УДК 539.3

©2009. Е.В. Алтухов, М.В. Фоменко

УПРУГИЕ КОЛЕБАНИЯ ТРЕХСЛОЙНЫХ ПЛАСТИН СИММЕТРИЧНОГО СТРОЕНИЯ

В данной работе рассматриваются трехмерные задачи об установившихся колебаниях трехслойных изотропных пластин с жестко защемлёнными плоскими гранями. Полуобратным методом получены однородные решения системы уравнений движения в перемещениях. Исследованы дисперсионные уравнения, возникающие при построении потенциального и вихревого состояний, представлены зависимости фазовых и групповых скоростей мод.

Постановка задачи. Рассматривается задача об установившихся колебаниях пластины, составленной из трех изотропных слоев симметричного строения относительно ее серединной плоскости.

пластина симметричного строения

Отнесем пластину к координатам $\tilde{x}_1, \tilde{x}_2, \tilde{x}_3$ (рис.1), где \tilde{x}_3 – расстояние от серединной плоскости. Тогда $|x_3| \leq (h_1 + h_2)$, причем h_1 – толщина внешних одинаковых слоев, $2h_2$ – толщина внутреннего слоя. В дальнейшем величины, относящиеся к внешнему слою, будем обозначать индексом (1), к внутреннему – индексом (2). Физико-механические характеристики материалов слоев обозначим через \tilde{G}_m , ν_m (m = 1, 2), где \tilde{G}_m – модуль сдвига, а ν_m – коэффициент Пуассона, ρ_m – плотность материала, m – номер слоя.

Введем следующие безразмерные величины:

$$\begin{aligned} x_1 &= \widetilde{x}_1/R, \ x_2 &= \widetilde{x}_2/R, \ x_3 &= \widetilde{x}_3/h = \widetilde{x}_3/(\lambda R), \\ \lambda &= h/R, \ h = h_1 + h_2, \ \lambda_1 &= h_1/h, \ \lambda_2 &= h_2/h, \\ u_{i(m)}\left(x_1, x_2, x_3\right) &= \widetilde{u}_{i(m)}\left(\widetilde{x}_1, \widetilde{x}_2, \widetilde{x}_3\right)/R, \ \sigma_{ij(m)} &= \widetilde{\sigma}_{ij(m)}/\left(2\widetilde{G}_2\right), \ i, j = \overline{1, 3}, \ m = 1, 2 \\ G_m &= \widetilde{G}_m/\widetilde{G}_2, \ G_1 = G, \ G_2 = 1. \end{aligned}$$

Тогда задача об установившихся колебаниях рассматриваемой трехслойной пластины сводится к интегрированию уравнений движения

$$\begin{cases} \lambda^{-2}\partial_{3}^{2}u_{1(m)} + \left(D^{2} + \Omega_{m}^{2}/\lambda^{2}\right)u_{1(m)} + \nu_{0(m)}\partial_{1}\theta_{m} = 0, \\ \lambda^{-2}\partial_{3}^{2}u_{2(m)} + \left(D^{2} + \Omega_{m}^{2}/\lambda^{2}\right)u_{2(m)} + \nu_{0(m)}\partial_{2}\theta_{m} = 0, \\ \lambda^{-2}\partial_{3}^{2}u_{3(m)} + \left(D^{2} + \Omega_{m}^{2}/\lambda^{2}\right)u_{3(m)} + \lambda^{-1}\nu_{0(m)}\partial_{3}\theta_{m} = 0, \end{cases}$$
(1)

где

$$\theta_m = \partial_1 u_{1(m)} + \partial_2 u_{2(m)} + \lambda^{-1} \partial_3 u_{3(m)}, \quad \partial_i = \partial/\partial x_i \quad \left(i = \overline{1,3}\right), \quad D^2 = \partial_1^2 + \partial_2^2,$$

 $\nu_{0(m)} = 1/(1 - 2\nu_m), \quad \Omega_m^2 = h^2 \omega^2 \rho_m / \widetilde{G}_m = h^2 \omega^2 / c_{2(m)}^2, \quad c_{2(m)} = \sqrt{\widetilde{G}_m / \rho_m},$
 ω – круговая частота колебаний.

В силу имеющейся симметрии относительно серединной плоскости пластины ($x_3 = 0$) граничные условия имеют вид

$$u_{i(1)}(x_1, x_2, 1) = 0,$$

$$u_{i(1)}(x_1, x_2, \lambda_2) = u_{i(2)}(x_1, x_2, \lambda_2),$$

$$\sigma_{i3(1)}(x_1, x_2, \lambda_2) = \sigma_{i3(2)}(x_1, x_2, \lambda_2) \quad (i = \overline{1, 3}).$$
(2)

С использованием метода И.И.Воровича [1] однородные решения краевой задачи (1), (2) будем искать в виде суммы вихревого и потенциального состояний

$$u_{i(m)}^{\pm}(x_1, x_2, x_3) = u_{i(m)B}^{\pm}(x_1, x_2, x_3) + u_{i(m)\Pi}^{\pm}(x_1, x_2, x_3) \quad (i = \overline{1, 3}; \ m = 1, 2).$$

Знаки "+" и "-" относятся соответственно к симметричной и кососимметричной деформациям пластины относительно плоскости $x_3 = 0$.

Вихревое решение. Перемещения вихревого состояния имеют вид

$$u_{1(m)B}^{\pm}(x_1, x_2, x_3) = p_{(m)}^{\pm}(x_3) \ \partial_2 B^{\pm}(x_1, x_2),$$

$$u_{2(m)B}^{\pm} = -p_{(m)}^{\pm}(x_3) \ \partial_1 B^{\pm}(x_1, x_2), \quad u_{3(m)B}^{\pm} = 0.$$
(3)

Подставляя (3) в краевую задачу (1), (2), получаем уравнения для определения функций $B^{\pm}(x_1, x_2)$

$$D^{2}B^{\pm}(x_{1}, x_{2}) - \left(\delta^{\pm}/\lambda\right)^{2}B^{\pm}(x_{1}, x_{2}) = 0$$

и следующую спектральную задачу для нахождения собственных функций $p_{(m)}^{\pm}(x_3)$ и параметра δ^{\pm} :

$$p_{(m)}'(x_3) + l_{(m)}^2 p_{(m)}(x_3) = 0,$$

$$p_{(1)}(1) = 0, \quad p_{(1)}(\lambda_2) = p_{(2)}(\lambda_2), \quad Gp_{(1)}'(\lambda_2) = p_{(2)}'(\lambda_2),$$
(4)

где $l^2_{(m)} = \Omega^2_m + \delta^2$, а штрих здесь и далее означает производную по x_3 .

Собственные функции спектральной задачи (4) получаются такими

$$p_{(1)k}^{+}(x_{3}) = \cos l_{(2)k}^{+} \lambda_{2} \cdot \cos l_{(1)k}^{+}(\lambda_{2} - x_{3}) + \frac{1}{G} \frac{l_{(2)k}^{+}}{l_{(1)k}^{+}} \sin l_{(2)k}^{+} \lambda_{2} \cdot \sin l_{(1)k}^{+}(\lambda_{2} - x_{3}),$$

$$p_{(2)k}^{+}(x_{3}) = \cos l_{(2)k}^{+} x_{3},$$

$$p_{(1)k}^{-}(x_{3}) = \sin l_{(2)k}^{-} \lambda_{2} \cdot \cos l_{(1)k}^{-}(\lambda_{2} - x_{3}) - \frac{1}{G} \frac{l_{(2)k}^{-}}{l_{(1)k}^{-}} \cos l_{(2)k}^{-} \lambda_{2} \cdot \sin l_{(1)k}^{-}(\lambda_{2} - x_{3}),$$

$$p_{(2)k}^{+}(x_{3}) = \sin l_{(2)k}^{-} x_{3},$$

4

а собственные значения δ_k^\pm находятся из дисперсионных уравнений

$$-l_{(2)}^{+}\sin l_{(2)}^{+}\lambda_{2} \cdot \sin l_{(1)}^{+}\lambda_{1} + Gl_{(1)}^{+}\cos l_{(2)}^{+}\lambda_{2} \cdot \cos l_{(1)}^{+}\lambda_{1} = 0,$$

$$l_{(2)}^{-}\cos l_{(2)}^{-}\lambda_{2} \cdot \sin l_{(1)}^{-}\lambda_{1} + Gl_{(1)}^{-}\sin l_{(2)}^{-}\lambda_{2} \cdot \cos l_{(1)}^{-}\lambda_{1} = 0.$$
(5)

Окончательно для вихревого решения имеем

$$u_{1(m)B}^{\pm} = \sum_{k=1}^{\infty} p_{(m)k}^{\pm}(x_3) \ \partial_2 B_k^{\pm}, \quad u_{2(m)B}^{\pm} = -\sum_{k=1}^{\infty} p_{(m)k}^{\pm}(x_3) \ \partial_1 B_k^{\pm}, \quad u_{3(m)B}^{\pm} = 0.$$
(6)

При $\omega = 0$ уравнения (5) преобразуются к виду

$$(1+1/G)\cos\delta_k^+ + (1-1/G)\cos(2\lambda_2 - 1)\,\delta_k^+ = 0,(1+1/G)\sin\delta_k^- + (1-1/G)\sin(2\lambda_2 - 1)\,\delta_k^- = 0$$

и совпадают с известными [2]. В случа
е $\nu_1=\nu_2=\nu,\,G=1~(\widetilde{G}_1=\widetilde{G}_2=\widetilde{G}),\,\rho_1=\rho_2$ уравнения (5) принимают вид [3]

$$\cos\sqrt{\Omega^2 + (\delta^+)^2} = 0, \quad \sin\sqrt{\Omega^2 + (\delta^-)^2} = 0, \quad \Omega^2 = h^2 \omega^2 \rho / \widetilde{G}.$$

Потенциальное решение будем искать в виде

$$u_{j(m)\Pi}^{\pm}(x_1, x_2, x_3) = n_{(m)}^{\pm}(x_3) \ \partial_j C^{\pm}(x_1, x_2) \ (j = 1, 2), u_{3(m)\Pi}^{\pm}(x_1, x_2, x_3) = q_{(m)}^{\pm}(x_3) \ C^{\pm}(x_1, x_2).$$
(7)

Из соотношений (1), (2), (7) следует, что функции $C^{\pm}(x_1, x_2)$ удовлетворяют уравнениям

$$D^{2}C^{\pm}(x_{1}, x_{2}) - \left(\gamma^{\pm}/\lambda\right)^{2}C^{\pm}(x_{1}, x_{2}) = 0,$$

а для функций $n_{(m)}^{\pm}(x_3), q_{(m)}^{\pm}(x_3)$ получаем задачи на собственные значения

$$n_{(m)}'' + \left[\Omega_m^2 + \gamma^2 \left(1 + \nu_{0(m)}\right)\right] n_{(m)} + \lambda \nu_{0(m)} q_{(m)}' = 0,$$

$$q_{(m)}'' + \left(\Omega_m^2 + \gamma^2\right) / \left(1 + \nu_{0(m)}\right) q_{(m)} + \lambda^{-1} \gamma^2 \nu_{0(m)} / \left(1 + \nu_{0(m)}\right) n_{(m)}' = 0;$$

$$n_{(1)} (1) = 0, \quad q_{(1)} (1) = 0, \quad n_{(1)} (\lambda_2) = n_{(2)} (\lambda_2), \quad q_{(1)} (\lambda_2) = q_{(2)} (\lambda_2),$$
(8)

$$G\left[q_{(1)}(\lambda_{2}) + \lambda^{-1} n'_{(1)}(\lambda_{2})\right] = q_{(2)}(\lambda_{2}) + \lambda^{-1} n'_{(2)}(\lambda_{2}),$$

$$G\left[\lambda^{-1}\gamma^{2} \left(\nu_{0(1)} - 1\right) n_{(1)}(\lambda_{2}) + \left(\nu_{0(1)} + 1\right) q'_{(1)}(\lambda_{2})\right] =$$

$$= \lambda^{-1}\gamma^{2} \left(\nu_{0(2)} - 1\right) n_{(2)}(\lambda_{2}) + \left(\nu_{0(2)} + 1\right) q'_{(2)}(\lambda_{2}).$$
(9)

Общее решение системы (8) имеет вид

$$n_1^{\pm}(x_3) = H_1^{\pm} \cos \gamma_{1(1)}^{\pm} x_3 + H_2^{\pm} \sin \gamma_{1(1)}^{\pm} x_3 + H_3^{\pm} \cos \gamma_{2(1)}^{\pm} x_3 + H_4^{\pm} \sin \gamma_{2(1)}^{\pm} x_3,$$

$$q_1^{\pm}(x_3) = Q_1^{\pm} \sin \gamma_{1(1)}^{\pm} x_3 + Q_2^{\pm} \cos \gamma_{1(1)}^{\pm} x_3 + Q_3^{\pm} \sin \gamma_{2(1)}^{\pm} x_3 + Q_4^{\pm} \cos \gamma_{2(1)}^{\pm} x_3,$$

J	۲		١
		,	,

Е.В. Алтухов, М.В. Фоменко

$$n_{2}^{+}(x_{3}) = H_{5}^{+}\cos\gamma_{1(2)}^{+}x_{3} + H_{6}^{+}\cos\gamma_{2(2)}^{+}x_{3},$$

$$q_{2}^{+}(x_{3}) = Q_{5}^{+}\sin\gamma_{1(2)}^{+}x_{3} + Q_{6}^{+}\sin\gamma_{2(2)}^{+}x_{3},$$

$$n_{2}^{-}(x_{3}) = H_{5}^{-}\sin\gamma_{1(2)}^{-}x_{3} + H_{6}^{-}\sin\gamma_{2(2)}^{-}x_{3},$$

$$q_{2}^{-}(x_{3}) = Q_{5}^{-}\cos\gamma_{1(2)}^{-}x_{3} + Q_{6}^{-}\cos\gamma_{2(2)}^{-}x_{3}.$$
(10)

Здесь $\left(\gamma_{1(m)}^{\pm}\right)^2 = \Omega_m^2 / \left(1 + \nu_{0(m)}\right) + (\gamma^{\pm})^2, \quad \left(\gamma_{2(m)}^{\pm}\right)^2 = \Omega_m^2 + (\gamma^{\pm})^2.$ Произвольные постоянные $Q_i^{\pm}, \ \left(i = \overline{1,6}\right)$ выражаются через H_i^{\pm} :

$$\begin{split} Q_i^{\pm} &= A_i^{\pm} H_i^{\pm}, \\ A_1^{\pm} &= -\gamma_{1(1)}^{\pm} / \lambda, \ A_2^{\pm} &= \gamma_{1(1)}^{\pm} / \lambda, \ A_3^{\pm} &= -(\gamma^{\pm})^2 / \left(\lambda \gamma_{2(1)}^{\pm} \right), \\ A_4^{\pm} &= (\gamma^{\pm})^2 / \left(\lambda \gamma_{2(1)}^{\pm} \right), \ A_5^{\pm} &= \mp \gamma_{1(2)}^{\pm} / \lambda, \ A_6^{\pm} &= \mp (\gamma^{\pm})^2 / \left(\lambda \gamma_{2(2)}^{\pm} \right) \end{split}$$

Подставляя выражения (10) в граничные условия (9), получим однородные системы линейных алгебраических уравнений относительно H_i^{\pm} . Из условия равенства нулю определителей этих систем имеем дисперсионные уравнения

$$F^{\pm}(\gamma,\Omega) = \det\left\{a_{ij}^{\pm}\right\} = 0.$$
(11)

Здесь

$$\begin{split} a_{11}^{\pm} &= \cos \gamma_{1(1)}^{\pm}; \ a_{12}^{\pm} = \sin \gamma_{1(1)}^{\pm}; \ a_{13}^{\pm} = \cos \gamma_{2(1)}^{\pm}; \ a_{14}^{\pm} = \sin \gamma_{2(1)}^{\pm}; \ a_{15}^{\pm} = 0; \\ a_{16}^{\pm} &= 0; \ a_{21}^{\pm} = -\gamma_{1(1)}^{\pm} \sin \gamma_{1(1)}^{\pm}; \ a_{22}^{\pm} = \gamma_{1(1)}^{\pm} \cos \gamma_{1(1)}^{\pm}; \ a_{23}^{\pm} = -\frac{(\gamma^{\pm})^{2}}{\gamma_{2(1)}^{\pm}} \sin \gamma_{2(1)}^{\pm}; \\ a_{24}^{\pm} &= \frac{(\gamma^{\pm})^{2}}{\gamma_{2(1)}^{\pm}} \cos \gamma_{2(1)}^{\pm}; \ a_{25}^{\pm} = 0; \ a_{26}^{\pm} = 0; \ a_{31}^{\pm} = \cos \gamma_{1(1)}^{\pm} \lambda_{2}; \ a_{32}^{\pm} = \sin \gamma_{1(1)}^{\pm} \lambda_{2}; \\ a_{33}^{\pm} &= \cos \gamma_{2(1)}^{\pm} \lambda_{2}; \ a_{34}^{\pm} = \sin \gamma_{2(1)}^{\pm} \lambda_{2}; \ a_{35}^{\pm} = -\cos \gamma_{1(2)}^{+} \lambda_{2}, \ a_{35}^{\pm} = -\sin \gamma_{1(2)}^{-} \lambda_{2}; \\ a_{36}^{\pm} &= -\cos \gamma_{2(2)}^{\pm} \lambda_{2}, \ a_{36}^{\pm} = -\sin \gamma_{2(2)}^{\pm} \lambda_{2}; \ a_{41}^{\pm} &= -\gamma_{1(1)}^{\pm} \sin \gamma_{1(1)}^{\pm} \lambda_{2}; \\ a_{42}^{\pm} &= \gamma_{1(1)}^{\pm} \cos \gamma_{1(1)}^{\pm} \lambda_{2}; \ a_{43}^{\pm} &= -\frac{(\gamma^{\pm})^{2}}{\gamma_{2(1)}^{\pm}} \sin \gamma_{2(1)}^{\pm} \lambda_{2}; \ a_{44}^{\pm} &= \frac{(\gamma^{\pm})^{2}}{\gamma_{2(1)}^{\pm}} \cos \gamma_{2(1)}^{\pm} \lambda_{2}; \\ a_{45}^{\pm} &= \gamma_{1(2)}^{+} \sin \gamma_{1(2)}^{+} \lambda_{2}, \ a_{45}^{\pm} &= -\gamma_{1(2)}^{-} \cos \gamma_{1(2)}^{-} \lambda_{2}; \ a_{46}^{\pm} &= \frac{(\gamma^{+})^{2}}{\gamma_{2(2)}^{\pm}} \sin \gamma_{2(2)}^{\pm} \lambda_{2}, \\ a_{46}^{\pm} &= -\frac{(\gamma^{-})^{2}}{\gamma_{2(2)}^{-}} \cos \gamma_{2(2)}^{-} \lambda_{2}; \ a_{51}^{\pm} &= -2G\gamma_{1(1)}^{\pm} \sin \gamma_{1(1)}^{\pm} \lambda_{2}; \ a_{52}^{\pm} &= 2G\gamma_{1(1)}^{\pm} \cos \gamma_{1(1)}^{\pm} \lambda_{2}; \\ a_{45}^{\pm} &= -G\frac{(\gamma^{\pm})^{2} + (\gamma_{2(1)}^{\pm})^{2}}{\gamma_{2(1)}^{\pm}} \sin \gamma_{2(1)}^{\pm} \lambda_{2}; \ a_{54}^{\pm} &= G\frac{(\gamma^{\pm})^{2} + (\gamma_{2(1)}^{\pm})^{2}}{\gamma_{2(1)}^{\pm}} \cos \gamma_{2(1)}^{\pm} \lambda_{2}; \end{split}$$

6

$$\begin{aligned} a_{55}^{\pm} &= 2\gamma_{1(2)}^{\pm} \sin \gamma_{1(2)}^{\pm} \lambda_{2}, \quad a_{55}^{\pm} &= -2\gamma_{1(2)}^{\pm} \cos \gamma_{1(2)}^{\pm} \lambda_{2}; \\ a_{56}^{\pm} &= \frac{(\gamma^{\pm})^{2} + \left(\gamma_{2(2)}^{\pm}\right)^{2}}{\gamma_{2(2)}^{\pm}} \sin \gamma_{2(2)}^{\pm} \lambda_{2}, \quad a_{56}^{\pm} &= -\frac{(\gamma^{-})^{2} + \left(\gamma_{2(2)}^{\pm}\right)^{2}}{\gamma_{2(2)}^{\pm}} \cos \gamma_{2(2)}^{\pm} \lambda_{2}; \\ a_{61}^{\pm} &= G \left[(\gamma^{\pm})^{2} \left(\nu_{0(1)} - 1 \right) - \left(\gamma_{1(1)}^{\pm} \right)^{2} \left(\nu_{0(1)} + 1 \right) \right] \cos \gamma_{1(1)}^{\pm} \lambda_{2}; \\ a_{62}^{\pm} &= G \left[(\gamma^{\pm})^{2} \left(\nu_{0(1)} - 1 \right) - \left(\gamma_{1(1)}^{\pm} \right)^{2} \left(\nu_{0(1)} + 1 \right) \right] \sin \gamma_{1(1)}^{\pm} \lambda_{2}; \\ a_{63}^{\pm} &= -2G \left(\gamma^{\pm} \right)^{2} \cos \gamma_{2(1)}^{\pm} \lambda_{2}; \quad a_{64}^{\pm} &= -2G \left(\gamma^{\pm} \right)^{2} \sin \gamma_{2(1)}^{\pm} \lambda_{2}; \\ a_{65}^{\pm} &= - \left[\left(\gamma^{+} \right)^{2} \left(\nu_{0(2)} - 1 \right) - \left(\gamma_{1(2)}^{+} \right)^{2} \left(\nu_{0(2)} + 1 \right) \right] \cos \gamma_{1(2)}^{\pm} \lambda_{2}, \\ a_{65}^{\pm} &= - \left[\left(\gamma^{-} \right)^{2} \left(\nu_{0(2)} - 1 \right) - \left(\gamma_{1(2)}^{-} \right)^{2} \left(\nu_{0(2)} + 1 \right) \right] \sin \gamma_{1(2)}^{-} \lambda_{2}; \\ a_{66}^{\pm} &= 2 \left(\gamma^{+} \right)^{2} \cos \gamma_{2(2)}^{\pm} \lambda_{2}, \quad a_{66}^{\pm} &= 2 \left(\gamma^{-} \right)^{2} \sin \gamma_{2(2)}^{-} \lambda_{2}. \end{aligned}$$

В результате потенциальное решение примет вид

$$u_{j(m)\Pi}^{\pm}(x_1, x_2, x_3) = \sum_{p=1}^{\infty} n_{(m)p}^{\pm}(x_3) \ \partial_j C_p^{\pm}(x_1, x_2) \quad (j = 1, 2) ,$$

$$u_{3(m)\Pi}^{\pm} = \sum_{p=1}^{\infty} q_{(m)p}^{\pm}(x_3) \ C_p^{\pm}.$$
 (12)

Результаты численных исследований. Расчеты производились при следующих значениях параметров:

Случай 1. $\rho_1 = 2, 7 \cdot 10^3 \text{ кг/м}^3$, $\widetilde{G}_1 = 2, 61 \cdot 10^{10} \text{ H/m}^2$, $\nu_1 = 0, 35$ (алюминий); $\rho_2 = 18, 7 \cdot 10^3 \text{ кг/m}^3$, $\widetilde{G}_2 = 15, 3 \cdot 10^{10} \text{ H/m}^2$, $\nu_2 = 0, 29$ (вольфрам); $\lambda_1/\lambda_2 = 1/2$.

Случай 2. Внешний слой – вольфрам, а внутренний – алюминий. $\lambda_1/\lambda_2 = 1/2.$ Случай 3. Однородная пластина с коэффициентом Пуассона $\nu = 0, 29$ (алюминий). Случай 4. Однородная пластина с коэффициентом Пуассона $\nu = 0, 35$ (вольфрам). При этом

$$\begin{split} \Omega &= h\omega \sqrt{\frac{\rho_{cp}}{\widetilde{G}_{cp}}}, \ \rho_{cp} = \lambda_1 \rho_1 + \lambda_2 \rho_2, \ \widetilde{G}_{cp} = \lambda_1 \widetilde{G}_1 + \lambda_2 \widetilde{G}_2. \\ \Omega_1^2 &= \Omega^2 \frac{\rho_1}{\lambda_1 \rho_1 + \lambda_2 \rho_2} (\lambda_1 + \lambda_2 / G), \ \Omega_2^2 = \Omega^2 \frac{\rho_2}{\lambda_1 \rho_1 + \lambda_2 \rho_2} (\lambda_1 G + \lambda_2) \end{split}$$

На рис. 2 приведены соответствующие уравнению (5) для задачи "+" дисперсионные кривые – зависимости Ω от параметра δ . Рис. 2,а соответствует случаю 1, а рис. 2,6 – случаю 2.

Е.В. Алтухов, М.В. Фоменко

Рис. 2. Спектр частот симметричных сдвиговых волн в трехслойной пластине

Аналогично, на рис. 3,
а и 3,б изображены спектральные кривые (зависимости
 Ω от параметра γ), соответствующие уравнению (11). Сплошные линии соответствуют вещественным и чисто мнимым корням, штриховые – комплексным корням.

Рис. 3. Спектр частот симметричных продольных волн в трехслойной пластине

Для однослойной пластины из вольфрама и алюминия диаграммы продольных волн изображены на рис. 4,а и рис. 4,б, соответственно.

Рис. 4. Спектр частот симметричных продольных волн в однослойной пластине

В таблице приведены первые десять частот запирания (когда $\delta = 0$ или $\gamma = 0$): столбец 1 соответствует данным рис. 2,а; столбец 2 – рис. 2,6; столбец 3 – рис. 3,а; столбец 4 – рис. 3,6; столбец 5 – рис. 4,а; столбец 6 – рис. 4,6.

	Частоты запирания.							
Номер	Значения частот запирания							
частоты	1	2	3	4	5	6		
1	0,8164259	2,2685161	0,8164259	2,2685161	1,5707963	1,5707963		
2	4,7113982	4,7102804	4,7113982	4,7102804	4,7123890	4,7123890		
3	8,8517671	7,6784144	4,8546344	7,6458035	5,7765615	6,5397466		
4	$10,\!629598$	12,171777	8,8517671	7,6784144	7,8539816	7,8539816		
5	14,137061	14,152833	$10,\!629598$	11,411770	10,995574	10,995574		
6	18,402887	$17,\!646644$	12,757331	12,171777	11,553123	$13,\!079493$		
7	20,551643	21,990592	14,137061	14,152833	14,137167	14,137167		
8	23,572420	23,669487	18,402887	$17,\!646644$	17,278760	$17,\!278760$		
9	27,886703	27,623968	19,700704	20,464291	17,329684	19,619240		
10	30,521054	31,675240	20,551643	21,990592	20,420352	20,420352		

Важнейшими характеристиками распространяющихся мод являются фазовая c_f и групповая c_g скорости. В каждой точке ветви фазовая скорость представляется как [4]

$$c_f = \omega/k = ic \Omega/\gamma, \quad c = \sqrt{(\lambda_1 \widetilde{G}_1 + \lambda_2 \widetilde{G}_2)/(\lambda_1 \rho_1 + \lambda_2 \rho_2)}, \quad k = -ih\gamma.$$

Групповая скорость c_g распространяющихся мод согласно кинематическому определению задается равенством

$$c_g = d\omega/dk = ic \, d\Omega/d\gamma$$

и представляет собой тангенс угла наклона касательной к мнимому участку ветви в данной точке. На рис. 5–7 показаны изменения безразмерных фазовых и групповых скоростей распространяющихся мод $v_f = c_f/c$, $v_g = c_g/c$. Рис. 5,а и 5,б соответствуют случаю, изображенному на рис. 2,а; рис. 5,в и 5,г – рис. 2,б; рис. 6,а и 6,б – рис. 3,а; рис. 6,в, 6,г – рис. 3,б; рис. 7,а, 7,б – рис. 4,а; рис. 7,в, 7,г – рис. 4,б.

Рис. 5. Безразмерные фазовые и групповые скорости поперечных волн как функции от безразмерной частоты Ω

Анализ дисперсионных кривых, графиков изменения фазовых и групповых скоростей, частот запирания показывает, что по сравнению с однородной пластиной

Рис. 6. Безразмерные фазовые и групповые скорости продольных волн как функции от безразмерной частоты Ω

Рис. 7. Безразмерные фазовые и групповые скорости продольных волн как функции от безразмерной частоты Ω (Однослойная пластина)

происходят количественные и качественные изменения в характере распространения волн. Например, в трехслойной пластине в области низких частот появляется более одной действительной моды, изменяются значения и количество критических частот (в частности, частот запирания), имеет место более сильное сближение мод.

Изменение физико-механических свойств слоев (рис. 3) приводит к преобразованию спектра объемных волн. В частности, появляются кратные мнимые собственные значения (рис. 3,a), которые отсутствуют на рис. 3,б.

- 1. Аксентян О.К., Ворович И.И. Напряженное состояние плиты малой толщины // ПММ. 1966. Т.30, вып.5. С.963-970.
- 2. *Алтухов Е.В., Кулиш И.Е.* Равновесие трехслойной пластины с жесткими торцами // Вестник Донецк. ун-та. Сер. А. 2001. № 1. С.314-321.
- 3. Алтухов Е.В., Мысовский Ю.В., Панченко Ю.В. Трехмерные задачи установившихся колебаний изотропных пластин // Теоретическая и прикладная механика. – 1996. – Вып.26. – С.13-19.
- 4. *Гринченко В.Т., Мелешко В.В.* Гармонические колебания и волны в упругих телах. Киев: Наук. думка, 1981. 284с.

Донецкий национальный ун-т maxim_fom@mail.ru Получено 18.12.08