ISSN 0321-1975. Mexanuka TBepaoro tejga. 2004. Beim. 34

YK 62-50

(©2004. Veljko A. Vujicié¢
PROGRAMMED MOTION OF MECHANICAL SYSTEMS

The main results of this contribution are new methods of solving of adjoint systems of 6n differential nonlinear
equations and its application in classical and celestial mechanics. At first, we are observing a general dynamic
system of n differential equations of the first order, which contain n independent functions z(t) and n
unknown composite functions X (z(¢)). A programme of motion of such one is described by n independent
finite algebraic equations f(x) = 0. For realization of the control motion it is necessary to define functions
X (x) and within them also control functions. It is shown that such dynamic systems do not correspond to
mechanical systems. Defining of control motion of mechanical systems is much more complex. It is explained
which of the differential equations of motion are used, and what are the consequences. It is also manifested
that 3V Newton’s differential equations of motions and n = 3N —k, k < 3N, Lagrange’s differential equations
of second kind, or 2n Hamilton’s differential equations on manifolds, are not giving the same results at defining
of forces, being of the primary importance for control motion.

I1.B. Xapsaamon: Mudnl u metapusndeckue npecTapieHns Hen30eKHbl B CTaHOBJIE-
HUU HayKH, HO IIPH COBEPIIEHCTBOBAHUM €€ WX CTPEMATCSI YCTPAHUTH, ITPEoIo/IeBasl yCTa-
HOBUBIHINECA CTE€PCEOTUIIBI U JOI'MBIL. O,ZLHaKO 3a49aCTYIO UMEHHO UX W IOJIaral0T MCTHUHaMKU U
IMOTOMY He€ IIbITAIOTCA aHAJIU3UPOBATD.

Mathematical base. We observe the system of n differential equations (see, for example,
[1], p. 247),

df ()
dx
and n algebraic independent equations

=F(f,U)=F(f(x)) +U (1)

P(f,x) =0, (2)

where: z is the independent variable, f = (f1,..., f,) are functions of x, F(f) = (Fl(f), ce
F,(f)). With F(f) we will mark the known functions, and U = (U1, ..., U,) are the unknown
functions. In order to be able to integrate equations (1), it is necessary to determine functions
F. For solving that task, one can differentiate equations (2) on z, then

oPdf OP
of dv " ox ~
Further, according to (1), a system of n linear equations on F' is obtained
P oP
SFEN V) =5

From this equation at the well known conditions it is possible to determine the right sides
of differential equations (1) as functions of f(z) and independent variable x.

1. Dynamical systems. The term “dynamical system” is generally two-ways used.
First, it is a mathematical term for a system of differential equations of the first order, or a
smooth vector field on a differentiable manifold M

y=Y(y1), (3)
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d
where: ¢ is the natural parameter, y(t) = (y1(¢),...,ya(t)), v = d_gz{ are n dimensional vectors,

while Y (¢,y) are the known composite real functions of y(¢) and t. Second, it is a general
form of differential equations of motion of mechanical systems. Most frequently, these are
seen as the generalized Hamilton’s differential equations of the first order

OH OH
where ¢ = (¢'(t),...,¢"(t)) and p = (p1, ..., pn) are Hamilton’s variables on 2n dimensional

manifolds 7*M™. More precisely: q(t) € M™ are the generalized Lagrange’s independent
coordinates, and p(t) = A(q)q is the known linear form of the generalized velocities ¢. In
fact, equations (4) are Lagrange’s differential equations of the second kind and second order
on the configuration manifold M™ or tangent manifold (¢, q) € TM™

- =q @

Equations (4) and (5) do not contain all forces acting on material points. For their use it is
not sufficient only to find a kinetic energy. It is more important to find out how the manifold
M™ is defined, in order to know precisely what parts of motion are present. More general
and suitable equations for determination of control motion are so-called Newton’s equations
of motion, however these are differential equations of the second order.
Dynamical system (3) for control motion can be, according to systems (1) and (2),
presented in the form
y=Y(y,t)+U; (6)

P(y,t)=0, Pe Cct,

where Y (y, t) are functions known in advance, in contrast to functions U, which are unknown.
Determination of the right side of equations (6) and among them, of the unknown factors of
control U, is deduced from system (3)

orP. oOP

Pia—y +W—O,

or, according to equation (6),

oP JoP

From here, as it is obvious, it is easy to define functions U(y,t) needed for realization of
control motion of dynamical system (6).

2. Forces of programmed motion of mechanical system. Dynamical systems (3)
in mechanics have more composite and denominated structure. The very word “dynamic”
originating from a Greek word means science on forces, as dvvauis is signifying a force
producing a motion. Mechanical motion of body means moving a body from one place to
another with a velocity during some time. Let us assume that there are bodies characterized
by a mass m,, dim m = M; distance p, dimension L, and time ¢, dim ¢ = T. Here we
base the mathematical theory on Newton’s axioms. We consider motion of a system of N
bodies as the material points with masses m,,(v = 1,...,N), and the position vectors
r, = yle; + yley + yles = = y'e;, where e; are the orthonormal basic vectors.
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On the programmed motion of mechanical systems

Velocities are determined by vectors v, = 1, = y'e;. According to Newton’s second
axiom, there are N vectors equations

dv,
myﬁ = Fu, vy, € R37
or 3N related equations in the coordinate form
dy,(t) 1
= _Yw 6
dt m, (6)

where Y, = (Y}, Y2 Y?) are now 3N unknown coordinates of the vectors forces F,,.
In general, a programme of motion is made by a system of mutually independent
algebraic and kinematics equations:

Po(y(t) =0, r=1,....k, (8)
Po(y(t),y(t)) =0, v=1,... ks, (9)
PJ(Y):O, 0':1,...7]{,‘3; ]{31+l€2—|—k‘3:3N

Such programme of 3N equations and together with 3N differential equation of motion (7)
are providing a determination of 3V forces, producing a motion and 3N function of positions
Y(t), which seems to be pretty simple. Let us differentiate equations (8) and (9) so that

77 .4 ” , =0, 10
3N
. ap N op,
Pv = Z _Uyu yu =0. (11)
— Oy, < Oy

By the substitution of a second derivative j, from equations (7) in equations (10) and (11),
the system of 3V linear equations on Y, is obtained, based on which it is possible to determine
3N unknown Y, as functions of y,,9,. As resultant forces F, represent a total of all forces
acting on v material point, it is understood that among them forces of control motion are
present.

Notes: In the literature some modern and respectable authors are of opinion that the
functions of forces are known in advance, for example, these functions are determined
experimentally. This approach does correspond to neither our previous stipulation on de-
termination of force, nor Newton’s theory [2, p.27]. We consider first the Newton’s conditions
and other existing conditions and the needed programmes. In order to better understand the
proposed methods, let us discuss the famous problem of two bodies. It is well-known and
accepted that two bodies of masses m; and msy are reacting on each other according to the
so-called universal Newton’s law of gravitation

mime .

p*
Starting from the Newton’s axioms of mechanics and conditions, in which the distance p =
p(t) is defined according to some law, the more general force can be deducted

F=k

K =6,67-10""m’kg 1s72. (12)

mimes

)

m1+m2
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or
mimg

. '2
Fp—m1+m2(p pt°),

or myms

F = ,

P

where ” ) ,

o Y + PP — Uy

a mq + meo ’

Really, there is a show of reason in it.

Example. Two bodies problem. The motion of a system of two bodies, observed as
the the material points, is known in celestial mechanics as “two bodies problem”. Kepler’s
laws as well as Newton’s gravitational force, are the ones that relate to the motion of two
bodies mutually attracting each other. This is a simple mechanical system of two material
points, but its reduction to the Newton’s theorems of gravity is a significant problem.

The main goal is to determine the formula for the force of mutual attraction of bodies.
Thus we considered two material points whose masses are m; and ms, which move towards
each other so that the distance between their inertia centers is a time function p(t) =
|ra — rq]|. If ry and ry are the position vectors of mass points m; and mao, the distance is

po = |lr2 — r1]|,
because
p(t) =12 — 11 = ppy, (13)
where p, = P The main goal is to determine the formula for magnitude F' of the mutual

attraction force of bodies F; or Fs.
Solution. Differential equations of motion of two bodies are:

d2I'Z' .
mzﬁ :Fz‘, 1= 1,2, (14)
and, according to Newton’s third axiom
F, = —F,. (15)

The task consists of determination of forces F;, as functions of distance p(t). The derivative
of second order of the vector function (13) is

p =iy — i1 = (p— pf*)py + (pf + 240)n,, (16)

where 0 is the angle between the vector p and some fixed direction; ny L p,. Substituting
the derivatives 11 and ¥y from equation (14) into (16), according to (15), we obtain

or

202
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and further e m
———2Fy = (j — pf*)p, + (pf + 2p0)n,. (18)
AN UD)

By the scalar multiplication of relation (17) with the vector p,, we get
Fy = M — pf?), (19)

where
mimes

Comy +my
If we take into consideration that v2, = p® + p?62, the formula (19) can be written in the

form
mims

F=x = (20)
where o ) )
_ P + PP — Yy
mi+my

In order to make the generalization of these formulas more clear we present next examples.
1. Two bodies (as material points) are moving at the line z = 0,y = 0, i.e. at the axe z.
The distance between the bodies changes according to

p=2xy— 21 =1+ csinwt.

For this example we have § = 0 in formula (19), and

p=—wcsinwt = —w?(p — 1) = —w?(x9 — 21 — 1),
hence e
F=——22"p-1).
my — My

2. The bodies of the masses m; and msy move with respect to each other at the constant
distance p = R = const. Based on formulas (19) and (20), it follows that

v2 R20? . Ag? Am2 R3 m1ms
F=-MX_—_ = MR =-M—"—PR=-M—" = _
M R M R M M T M T2 R? / R2
where
o Am? R3
a (m1 + mg)Tz'
3. Let us consider

if p=ct+ R, 6 = const, then F' = 0; (21)
if p=—gt?, 0 =t', then F = My; (22)
if p* = 112, 0 = cot ', then ¢p, ¢y = const. (23)

From the condition (23) it follows that the size of the requested force is inversely proportional
to the squared distance p?, namely

F:M% (24)
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4. Let p(t) changes according to the law

p=a—ccoswt, w =0 =const

In this case
p = cw? coswt,

then
F=—-M(2p—a. (25)

As much as there is a resemblance of examples (21) and (22), that much examples (24)
and (25) are alike Kepler’s motion and Newton’s theorems of gravitation. Let’s dedicate more
attention to this question. Majority of scientists agree upon that Isaac Newton derived "law
of general gravitation", based on Kepler’s laws. At the first instance our formula (20) or (19)
differs much from formula (18). However, for the various conditions of change of distance
from formula (19) or (20), the different formulas of forces (21)-(25) follow. Formula (12) is
obtained as the consequence of formulas (19) only from the conditions of Kepler’s laws. In
order to prove it, let’s write Kepler’s laws on motion of planets around the Sun, using the
mathematical relations:

(t) b " ¢
= = —, a,b,e= const;
P 1+ ecosf(t)’ b= &% ’
. 2mab
p’0=C, C= WTG = const; (26)

a® = kT? k = const;

where p is the parameter of the elliptic trajectory, e is the excentricity, e < 1, a is the large
semi-axis of the ellipse, T' is time of rotation of planet around the Sun. According to the law
(26), it is obtained

: C2(p —

p = —becost = —(p 3 P)
p pbp
The substitution of these derivatives j and 6 in the formula (18) gives the "Newton law of

gravitation"in the classical form

mims
2
P

where, as it is known,
4m2a?
f= (my +mo)T?
So, in the fact, formula (27) appears as the consequence of formula (18), with the precision
of Kepler’s laws for the Sun planetary system.

Our approach to this problem, as it is shown, is not only formal, but it has significant
consequences. It is known that, as per standard formula: the force that the Sun is attracting
the Moon is bigger than the force that the Earth is attracting the Moon. According to our
formula (18) or (20), that paradox is removed, the Earth attracting force is multi times
bigger than the force the Sun is attracting the Moon.

3. Forces on configurations manifolds. Let us observe N material points of masses
my, (v =1,...,N). With respect to arbitrarily chosen pole O and orthonormal coordinate
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system (y, e), the position of the v-th point will be determined by the vector r, = y’e;. Let
the motion of the point be limited by £ < 3N of the bilateral constraints, or the programme,
which can be represented by means of the independent equations:

fulre,..ory, (1) =0, p=1,...k,

or
Lyt vt vl - s yuns R Y T(1)) = 0,

that is,
Lty %) =0, 0 =1(). (28)

Functions f, are ideally smooth and regular in the area constraining the material points. The
condition for the constraints’ independence is, in the simplest way, reflected in the velocity
conditions on the constraints:

0 .
:ﬂyz+

Ofu o _
oy’ oyP° 4

fu =0. (29)

These equations will be written in the following form:

%-1 afu-k_ afu -k+1+”__|_

8y1y +oe 3_yky - _(aykﬂ Dy3N

Ofu an , Ofu o
7+ 560 )-

From this system, linear with respect to velocities v, it is possible to determine k velocities
', ..., 9" by means of remaining 3N — k + 1 velocities y**!, ... 9" under the condition

that the determinant is

oy™

k

#0 (pym=1,...,k).
k

A multitude of ways, or, briefly, a manifold choice of sets of coordinates ¢®, by means of
which the position or configuration of the system’s points in a moment of time is determined,
suggests that a set of independent coordinates ¢ = (¢°, ¢',...,¢") € M™"! should be called
configurational manifolds. Accordingly, a set of coordinates ¢ and velocity ¢ = (¢°, ¢, ..., ¢")"
should be called tangential manifolds T'M™*!. The pencil of all the velocities vectors at the

. . D or
point ¢ will consequently be denoted as T,M™* which implies n 4+ 1 base vectors e at
q
each point upon manifolds M"*!. Hence, we will further consider two sets, namely M"*!
and TM™ ™, as well as the pencil T,M™"! of the linear vectors. For the sake of brevity, the

following notations are introduced [5]:
N =M™ M= M",

TN =TM™ TM=TM".

Considering this condition as well as the above-stated properties of functions f,,, it is possible,
according to the implicit functions theory, to determine from equations (4.1) k dependent

coordinates 3!, ..., y* by means of remaining 3N — k + 1 coordinates y**1,... 43" 4% The
choice of dependent and independent coordinates is arbitrary, along with a special choice
of ¢° coordinates, so that each of coordinates y', ...,V can itself be expressed as function

3N —k+1 of coordinates y. Since, as needed, constraints (28) can be expressed in curvilinear
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coordinate systems, the possibility of selecting independent coordinates is enlarged. If the
independent generalized coordinates are denoted by letters ¢",q¢!,...,q¢", it follows that
constraints (28) can be written down in the parametric form:

v =9 (" qd",....,q"), ¢ =1(t),

and also as
r, = I'V(qo7 ql7 o qh).

Velocity conditions (29) are substituted by relations

v - or, o,  Or, 4 R or, ., Or, .,
v aqoq aqlq aqnq - aqaq ’

These differential equations (see [4] and [5]) amount to n + 1, that is

d OE, 0K} .
J— — — — = s :17..., 9
dt 0¢’ aq’ Qi 0 "
d OE, 0K
kTR =04+ R 30
dt aqo aqo QO QO+ 05 ( )
where '
a )
Ou=Yi2L  i=01,....3N, a=0,1,... n.
0q”

are generalized forces, are reduced to the differential equations in the extended form since it
is clear that the kinetic energy is easy to set up with a,3 known inertia tensor.

For the systems with invariable constraints and with such potential energy F, that the
active forces are
0E,

le_aqzv

1=1,...,n,

equation (30) does not exist.

Motion on T*N. The notation T*N here implies 2n + 2 dimensional manifolds which
form n + 1 generalized coordinates ¢ = (¢, ¢',...,q") and n + 1 generalized impulses
p = (po,p1s---,0n)- Regarding the fact that ¢&¢ € TN denotes the tangent manifolds,
then the symbol T*AN is called the cotangent manifolds. In the literature other terms
can be sometimes found such as "phase space", "state space", "Hamilton’s variables", or
"cotangential spaces". If the starting point is the fact that the motion state is characterized
by the position coordinates of point ¢ as well as the coordinates of impulse p, then it could
be said that T*N is the state of the system’s motion or state manifolds. Since N’ = M+,
T*N can also be called the extended manifolds if it is necessary to stress its difference from
configurational manifolds M™ and its respective cotangent manifolds 7*M [4].

What is even more important than the term itself is the understanding and acceptance
that pg, p1, ..., pn are the impulses whose essence is determined by a mutually linear combi-
nation between generalized impulses p, and generalized velocities ¢*:

Pa=0api® & ¢ =a"ps.
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The next step in considering the action principle upon T*A implies the substitution of
velocities ¢* in the above-discussed relations by means of generalized impulses pg, because
the kinetic energy has the following forms:

1 1 1

Ep = §aaﬁqadﬁ = §pﬁqﬂ = 2@671%2%
where )
H=E,+E,= 5a%@p7 + E,(q). (31)
If the generalized forces (), are separated into potential and non-potential P,, then
oF
Qa = - P + Pa-
g~

It can be seen from formula H = Ej + Ep, that it is

o
apa - pa7
so that, due to linear combinations (31),
o OH
T p,
From here it follows oH
pa:—a—qa—f—Pa, (a:(),l,...,n),

these are differential equations of the system’s motion, and, along with transformations (30),
form the system of 2n + 2 differential equations:

oOH . OH

'i = — - P7;7 P = , 32
OH 0H
oP .
In the case, [4] or [5], that P, = 0 and P} = ~ 90 0, the function H can be extended to
q
the total mechanical energy
E=H+TP,

so that the system of differential equations of motion can be written in the canonical form:

OE ., OF

e’

) = ——=, = =, Oé:O,l,...7n.
pa aqa q apa

In the case of the system’s invariable constraints, when there is no rheonomic coordinate ¢°,
equations (33) vanish, while in equations (32) indices range from 1 to n.

The equations above are usually used for describing motion and motion control. But,
as we said in the comment of (4) and (5), the generalized forces are essential for motion
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control. See, for example, the motion of a material point of mass m along cyclic trajectory
22 +y* = r? z = 0 with velocity 2% + ? = v* = const.
In this example, the system of differential equations of motion in E? is

mi = X, my =Y, 0=~

It follows

1/2 v? 47 Ar2r3 m 423 mM
_ 2 2 _ _ _ _
F=(Y +Y> = = M T = T T T 2 (34)

With respect to the curvilinear cylindric coordinate system r, 6 for previous condition would
be obtained r = const, z =0; v = rf = const and manifold § € M*. On this manifold
M* only one differential equation exists

i@_%_Q
a o0 00 <V

where is 2E), = m(rf)?. Hence Qp = 0. So, if one does not know the manifolds (in question)
one could conclude that there are no forces, contradicting to (34).
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