых автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ ($\Theta \in \mathfrak{I}_k$) имеет состояния-близнецы.

Предложение 6. Пусть $\mathbf{v} = \mathbf{h}(\overrightarrow{\tau})$ ($\overrightarrow{\tau} \in K^m$) – полиномиальная параметризация многообразия $\mathbf{V} \in \mathcal{V}_{n,m}(\mathcal{K})$, а $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k}$ – семейство элементов множества $\mathcal{F}_{m,\mathbf{h}} \setminus \mathcal{F}_{m,\mathbf{h}}^{(0)}$. Автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)$ имеет состояния-близнецы тогда и только тогда, когда существуют такие $P_1, P_2 \in K^m$, что выполнены следующие три условия:

- 1) $P_1 \not\equiv P_2 \; (\ker \mathbf{h});$
- 2) $\theta_i(P_1) \equiv \theta_i(P_2)$ (ker **h**) для всех $i \in \mathbb{Z}_k$;
- 3) $P_1 \equiv P_2 \left(\bigcap_{i \in \mathbb{Z}_k} \ker(\mathbf{r}_i \circ \mathbf{h}) \right).$

Доказательство. Первое условие означает, что $\mathbf{q}_1 = \mathbf{h}(P_1)$ и $\mathbf{q}_2 = \mathbf{h}(P_2)$ – различные состояния автомата M. Второе условие означает, что состояния \mathbf{q}_1 и \mathbf{q}_2 автомата M по любому входному символу $i \in \mathbb{Z}_k$ переходят в одно и то же состояние. Третье условие означает, что при переходе из состояний \mathbf{q}_1 и \mathbf{q}_2 под действием любого входного символа $i \in \mathbb{Z}_k$ автомат M выдает один и тот же выходной символ. \square

Аналогично доказывается и следующее предложение.

Предложение 7. Пусть $\mathbf{v} = \mathbf{h}(\overrightarrow{\tau})$ ($\overrightarrow{\tau} \in K^m$) – полиномиальная параметризация многообразия $\mathbf{V} \in \mathcal{V}_{n,m}(\mathcal{K})$, а $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k}$ – семейство элементов множества $\mathcal{F}_{m,\mathbf{h}} \setminus \mathcal{F}_{m,\mathbf{h}}^{(0)}$. Автомат $M \in \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ имеет состояния-близнецы тогда и только тогда, когда существуют такие $P_1, P_2 \in K^m$, что выполнены следующие два условия:

- 1) $P_1 \not\equiv P_2 \; (\ker \mathbf{h});$
- 2) $\theta_i(P_1) \equiv \theta_i(P_2)$ (ker h) для всех $i \in \mathbb{Z}_k$.

Автомат называется 1-диагностируемым, если любые два его различных состояния различимы некоторым входным символом.

Установим условия, при которых автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta) \cup \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta) \ (\Theta \in \mathfrak{I}_k)$ является 1-диагностируемым.

Предложение 8. Пусть $\mathbf{v} = \mathbf{h}(\overrightarrow{\tau})$ ($\overrightarrow{\tau} \in K^m$) – полиномиальная параметризация многообразия $\mathbf{V} \in \mathcal{V}_{n,m}(\mathcal{K})$, а $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k} \in \mathfrak{I}_k$. Автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)$ является 1-диагностируемым тогда и только тогда, когда истинно равенство

$$\ker \mathbf{h} = \bigcap_{i \in \mathbb{Z}_k} \ker(\mathbf{r}_i \circ \mathbf{h}). \tag{10}$$

Доказательство. Из 3-го уравнения системы уравнений (6) вытекает, что автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)$ является 1-диагностируемым тогда и только тогда, когда, $\bigcap_{i \in \mathbb{Z}_k} \ker(\mathbf{r}_i|_{\mathbf{V}})$ – отношение равенства на множестве \mathbf{V} , т.е. когда

$$(\forall P, P' \in K^m)(P \not\equiv P' \text{ (ker } \mathbf{h}) \Leftrightarrow (\exists i \in \mathbb{Z}_k)(P \not\equiv P' \text{ (ker } (\mathbf{r}_i \circ \mathbf{h})))) \Leftrightarrow$$

$$\Leftrightarrow (\forall P, P' \in K^m)(P \not\equiv P' \text{ (ker } \mathbf{h}) \Leftrightarrow P \not\equiv P' \text{ (} \bigcap_{i \in \mathbb{Z}_k} \ker(\mathbf{r}_i \circ \mathbf{h}))). \tag{11}$$

Формула (11) эквивалентна формуле (10). Поэтому, автомат $M \in \mathcal{A}_{k,l}^{(1)}(\mathbf{V},\Theta)$ является 1-диагностируемым тогда и только тогда, когда истинно равенство (10), что и требовалось доказать. \square

Предложение 9. Пусть $\mathbf{v} = \mathbf{h}(\overrightarrow{\tau})$ ($\overrightarrow{\tau} \in K^m$) – полиномиальная параметризация многообразия $\mathbf{V} \in \mathcal{V}_{n,m}(\mathcal{K})$, а $\Theta = \{\theta_i\}_{i \in \mathbb{Z}_k} \in \mathfrak{I}_k$. Автомат $M \in \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ является 1-диагностируемым тогда и только тогда, когда истинно равенство

$$\ker \mathbf{h} = \bigcap_{i \in \mathbb{Z}_k} \ker(\mathbf{r} \circ \mathbf{h} \circ \theta_i). \tag{12}$$

Доказательство. Из системы (7) вытекает, что автомат $M \in \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ является 1-диагностируемым тогда и только тогда, когда, выполнено условие

$$(\forall P, P' \in K^m)(P \not\equiv P' (\ker \mathbf{h}) \Leftrightarrow (\exists i \in \mathbb{Z}_k)(P \not\equiv P' (\ker(\mathbf{r} \circ \mathbf{h} \circ \theta_i)))) \Leftrightarrow$$

$$\Leftrightarrow (\forall P, P' \in K^m)(P \not\equiv P' \text{ (ker } \mathbf{h}) \Leftrightarrow P \not\equiv P' \text{ (} \bigcap_{i \in \mathbb{Z}_k} \ker(\mathbf{r} \circ \mathbf{h} \circ \theta_i))). \tag{13}$$

Формула (13) эквивалентна формуле (12). Поэтому, автомат $M \in \mathcal{A}_{k,l}^{(2)}(\mathbf{V},\Theta)$ является 1-диагностируемым тогда и только тогда, когда истинно равенство (12), что и требовалось доказать. \square

4. Заключение. В работе охарактеризованы основные множества детерминированных автоматов Мили и Мура (групповые автоматы, автоматы, имеющие состояния источники, автоматы, имеющие состояния стоки, связные и сильно связные автоматы, автоматы, имеющие состояния-близнецы, 1-диагностируемые автоматы), определенные на траекториях произвольного полиномиально параметризованного многообразия над конечным кольцом.

Детальный анализ таких множеств автоматов при наличии тех или иных ограничений на множество траекторий и на отображения, определяющих функцию выхода автомата, является направлением дальнейших исследований.

- 1. *Алферов А.П., Зубов А.Ю., Кузъмин А.С. и др.* Основы криптографии. М.: Гелиос АРВ, 2002. 480 с.
- 2. *Харин Ю.С., Берник В.И., Матвеев Г.В. и др.* Математические и компьютерные основы криптологии. Минск: Новое знание, 2003. 382 с.
- 3. Василенко О.Н. Теоретико-числовые алгоритмы в криптографии. М.: МЦМНО, 2003. 328 с.
- 4. Болотов А.А., Гашков С.Б., Фролов А.Б. Элементарное введение в эллиптическую криптографию: протоколы криптографии на эллиптических кривых. М.: КомКнига, 2006. 280 с.
- 5. Eilenberg S. Automata, laguages and machines. Vol. A. NY: Academic Press, 1974. 451 p.
- 6. Eilenberg S. Automata, laguages and machines. Vol. B. NY: Academic Press, 1976. 387 p.
- 7. Скобелев В.В., Скобелев В.Г. Анализ шифрсистем. Донецк: ИПММ НАНУ, 2009. 479 с.
- 8. Скобелев В.В., Глазунов Н.М., Скобелев В.Г. Многообразия над кольцами. Теория и приложения. Донецк: ИПММ НАНУ, 2009. 323 с.

- 9. Скобелев В.В. Об автоматах на многообразиях над кольцом // Труды ИПММ НАНУ. Т. 24. 2012. С. 190-201.
- 10. Гилл А. Введение в теорию конечных автоматов. М.: Наука, 1966. 272 с.
- 11. Bollobás B. Modern graph theory. NY: Springer-Verlag, 1998. 394 p.

V. V. Skobelev

On automata over polynomially parametric varieties into a finite ring.

Mealy and Moore automata determined over trajectories into polynomially parametric variety over any finite ring are investigated. The sets of deterministic and non-deterministic automata are characterized. Properties of deterministic automata implied by supposition «variety is polynomially parametric» are investigated. The following sets of deterministic automata are characterized: group automata, automata with source-states, automata with flow-states, connected and strongly connected automata, automata with twins-states and automata with 1-distinguishable states.

Keywords: rings, polynomially parametric varieties, automata.

В.В. Скобелєв

Про автомати на поліноміально параметризованому многовиді над скінченним кільцем.

Досліджено автомати Мілі та Мура, визначені на траєкторіях поліноміально параметризованого многовиду над скінченним кільцем. Охарактеризовано множини детермінованих і недетермінованих автоматів. Досліджено ті властивості детермінованих автоматів, які випливають лише з наявності поліноміальної параметризації многовиду. Охарактеризовано такі множини детермінованих автоматів: групові автомати, автомати з станами-джерелами, автомати з станами-стоками, зв'язні та сильно зв'язні автомати, автомати з станами-близнюками, а також 1-діагностовні автомати.

Ключові слова: кільця, многовиди з поліноміальною параметризацією, автомати.

Ин-т прикл. математики и механики НАН Украины, Донецк vv_skobelev@iamm.ac.donetsk.ua

Получено 31.05.12