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PROGRAMMED MOTION OF MECHANICAL SYSTEMS

The main results of this contribution are new methods of solving of adjoint systems of 6n di�erential nonlinear
equations and its application in classical and celestial mechanics. At �rst, we are observing a general dynamic
system of n di�erential equations of the �rst order, which contain n independent functions x(t) and n
unknown composite functions X(x(t)). A programme of motion of such one is described by n independent
�nite algebraic equations f(x) = 0. For realization of the control motion it is necessary to de�ne functions
X(x) and within them also control functions. It is shown that such dynamic systems do not correspond to
mechanical systems. De�ning of control motion of mechanical systems is much more complex. It is explained
which of the di�erential equations of motion are used, and what are the consequences. It is also manifested
that 3N Newton's di�erential equations of motions and n = 3N−k, k < 3N, Lagrange's di�erential equations
of second kind, or 2n Hamilton's di�erential equations on manifolds, are not giving the same results at de�ning
of forces, being of the primary importance for control motion.

Ï.Â. Õàðëàìîâ: Ìèôû è ìåòàôèçè÷åñêèå ïðåäñòàâëåíèÿ íåèçáåæíû â ñòàíîâëå-
íèè íàóêè, íî ïðè ñîâåðøåíñòâîâàíèè åå èõ ñòðåìÿòñÿ óñòðàíèòü, ïðåîäîëåâàÿ óñòà-
íîâèâøèåñÿ ñòåðåîòèïû è äîãìû. Îäíàêî çà÷àñòóþ èìåííî èõ è ïîëàãàþò èñòèíàìè è
ïîòîìó íå ïûòàþòñÿ àíàëèçèðîâàòü.

Mathematical base.We observe the system of n di�erential equations (see, for example,
[1], p. 247),

df(x)

dx
= F (f, U) = F(f(x)) + U (1)

and n algebraic independent equations

P(f, x) = 0, (2)

where: x is the independent variable, f = (f1, . . . , fn) are functions of x, F (f) =
(
F1(f), . . . ,

Fn(f)
)
. With F(f) we will mark the known functions, and U = (U1, . . . , Un) are the unknown

functions. In order to be able to integrate equations (1), it is necessary to determine functions
F . For solving that task, one can di�erentiate equations (2) on x, then

∂P
∂f

df

dx
+

∂P
∂x

= 0.

Further, according to (1), a system of n linear equations on F is obtained

∂P
∂f

(F(f) + U
)

= −∂P
∂x

.

From this equation at the well known conditions it is possible to determine the right sides
of di�erential equations (1) as functions of f(x) and independent variable x.

1. Dynamical systems. The term �dynamical system� is generally two-ways used.
First, it is a mathematical term for a system of di�erential equations of the �rst order, or a
smooth vector �eld on a di�erentiable manifold M

ẏ = Y (y, t), (3)
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where: t is the natural parameter, y(t) =
(
y1(t), . . . , yn(t)

)
, ẏ =

dy

dt
are n dimensional vectors,

while Y (t, y) are the known composite real functions of y(t) and t. Second, it is a general
form of di�erential equations of motion of mechanical systems. Most frequently, these are
seen as the generalized Hamilton's di�erential equations of the �rst order

ṗ = −∂H

∂q
, q̇ =

∂H

∂p
, (4)

where q = (q1(t), . . . , qn(t)) and p = (p1, . . . , pn) are Hamilton's variables on 2n dimensional
manifolds T ∗Mn. More precisely: q(t) ∈ Mn are the generalized Lagrange's independent
coordinates, and p(t) = A(q)q̇ is the known linear form of the generalized velocities q̇. In
fact, equations (4) are Lagrange's di�erential equations of the second kind and second order
on the con�guration manifold Mn or tangent manifold (q, q̇) ∈ TMn

d

dt

∂L

∂q̇
− ∂L

∂q
= Q∗. (5)

Equations (4) and (5) do not contain all forces acting on material points. For their use it is
not su�cient only to �nd a kinetic energy. It is more important to �nd out how the manifold
Mn is de�ned, in order to know precisely what parts of motion are present. More general
and suitable equations for determination of control motion are so-called Newton's equations
of motion, however these are di�erential equations of the second order.

Dynamical system (3) for control motion can be, according to systems (1) and (2),
presented in the form

ẏ = Y (y, t) + U ; (6)

P(y, t) = 0, P ∈ C1,

where Y (y, t) are functions known in advance, in contrast to functions U , which are unknown.
Determination of the right side of equations (6) and among them, of the unknown factors of
control U , is deduced from system (3)

Ṗ =
∂P
∂y

ẏ +
∂P
∂t

= 0,

or, according to equation (6),
∂P
∂y

(Y + U) = −∂P
∂t

.

From here, as it is obvious, it is easy to de�ne functions U(y, t) needed for realization of
control motion of dynamical system (6).

2. Forces of programmed motion of mechanical system. Dynamical systems (3)
in mechanics have more composite and denominated structure. The very word �dynamic�
originating from a Greek word means science on forces, as δυναµις is signifying a force
producing a motion. Mechanical motion of body means moving a body from one place to
another with a velocity during some time. Let us assume that there are bodies characterized
by a mass mν , dim m = M ; distance ρ, dimension L, and time t, dim t = T . Here we
base the mathematical theory on Newton's axioms. We consider motion of a system of N
bodies as the material points with masses mν , (ν = 1, . . . , N), and the position vectors
rν = y1

νe1 + y2
νe2 + y3

νe3 = = yi
νei, where ei are the orthonormal basic vectors.
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Velocities are determined by vectors vν = ṙν = ẏi
νei. According to Newton's second

axiom, there are N vectors equations

mν
dvν

dt
= Fν , vν ∈ R3,

or 3N related equations in the coordinate form

dẏν(t)

dt
=

1

mν

Yν , (6)

where Yν = (Y 1
ν , Y 2

ν , Y 3
ν ) are now 3N unknown coordinates of the vectors forces Fν .

In general, a programme of motion is made by a system of mutually independent
algebraic and kinematics equations:

Pr

(
y(t)

)
= 0, r = 1, . . . , k1, (8)

Pv

(
y(t), ẏ(t)

)
= 0, v = 1, . . . , k2, (9)

Pσ(Y ) = 0, σ = 1, . . . , k3; k1 + k2 + k3 = 3N.

Such programme of 3N equations and together with 3N di�erential equation of motion (7)
are providing a determination of 3N forces, producing a motion and 3N function of positions
Y i

ν (t), which seems to be pretty simple. Let us di�erentiate equations (8) and (9) so that

P̈r =
3N∑
µ=1

3N∑
ν=1

∂2Pr

∂yµ∂ynu
ẏµẏν +

3N∑
ν=1

∂Pr

∂yν

ÿν = 0, (10)

Ṗv =
3N∑
ν=1

∂Pv

∂yν

ẏν +
3N∑
ν=1

∂Pv

∂ẏν

ÿν = 0. (11)

By the substitution of a second derivative ÿν from equations (7) in equations (10) and (11),
the system of 3N linear equations on Yν is obtained, based on which it is possible to determine
3N unknown Yν as functions of yν , ẏν . As resultant forces Fν represent a total of all forces
acting on ν material point, it is understood that among them forces of control motion are
present.

Notes: In the literature some modern and respectable authors are of opinion that the
functions of forces are known in advance, for example, these functions are determined
experimentally. This approach does correspond to neither our previous stipulation on de-
termination of force, nor Newton's theory [2, p.27]. We consider �rst the Newton's conditions
and other existing conditions and the needed programmes. In order to better understand the
proposed methods, let us discuss the famous problem of two bodies. It is well-known and
accepted that two bodies of masses m1 and m2 are reacting on each other according to the
so-called universal Newton's law of gravitation

F = κ
m1m2

ρ2
; κ = 6, 67 · 10−11m3kg−1s−2. (12)

Starting from the Newton's axioms of mechanics and conditions, in which the distance ρ =
ρ(t) is de�ned according to some law, the more general force can be deducted

F =
m1m2

m1 + m2

ρ̈,
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or
Fρ =

m1m1

m1 + m2

(ρ̈− ρθ̇2),

or
F = χ

m1m2

ρ
,

where

χ =
ρ̇2 + ρρ̈− v2

or

m1 + m2

.

Really, there is a show of reason in it.
Example. Two bodies problem. The motion of a system of two bodies, observed as

the the material points, is known in celestial mechanics as �two bodies problem�. Kepler's
laws as well as Newton's gravitational force, are the ones that relate to the motion of two
bodies mutually attracting each other. This is a simple mechanical system of two material
points, but its reduction to the Newton's theorems of gravity is a signi�cant problem.

The main goal is to determine the formula for the force of mutual attraction of bodies.
Thus we considered two material points whose masses are m1 and m2, which move towards
each other so that the distance between their inertia centers is a time function ρ(t) =
‖r2 − r1‖. If r1 and r2 are the position vectors of mass points m1 and m2, the distance is

ρ0 = ‖r2 − r1‖,

because
ρ(t) = r2 − r1 = ρρ0, (13)

where ρ0 =
ρ

ρ
. The main goal is to determine the formula for magnitude F of the mutual

attraction force of bodies F1 or F2.
Solution. Di�erential equations of motion of two bodies are:

mi
d2ri

dt2
= Fi, i = 1, 2, (14)

and, according to Newton's third axiom

F1 = −F2. (15)

The task consists of determination of forces Fi, as functions of distance ρ(t). The derivative
of second order of the vector function (13) is

ρ̈ = r̈2 − r̈1 = (ρ̈− ρθ̇2)ρ0 + (ρθ̈ + 2ρ̇θ̇)n0, (16)

where θ is the angle between the vector ρ and some �xed direction; n0 ⊥ ρ0. Substituting
the derivatives r̈1 and r̈2 from equation (14) into (16), according to (15), we obtain

F2

m2

+
F2

m1

= ρ̈,

or
F2 = −F1 =

m1m2

m1 + m2

ρ̈, (17)
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and further
m1 + m2

m1m2

F2 = (ρ̈− ρθ̇2)ρ0 + (ρθ̈ + 2ρ̇θ̇)n0. (18)

By the scalar multiplication of relation (17) with the vector ρ0, we get

Fρ = M(ρ̈− ρθ̇2), (19)

where
M =

m1m2

m1 + m2

.

If we take into consideration that v2
or = ρ̇2 + ρ2θ̇2, the formula (19) can be written in the

form
F = χ

m1m2

ρ
, (20)

where

χ =
ρ̇2 + ρρ̈− v2

or

m1 + m2

.

In order to make the generalization of these formulas more clear we present next examples.
1. Two bodies (as material points) are moving at the line z = 0, y = 0, i.e. at the axe x.

The distance between the bodies changes according to

ρ = x2 − x1 = l + c sin ωt.

For this example we have θ̇ = 0 in formula (19), and

ρ̈ = −ω2c sin ωt = −ω2(ρ− l) = −ω2(x2 − x1 − l),

hence
F = − m1m2

m1 −m2

ω2(ρ− l).

2. The bodies of the masses m1 and m2 move with respect to each other at the constant
distance ρ = R = const. Based on formulas (19) and (20), it follows that

F = −Mv2
0r

R
= −MR2θ̇2

R
= −MRθ̇2 = −M4π2

T
R = −M4π2R3

T 2R2
= −f

m1m2

R2
,

where

f =
4π2R3

(m1 + m2)T 2
.

3. Let us consider
if ρ = ct + R, θ = const, then F = 0; (21)

if ρ = −gt2, θ̇ = t−1, then F = Mg; (22)

if ρ3 = c1t
2, θ̇ = c2t

−1, then c1, c2 = const. (23)

From the condition (23) it follows that the size of the requested force is inversely proportional
to the squared distance ρ2, namely

F = MC

ρ2
. (24)
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4. Let ρ(t) changes according to the law

ρ = a− c cos ωt, ω = θ̇ = const

In this case
ρ̈ = cω2 cos ωt,

then
F = −M(2ρ− a). (25)

As much as there is a resemblance of examples (21) and (22), that much examples (24)
and (25) are alike Kepler's motion and Newton's theorems of gravitation. Let's dedicate more
attention to this question. Majority of scientists agree upon that Isaac Newton derived "law
of general gravitation", based on Kepler's laws. At the �rst instance our formula (20) or (19)
di�ers much from formula (18). However, for the various conditions of change of distance
from formula (19) or (20), the di�erent formulas of forces (21)-(25) follow. Formula (12) is
obtained as the consequence of formulas (19) only from the conditions of Kepler's laws. In
order to prove it, let's write Kepler's laws on motion of planets around the Sun, using the
mathematical relations:

ρ(t) =
p

1 + e cos θ(t)
, p =

b2

a
, a, b, e = const;

ρ2θ̇ = C, C =
2πab

T
= const; (26)

a3 = kT 2, k = const;

where p is the parameter of the elliptic trajectory, e is the excentricity, e ≤ 1, a is the large
semi-axis of the ellipse, T is time of rotation of planet around the Sun. According to the law
(26), it is obtained

ρ̈ =
C

p
θ̇e cos θ =

C2(p− ρ)

pρ3
.

The substitution of these derivatives ρ̈ and θ̇ in the formula (18) gives the "Newton law of
gravitation"in the classical form

F = f
m1m2

ρ2
, (27)

where, as it is known,

f =
4π2a3

(m1 + m2)T 2
.

So, in the fact, formula (27) appears as the consequence of formula (18), with the precision
of Kepler's laws for the Sun planetary system.

Our approach to this problem, as it is shown, is not only formal, but it has signi�cant
consequences. It is known that, as per standard formula: the force that the Sun is attracting
the Moon is bigger than the force that the Earth is attracting the Moon. According to our
formula (18) or (20), that paradox is removed, the Earth attracting force is multi times
bigger than the force the Sun is attracting the Moon.

3. Forces on con�gurations manifolds. Let us observe N material points of masses
mν (ν = 1, . . . , N). With respect to arbitrarily chosen pole O and orthonormal coordinate
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system (y, e), the position of the ν-th point will be determined by the vector rν = yi
νei. Let

the motion of the point be limited by k ≤ 3N of the bilateral constraints, or the programme,
which can be represented by means of the independent equations:

fµ(r1, . . . , rN , τ(t)) = 0, µ = 1, . . . , k,

or
fµ(y1

1, y
2
1, y

3
1; . . . ; y

1
N , y2

N , y3
N , τ(t)) = 0,

that is,
fµ(y1, . . . , y3N , y0) = 0, y0 = τ(t). (28)

Functions fµ are ideally smooth and regular in the area constraining the material points. The
condition for the constraints' independence is, in the simplest way, re�ected in the velocity
conditions on the constraints:

ḟµ =
∂fµ

∂yi
ẏi +

∂fµ

∂y0
ẏ0 = 0. (29)

These equations will be written in the following form:

∂fµ

∂y1
ẏ1 + · · ·+ ∂fµ

∂yk
ẏk = −

( ∂fµ

∂yk+1
ẏk+1 + · · ·+ ∂fµ

∂y3N
ẏ3N +

∂fµ

∂y0
ẏ0

)
.

From this system, linear with respect to velocities ẏ, it is possible to determine k velocities
ẏ1, . . . , ẏk by means of remaining 3N − k + 1 velocities ẏk+1, . . . , ẏ3N under the condition
that the determinant is ∥∥∥∥ ∂fµ

∂ym

∥∥∥∥k

k

6= 0 (µ, m = 1, . . . , k).

A multitude of ways, or, brie�y, a manifold choice of sets of coordinates qα, by means of
which the position or con�guration of the system's points in a moment of time is determined,
suggests that a set of independent coordinates q = (q0, q1, . . . , qn) ∈ Mn+1 should be called
con�gurational manifolds. Accordingly, a set of coordinates q and velocity q̇ = (q̇0, q̇1, . . . , q̇n)T

should be called tangential manifolds TMn+1. The pencil of all the velocities vectors at the

point q will consequently be denoted as TqM
n+1 which implies n + 1 base vectors

∂r

∂qα
at

each point upon manifolds Mn+1. Hence, we will further consider two sets, namely Mn+1

and TMn+1, as well as the pencil TqM
n+1 of the linear vectors. For the sake of brevity, the

following notations are introduced [5]:

N = Mn+1, M = Mn,

TN = TMn+1, TM = TMn.

Considering this condition as well as the above-stated properties of functions fµ, it is possible,
according to the implicit functions theory, to determine from equations (4.1) k dependent
coordinates y1, . . . , yk by means of remaining 3N − k + 1 coordinates yk+1, . . . , y3N , y0. The
choice of dependent and independent coordinates is arbitrary, along with a special choice
of q0 coordinates, so that each of coordinates y1, . . . , y3N can itself be expressed as function
3N−k+1 of coordinates y. Since, as needed, constraints (28) can be expressed in curvilinear
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coordinate systems, the possibility of selecting independent coordinates is enlarged. If the
independent generalized coordinates are denoted by letters q0, q1, . . . , qn, it follows that
constraints (28) can be written down in the parametric form:

yi = yi(q0, q1, . . . , qn), q0 = τ(t),

and also as

rν = rν(q
0, q1, . . . , qn).

Velocity conditions (29) are substituted by relations

vν =
∂rν

∂q0
q̇0 +

∂rν

∂q1
q̇1 + · · ·+ ∂rν

∂qn
q̇n =

∂rν

∂qα
q̇α,

These di�erential equations (see [4] and [5]) amount to n + 1, that is

d

dt

∂Ek

∂q̇i
− ∂Ek

∂qi
= Qi, i = 1, . . . , n,

d

dt

∂Ek

∂q̇0
− ∂Ek

∂q0
= Q0 = Q∗

0 + R0, (30)

where

Qα = Yi
∂yi

∂qα
, i = 0, 1, . . . , 3N, α = 0, 1, . . . , n.

are generalized forces, are reduced to the di�erential equations in the extended form since it
is clear that the kinetic energy is easy to set up with aαβ known inertia tensor.

For the systems with invariable constraints and with such potential energy Ep that the
active forces are

Qi = −∂Ep

∂qi
, i = 1, . . . , n,

equation (30) does not exist.
Motion on T ∗N . The notation T ∗N here implies 2n + 2 dimensional manifolds which

form n + 1 generalized coordinates q = (q0, q1, . . . , qn) and n + 1 generalized impulses
p = (p0, p1, . . . , pn). Regarding the fact that q&q̇ ∈ TN denotes the tangent manifolds,
then the symbol T ∗N is called the cotangent manifolds. In the literature other terms
can be sometimes found such as "phase space", "state space", "Hamilton's variables", or
"cotangential spaces". If the starting point is the fact that the motion state is characterized
by the position coordinates of point q as well as the coordinates of impulse p, then it could
be said that T ∗N is the state of the system's motion or state manifolds. Since N = Mn+1,
T ∗N can also be called the extended manifolds if it is necessary to stress its di�erence from
con�gurational manifolds Mn and its respective cotangent manifolds T ∗M [4].

What is even more important than the term itself is the understanding and acceptance
that p0, p1, . . . , pn are the impulses whose essence is determined by a mutually linear combi-
nation between generalized impulses pα and generalized velocities q̇α:

pα = aαβ q̇β ⇔ q̇α = aαβpβ.
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The next step in considering the action principle upon T ∗N implies the substitution of
velocities q̇α in the above-discussed relations by means of generalized impulses pβ, because
the kinetic energy has the following forms:

Ek =
1

2
aαβ q̇αq̇β =

1

2
pβ q̇β =

1

2
aβγpβpγ,

where

H = Ek + Ep =
1

2
aβγpβpγ + Ep(q). (31)

If the generalized forces Qα are separated into potential and non-potential Pα, then

Qα = −∂Ep

∂qα
+ Pα.

It can be seen from formula H = Ek + Ep, that it is

∂H

∂pα

= aαβpα,

so that, due to linear combinations (31),

q̇α =
∂H

∂pa

.

From here it follows

ṗα = −∂H

∂qα
+ Pα, (α = 0, 1, . . . , n),

these are di�erential equations of the system's motion, and, along with transformations (30),
form the system of 2n + 2 di�erential equations:

ṗi = −∂H

∂qi
+ Pi, q̇i =

∂H

∂pi

, (32)

ṗ0 = −∂H

∂q0
+ P0, q̇0 =

∂H

∂p0

. (33)

In the case, [4] or [5], that Pi = 0 and P ∗
0 = −∂P

∂q0
= 0, the function H can be extended to

the total mechanical energy
E = H + P ,

so that the system of di�erential equations of motion can be written in the canonical form:

ṗα = − ∂E

∂qα
, q̇α =

∂E

∂pα

, α = 0, 1, . . . , n.

In the case of the system's invariable constraints, when there is no rheonomic coordinate q0,
equations (33) vanish, while in equations (32) indices range from 1 to n.

The equations above are usually used for describing motion and motion control. But,
as we said in the comment of (4) and (5), the generalized forces are essential for motion
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control. See, for example, the motion of a material point of mass m along cyclic trajectory
x2 + y2 = r2, z = 0 with velocity ẋ2 + ẏ2 = v2 = const.

In this example, the system of di�erential equations of motion in E3 is

mẍ = X, mÿ = Y, 0 = Z.

It follows

F =
(
Y 2 + Y 2

)1/2

= −m
v2

r
= −m

4π2

T 2
r = −4π2r3

T 2

m

r2
= −4π2r3

MT 2

mM

r2
. (34)

With respect to the curvilinear cylindric coordinate system r, θ for previous condition would
be obtained r = const, z = 0; v = rθ̇ = const and manifold θ ∈ M1. On this manifold
M1 only one di�erential equation exists

d

dt

∂Ek

∂θ̇
− ∂Ek

∂θ
= Qθ,

where is 2Ek = m(rθ̇)2. Hence Qθ = 0. So, if one does not know the manifolds (in question)
one could conclude that there are no forces, contradicting to (34).
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