УДК 531/532

©2003. Н.Н. Кизилова, Е.П. Кравченко

ИССЛЕДОВАНИЕ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ В ДВУМЕРНЫХ РАСТУЩИХ КОНТИНУУМАХ

В работе представлена модель растущего биологического материала, основанная на модифицированной модели Максвелла вязкоупругой среды. Проанализированы точные решения статической задачи для двумерного растущего континуума. Получено интегральное соотношение для реологических параметров модели и выделены два типа ненапряженного роста. На основании полученных соотношений проведен анализ данных кинематики роста листа растений и показано, что известное из литературы увеличение угла при основании листовой пластинки может быть связано не только с неоднородным ростом, но и с однородным анизотропным ростом. Проведены оценки напряжений, возникающих на границе между растущими основной тканью и линейным проводящим элементом при различии их скоростей роста для случаев, когда основная ткань занимает полуплоскость и клиновидную область. Показано, что поле напряжений может определять систему обратных связей, обеспечивающих согласованность роста отдельных элементов листа.

Введение. Внешние физические воздействия влияют на рост, развитие и адаптацию биологических тканей [1–3]. Внутренние механические напряжения, возникающие вследствие неоднородности ростовых процессов и динамической активности клеток, являются одним из основных регуляторов биологического морфогенеза. Стимулирующее действие растяжения и угнетающее действие сжатия на рост тканей исследовано экспериментально и используется в медицинской практике. В тканях растений механорецепция обусловлена внутриклеточными процессами [4,5] и играет важную роль в ходе роста и развития органов растений [6–8]. В последнее время интерес к исследованию влияния механических факторов на рост усилился в связи с возможностями изменения механических характеристик отдельных тканей путем генетической модификации растений [9].

С точки зрения механики лист является анизотропным композитным материалом, армированным волокнами. Волокна представлены системой жилок, содержащих проводящие элементы, которые обеспечивают транспорт жидкости к клеткам [10]. Основной объем материала листа представлен клетками мезофилла. В ходе роста деление и растяжение клеток проводящих элементов и основной ткани происходят согласованно, но по индивидуальным программам. Клетки основной ткани у подавляюще-

Рис. 1. Схема организации клеточных стенок в тканях листа. 1 – клетки основной ткани, 2 – проводящие элементы.

го большинства видов растений изометрические, в то время как для проводящих эле-

ментов характерен анизотропный рост с образованием клеток, вытянутых вдоль одной оси. На границе между двумя типами тканей наблюдается переход от вытянутых к округлым клеткам (рис.1). Изменение механических свойств клеточных стенок путем генетической модификации приводит к изменению формы и динамики роста клеток и листа в целом [9,10]. Механические напряжения, возникающие при несогласованности роста на границе между волокнами и основной тканью, могут играть роль механохимических регуляторов роста [11,12]. Одна из гипотез связана с возможностью ориентации новых клеточных стенок, образующихся при делениях клеток, в соответствии с направлением линий главных напряжений в растущем материале, что обеспечивается механизмами на клеточном уровне [3–6]. В настоящей работе представлены результаты экспериментального изучения закономерностей роста листа ряда растений и теоретического исследования роста на основе моделей механики растущих континуумов.

1. Исследование кинематики роста листа. Теоретическое и экспериментальное исследование биологического роста связано с подходами механики сплошных сред. При этом с растущим телом связывается собственная система координат и определяются координаты фиксированных точек тела (ξ_1, ξ_2, ξ_3) в некоторый начальный момент времени t₀. В качестве точек либо выбираются естественные метки, которые для листа растения могут быть связаны с точками пересечения проводящих элементов [13, 14], либо наносятся специальные искусственные метки [15]. При этом зависимости $x_i = x_i (t, \xi_1, \xi_2, \xi_3)$, i = 1, 2, 3, где (x_1, x_2, x_3) – координаты точек в неподвижной системе координат, могут рассматриваться как закон движения растущего тела. Путем дифференцирования полученных в ходе исследования зависимостей $x_i = x_i (t, \xi_1, \xi_2, \xi_3)$ можно определить скорости $v_i = \partial x_i / \partial t$ ростовых перемещений, компоненты тензора скоростей деформаций и другие механические характеристики [12]. Следует отметить, что существующие в механике исследования роста композитных материалов [16] связаны с наращиваемыми телами и являются примером поверхностного роста, в то время как для биологических материалов в большей мере свойственен объемный рост [1], связанный с изменением объемов инфинитезимальных элементов среды, содержащих клетки и внеклеточное вешество.

Нами исследована кинематика роста нескольких типов листьев (Abutilon G., Plectrantus L., Tropaeolum M.) путем обработки изображений растущего листа, выполненных через равные промежутки времени (1–2 сут.), начиная с момента полного развертывания листовой пластинки [14]. С каждым изображением связывалась неподвижная система координат (для определенности полярная система (r, ϑ)), начало которой выбиралось в точке крепления черешка к листовой пластинке, а одна из осей была направлена вдоль оси симметрии листа. На поверхности листа фиксировались 450–600 естественных меток, координаты которых определялись на оцифрованных изображениях с помощью компьютерных методов обработки изображений. Характерные зависимости $v_{r,\vartheta} = v_{r,\vartheta} (r, \vartheta)$, полученные в ходе статистической обработки результатов измерений, приведены на рис. 2. Во всех исследованных случаях распределение $v_r = v_r (r)$ соответствовало линейной зависимости, причем угол с осью абсцисс монотонно возрастал на первой стадии роста (стадия ускорения) и убывал на второй (стадия замедления роста). На основании результатов исследования можно сделать следующие выводы:

1) Ростовые деформации листьев Abutilon G., Tropaeolum M. представляют собой преобразования подобия, где $v_r(t, r, \vartheta) = a_1(t)r$, $v_{\vartheta} \approx 0$ в пределах точности измерений (рис. 2, *a*). В данном случае анизотропные материалы демонстрируют однородный

изотропный рост, что может обеспечиваться при условии целостности ткани только согласованностью делений и растяжений клеток разных типов и формы.

2) У листьев Plectrantus L. наблюдается отличная кинематика роста (рис. 2, δ), с ненулевой аксиальной компонентой скорости $v_{\vartheta}(t, r, \vartheta) = a_2(t) r \vartheta$.

Оба типа роста описаны в литературе [17], причем второй часто рассматривается как заключительная стадия изначально однородного изотропного роста, связанная с развертыванием основания листовой пластинки. Считается, что эта стадия определяется изменениями скоростей деления клеток на отдельных участках пластинки, то есть проявлениями неоднородного роста, однако механизмы различий в кинематике разных типов роста остаются малоизученными.

2. Континуальные модели роста в механике. В механике растущий материал рассматривается как деформируемая вязкоупругая сплошная среда [1, 12]. При этом тензор деформаций ε_{ik} среды представляется в виде суммы упругих ε_{ik}^{e} и ростовых ε_{ik}^{g} деформаций: $\varepsilon_{ik} = \varepsilon_{ik}^{e} + \varepsilon_{ik}^{g}$, причем в соответствии с эмпирическими данными скорости ростовых деформаций линейно зависят от напряжений $\dot{\varepsilon}_{ik}^{g} = A_{ik} + B_{iklm}\sigma_{lm}$, а упругие деформации описываются законом Гука для материала $\varepsilon_{ik}^{e} = K_{iklm}\sigma_{lm}$, где K_{iklm} – матрица податливости, B_{iklm} – матрица обратных (ростовых) вязкостей, A_{ik} – собственные скорости роста материала при отсутствии напряжений, σ_{ik} – тензор напряжений. При этих предположениях реологическое соотношение для растущей ткани [1]:

$$\dot{\varepsilon}_{ik} = A_{ik} + B_{iklm}\sigma_{lm} + K_{iklm}\frac{d}{dt}\sigma_{lm},\tag{1}$$

где d/dt – яуманновский оператор дифференцирования, с точностью до источниковых слагаемых A_{ik} соответствует модели Максвелла вязкоупругой среды. Под действием напряжений в растущей среде возникают упругие деформации, которые со временем

затухают за счет вязких свойств материала. При отсутствии напряжений ростовые деформации остаются ненулевыми за счет собственных скоростей роста A_{ik} . Обычно полагают, что матрица A_{ik} имеет диагональную структуру, причем $A_{ii} = a_i(t)$ – задаваемые из дополнительных предположений функции времени [12].

Уравнения импульсов в силу больших характерных времен роста ($t^* \sim 1 - 2$ сут.) рассматриваются в квазистатической постановке [1,18]:

$$div\left(\hat{\sigma}\right) + \boldsymbol{F} = 0,\tag{2}$$

где **F** – равнодействующая внешних сил. При этом считается, что упругие деформации и скорости деформаций малы.

На основе модели (1, 2) рассматривались задачи роста различных биологических тканей и органов, в том числе растительных [18]. При решении конкретных задач для замыкания (1, 2) задаются условия в напряжениях на поверхности Г растущего объекта:

$$\boldsymbol{\sigma}_n \big|_{\Gamma} = \boldsymbol{\sigma}_0. \tag{3}$$

В такой постановке решались задачи одномерного роста корней, стеблей растений и тонких клеточных слоев [1,11,18]. У листьев растений толщина h много меньше характерного размера L в продольном направлении $h \ll L$, что позволяет рассматривать для них задачи двумерного роста. Для ряда случаев с простой геометрией области согласованный рост основной ткани и распределенных элементов проводящей исследовался в применении к листьям на основе модели (1)–(3) [12]. В ходе нормального роста листа при отсутствии внешних физических воздействий имеет место ненапряженный рост (средние по толщине листа напряжения $\sigma_{ik} = 0$), что возможно лишь в случае ненагруженной границы $\sigma_0 = 0$. При этом (2) выполняется тождественно, а (1) позволяет вычислить параметры $\dot{\varepsilon}_{ik}$, определяющие кинематику роста при заданных источниках A_{ik} . При наличии данных кинематики роста (1) позволяет решить обратную задачу и идентифицировать функции $A_{ik}(t, r)$ [14]. В случае искусственного ограничения роста листа, например, по участку периметра [14] или при различии скоростей ростовых деформаций смежных клеточных слоев [11] возможно возникновение зон с ненулевыми напряжениями, которые будут определять ростовые деформации в соответствии с (1).

3. Исследование ростовых деформаций двумерных континуумов. Рассмотрим растущий материал, занимающий сплошным образом некоторую плоскую область. В случае ненапряженного роста в предположении малых скоростей деформаций в выбранной для определенности полярной системе координат из (1)–(3) следует

$$\frac{\partial v_r}{\partial r} = a_r, \qquad \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_r}{r} = a_\theta,
\frac{1}{2} \left(\frac{1}{r} \frac{\partial v_r}{\partial \theta} + \frac{\partial v_\theta}{\partial r} - \frac{v_\theta}{r} \right) = 0.$$
(4)

Интегрируя (4) при условии $v_{r,\theta}|_{r=0} = 0$, получим для скорости роста

$$v_r = \int_0^r a_r dr, \qquad v_\theta = r \int_0^\theta a_\theta d\theta - \int_0^\theta \int_0^r a_r dr d\theta.$$
(5)

Подставляя (5) в последнее уравнение (4), получим условие совместности системы:

$$\int_{0}^{r} \frac{\partial a_{r}}{\partial \theta} dr = \int_{0}^{\theta} \left(ra_{r} - r^{2} \frac{\partial a_{\theta}}{\partial r} - \int_{0}^{r} a_{r} dr \right) d\theta,$$
(6)

выполнение которого обеспечивает сплошность среды. Из (5) следует, что возможны два различных типа однородного ненапряженного роста:

1) $a_r = a_\theta = k(t)$, откуда $v_r = k(t) r$, $v_\theta = 0$, что соответствует кинематике роста листьев Abutilon G. и Tropaeolum M. В этом случае ростовые деформации листа представляют собой преобразования подобия (рис. 3, *a*). При этом условие (6) удовлетворяется тождественно.

2) $a_r \neq a_{\theta}$, откуда $v_r = a_r(t) r$, $v_{\theta} = (a_{\theta}(t) - a_r(t)) r\theta$. При этом в ходе роста меняются углы между произвольными лучами, что можно отследить по изменениям углов между отдельными парами проводящих элементов (рис. 3, δ).

Рис. 3. Схема роста клинообразного участка листа между парой главных жилок листа (I, II).

В случае неоднородных источников роста $a_{r,\vartheta}(t,r,\vartheta)$ ненапряженный рост возможен только при выполнении условия (6). Результаты анализа показывают, что второй тип роста возможен и при постоянстве скоростей делений клеток (однородный рост) за счет анизотропии механических свойств клеточных стенок, которая определяется ориентацией микротрубочек клеток основной ткани по отношению к оси симметрии листа (к жилке) [4, 5]. При их продольной ориентации внутриклеточное (тургорное) давление будет вызывать удлинение клеток вдоль соответствующего направления (случай $a_r > a_\vartheta$) с образованием вытянутого листа, состоящего из удлиненных клеток (листья злаков). В противном случае ($a_r < a_\vartheta$) будут наблюдаться деформации, соответствующие рис. 3, 6. Аксиальные деформации при этом будут визуально заметными при больших значениях r, ϑ , которые соответствуют областям вблизи основания листовой пластинки. Возможно, именно по этой причине при качественном анализе роста подобные деформации принимают за расширение лишь основания листа за счет неоднородного роста [17].

В случае ненапряженного роста деформации, обусловленные напряжениями, накладываются на деформации, связанные с источниковыми слагаемыми $a_{r,\vartheta}$. При задании граничных условий (3) в напряжениях задача (2, 3) отделяется и решение общей задачи (1)–(3) может быть получено итеративным путем. Вначале из (2, 3) определяется поле напряжений, затем из (1) определяется новое положение точек поверхности тела $\Gamma(t + \delta t)$ на малом шаге по времени $\delta t \ll t^*$ и задача (2, 3) решается снова для момента времени $t + \delta t$. В случае задания граничных условий в виде (1)–(6) представляет собой систему дифференциальных уравнений в частных производных. При однородных граничных условиях ($\sigma_0 = \text{const}$) система (1)–(3) имеет точные решения для прямоугольной и круглой областей [12].

При нормальном росте листа контур листовой пластинки свободен от нагрузки. В то же время локальные механические напряжения могут проявляться во внутренних областях, ограниченных крупными проводящими элементами, за счет несогласованности (или флуктуаций) скоростей роста проводящих элементов и основной ткани листа. При этом в некоторой окрестности проводящих элементов возникающие напряжения будут регулировать скорость роста близлежащих слоев клеток, в то же время вдали от проводящего элемента может реализовываться ненапряженный рост основной ткани. Система крупных проводящих элементов развивается в зачатке листа раньше основной ткани и для многих видов листьев определяет и координирует рост последней [10,17]. Рассмотрим подробнее задачу о передаче нагрузки от растущего линейного проводящего элемента в объем основной ткани для двух случаев строения области, ограниченной проводящими элементами (рис. 4).

4. Исследование задачи о передаче нагрузки от линейного растущего элемента в объем основной ткани. Проведем оценки напряжений, возникающих при несогласованном росте проводящих элементов ОА, ОВ (I), ограничивающих объем основной ткани (II), занимающей полуплоскость (рис. 4, *a*) и клиновидный участок (рис. 4, *б*). где ОС ненагруженная граница, ОХ ось симметрии. Будем считать, что в обоих случаях имеет место первый тип роста и $a_x = a_y = \text{const}, a_r = a_\theta = \text{const},$ поэтому форма областей и угол АОВ в ходе роста не меняются. В случае стационарного роста это позволяет рассматривать задачу (2),(3) в напряжениях в произвольный момент времени.

Рис.4. Передача нагрузки от растущих линейных элементов I в объем основной ткани II.

При делениях растительных клеток образуются общие для смежных клеток новые клеточные стенки, пронизанные системой пор, через которые протекает межклеточный массообмен. В ходе нормального роста растительных материалов относительные перемещения смежных клеточных стенок, которые могли бы привести к разрушению пор, не наблюдаются, поэтому будем считать, что сдвиговые деформации отсутствуют. Значения A_{ik} могут быть взяты из результатов исследования кинематики ненапряженного роста, в то время как численные данные о значениях B_{iklm} для растительных тканей практически отсутствуют. Идентификация соответствующих реологических коэффициентов с помощью модели (1)-(3) может быть проведена на основе результатов исследования кинематики напряженного роста при условии ограничения роста по периметру или части периметра листа, либо вдоль проводящих элементов I [14].

В первом случае (рис. 4, а) система (1)-(3) в декартовых координатах примет вид:

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + f_x = 0, \quad \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + f_y = 0, \tag{7}$$

$$\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} = 2b_{33}\sigma_{xy} + 2\frac{\partial}{\partial t}\left(\frac{\sigma_{xy}}{\mu}\right),\tag{8}$$

$$\frac{\partial v_x}{\partial x} = a_x + b_{11}\sigma_{xx} + b_{12}\sigma_{yy} + \frac{\partial}{\partial t}\left(\frac{\sigma_{xx}}{E_1}\right) - \frac{\partial}{\partial t}\left(\frac{\nu_{21}\sigma_{yy}}{E_2}\right),\tag{9}$$

$$\frac{\partial v_y}{\partial y} = a_y + b_{21}\sigma_{xx} + b_{22}\sigma_{yy} + \frac{\partial}{\partial t}\left(\frac{\sigma_{yy}}{E_2}\right) - \frac{\partial}{\partial t}\left(\frac{\nu_{12}\sigma_{xx}}{E_1}\right),\tag{10}$$

$$\sigma_{xx}\big|_{x=0} = 0, \ \sigma_{xx}\big|_{y=0} = (e_I - a) / b, \ v_y\big|_{y=0} = 0,$$
(11)

где $E_{1,2}$, $\nu_{12,21}$, μ – реологические коэффициенты материала основной ткани; a, b, e_I – реологические коэффициенты и заданная скорость ростовых деформаций для проводящего элемента ОА.

Пусть для определенности в случае несогласованности роста $\partial v_x / \partial x \big|_{y=0} < e_I$, что приведет к появлению в основной ткани растягивающих напряжений, которые на временах $t << t^*$ можно оценить, решая задачу (7)–(11). Значения $E_{1,2}$, ν_{ik} , μ для разных участков листовой пластинки получены в ряде экспериментов, в то время как для параметров b_{ik} существуют только некоторые оценки, основанные на результатах экспериментов для отдельных растительных клеток [19–21]. В силу этого можно рассмотреть приближение однородной упругодеформируемой основной ткани ($b_{ik} \sim 0$) или провести оценки коэффициентов b_{ik} , предполагая, что слагаемые в правых частях (7), (8) имеют одинаковый порядок. В первом случае расчеты можно провести на основании модификации задачи Мелана о передаче нагрузки от стрингера к полуплоскости (диску, клину) в предположении идеальной непрерывной связи между ними [22, 23]. Задача (7)–(11) для клина записывается, соответственно, в полярных координатах. Формулы для расчета напряжений для полуплоскости и клина приведены в приложениях A,B.

Результаты численных расчетов $\sigma_{xx,yy}$ в основной ткани для полуплоскости и клина приведены на рис. 5, 6. Анализ полученных зависимостей для всех экспериментально известных наборов значений реологических параметров для листьев разных видов [19– 21] при вариациях e_I , a_{ik} , a в широком диапазоне значений, соответствующих данным кинематического анализа роста ($e_I = 0.1 \div 0.4 \text{ c}^{-1}$, $a = 0.02 \div 0.8 \text{ c}^{-1}$) позволяет сформулировать следующие выводы:

1) При несогласовании скоростей роста основной ткани и проводящего элемента при условии, что последний растет с заданной скоростью и координирует деформации основной ткани, в некоторой окрестности проводящего элемента возникает поле напряжений. Так, в случае $\partial v_x / \partial x |_{y=0} < e_I$ возникающие растягивающие напряжения будут в соответствии с (9), (10) стимулировать рост основной ткани вдоль проводящего элемента, а сжимающие напряжения – подавлять рост в ортогональном направлении, создавая тем самым систему обратных связей, приводящую к выравниванию флуктуаций скорости роста обоих видов ткани. На достаточном удалении от растущего проводящего элемента будет реализован ненапряженный рост основной ткани.

Рис. 5. Распределение напряжений в основной ткани, заполняющей полуплоскость. Кривые 1-5 соответствуют значениям $x^{\circ} = x/L = 0.1, 0.2, 0.3, 0.5, 0.8.$

Рис. 6. Распределение напряжений в основной ткани, заполняющей клиновидную область. Кривые 1–5 соответствуют значениям $r^{\circ} = r/R = 0.1, 0.2, 0.3, 0.5, 0.8.$

2) Особое значение подобная система обратных связей может играть на начальных стадиях роста, когда модуль упругости материала основной ткани на порядок меньше, чем на заключительных стадиях [19].

3) Наличие флуктуаций скоростей роста и локальных напряжений может определять особенности строения основной ткани листа в окрестности проводящего пучка (рис. 1).

4) Практически во всех исследованных случаях оценки напряжений приводят к значениям, превышающим порог чувствительности клеток ($F \sim 1 \div 10$ пН для образований с характерным размером $d \sim 4 \cdot 10^{-6}$ м [24]). Таким образом, возникающие напряжения могут запускать клеточные механизмы, определяющие направление делений (в соответствии с полем напряжений) и в конечном счете форму клетки.

Более подробные оценки по предложенной схеме могут быть проведены после получения дополнительных экспериментальных данных обо всех реологических параметрах уравнений (2) и о характере анизотропии материала основной ткани в окрестности проводящего элемента.

Приложение А.

Решение задачи Мелана для полуплоскости в рамках обобщенного плоского напряженного состояния строится с использованием функции напряжений Эри $\Phi(x, y; z)$, где (x, y) – координаты точки плоскости, z – координата точки оси ОХ, в которой приложена растягивающая нагрузка σ . Функция $\Phi(x, y; z)$ определяется выражением [22]:

$$\begin{split} \Phi\left(x,y;z\right) &= \frac{\sigma}{2\pi h} \left[y\left(\theta_{1}+\theta_{2}\right) - \frac{1-\nu}{2} \left(x-z\right) lg\left(\frac{r_{1}}{r_{2}}\right) - \left(1+\nu\right) \frac{xz\left(x+z\right)}{r_{2}^{2}} \right], \\ \text{где} \quad r_{1}(x,y;z) &= |y^{2}+(x-z)^{2}|^{1/2}, \quad r_{2}(x,y;z) = \left|y^{2}+(x+z)^{2}\right|^{1/2}, \\ \theta_{1}(x,y;z) &= \operatorname{arctg}\left(\frac{y}{x-z}\right), \quad \theta_{2}(x,y;z) = \operatorname{arctg}\left(\frac{y}{x+z}\right). \end{split}$$

165

Задавая распределение напряжений $\sigma_I(z)$ в соответствии с (11), получим функцию напряжений $\tilde{\Phi}$ для случая линейной нагрузки в виде

$$\tilde{\Phi} = \frac{1}{L} \int_{0}^{L} \Phi(x, y; z) \, dz,$$

откуда

$$\sigma_{xx} = \frac{\partial^2 \tilde{\Phi}}{\partial y^2}, \ \sigma_{yy} = \frac{\partial^2 \tilde{\Phi}}{\partial x^2}, \ \sigma_{xy} = -\frac{\partial^2 \tilde{\Phi}}{\partial x \partial y}$$

На некотором удалении z^* от особой точки O(0,0), где z^* определяется параметрами материала, зависимости $\sigma_{ik}(z, y)$ для $z > z^*$ практически совпадают, поэтому значения L могут быть определены путем численного эксперимента, исходя из характера распределения напряжений вдоль ОХ.

Приложение В.

Рис. 7. Схема клина с заданной на его границах внешней нагрузкой.

Задача о передаче нагрузки для клина решается с помощью преобразования Меллина для случая симметричного и антисимметричного расположения единичной нагрузки вдоль образующих клина (рис. 7), причем произвольный случай нагружения может быть получен путем линейной комбинации симметричного и антисимметричного случаев. Распределение напряжений в материале определяется соотношениями [23] для симметричного случая

$$\begin{split} \sigma_{rr}^{s} &= \frac{F}{2\pi i r} \int\limits_{(L)} \frac{\left(\rho + 3\right) \cos\left(\rho - 1\right) \alpha \cos\left(\rho + 1\right) \theta - \left(\rho - 1\right) \cos\left(\rho + 1\right) \alpha \cos\left(\rho - 1\right) \theta}{\sin 2\rho \alpha + \rho \sin 2\alpha} \left(\frac{a}{r}\right)^{\rho} d\rho, \\ \sigma_{\theta\theta}^{s} &= \frac{F}{2\pi i r} \int\limits_{(L)} \left(\rho - 1\right) \frac{\cos\left(\rho + 1\right) \alpha \cos\left(\rho - 1\right) \theta - \cos\left(\rho - 1\right) \alpha \cos\left(\rho + 1\right) \theta}{\sin 2\rho \alpha + \rho \sin 2\alpha} \left(\frac{a}{r}\right)^{\rho} d\rho, \\ \sigma_{r\theta}^{s} &= \frac{F}{2\pi i r} \int\limits_{(L)} \frac{\left(\rho + 1\right) \cos\left(\rho - 1\right) \alpha \sin\left(\rho + 1\right) \theta - \left(\rho - 1\right) \cos\left(\rho + 1\right) \alpha \sin\left(\rho - 1\right) \theta}{\sin 2\rho \alpha + \rho \sin 2\alpha} \left(\frac{a}{r}\right)^{\rho} d\rho, \end{split}$$

166

и для антисимметричного случая

$$\sigma_{rr}^{a} = \frac{F}{2\pi i r} \int_{(L)} \frac{(\rho - 1)\sin(\rho + 1)\alpha\sin(\rho - 1)\theta - (\rho + 3)\sin(\rho - 1)\alpha\sin(\rho + 1)\theta}{\sin 2\rho\alpha - \rho\sin 2\alpha} \left(\frac{a}{r}\right)^{\rho} d\rho,$$

$$\sigma_{\theta\theta}^{a} = \frac{F}{2\pi i r} \int_{(L)} (\rho - 1) \frac{\sin\left(\rho - 1\right)\alpha\sin\left(\rho + 1\right)\theta - \sin\left(\rho + 1\right)\alpha\sin\left(\rho - 1\right)\theta}{\sin 2\rho\alpha - \rho\sin 2\alpha} \left(\frac{a}{r}\right)^{\rho} d\rho,$$

$$\sigma_{r\theta}^{a} = \frac{F}{2\pi i r} \int_{(L)} \frac{(\rho+1)\sin\left(\rho-1\right)\alpha\cos\left(\rho+1\right)\theta - (\rho-1)\sin\left(\rho+1\right)\alpha\cos\left(\rho-1\right)\theta}{\sin 2\rho\alpha - \rho\sin 2\alpha} \left(\frac{a}{r}\right)^{\rho} d\rho,$$

где *L* – прямая, параллельная мнимой оси комплексной плоскости, а значение радиальной координаты в точке приложения нагрузки.

Приведенные интегралы вычисляются с помощью теоремы о вычетах. Полюсы подынтегральной функции вычислены в [23] для случаев $\alpha = \pi j/4$, j = 1, 2, 3, 4. Поскольку для листьев характерны значения $\alpha = \pi/18 \div \pi/3$, нами было дополнительно проведено вычисление корней уравнений $\sin 2\rho\alpha \pm \rho \sin 2\alpha = 0$ для $\alpha = \pi j/18$, $j = 1 \div 6$. Полные напряжения определяются по формулам $\sigma_{ik} = \sigma_{ik}^s + \sigma_{ik}^a$.

- 1. Регирер С.А., Штейн А.А. Методы механики сплошной среды в применении к задачам роста и развития биологических тканей. // Современные проблемы биомеханики. Механика биологических тканей. М.: Изд-во МГУ, 1985. 2. С. 5–37.
- Turgeon R, Webb J.A. Growth inhibition by mechanical stress // Science. 1971. 174, N12. P. 961-962.
- Coutland C., Julien J.L., Moulia B. et al Biomechanical study of the effect of a controlled bending on tomato stem elongation: global mechanical analysis // J. Experim. Botany. - 2000. - 51, N352. -P.1813-1824.
- 4. Zandomeni K., Schopfer P. Mechanosensory microtubule reorientation in the epidermis of maize coleoptiles subjected to bending stress // Protoplasma. - 1994. - 182, N3-4. - P. 96-101.
- Wymer C.L., Wymer S.A., Cosgrove D.J., Cyr R.J. Plant cell growth responds to external forces and the response requires intact microtubules // Plant Physiol. - 1996. - 110, N2. - P. 425-430.
- Mitchell C.A., Myers P.N. Mechanical stress regulation of plant growth and development // Hortic Rev. - 1995. - 17. - P. 1-42.
- Lynch T.M., Lintilhac P.M. Mechanical signals in plant development: a new method for single cell studies // Dev.Biol. - 1997. - 181, N2. - P. 246-256.
- Fisher D.D., Cyr R.J. Mechanical forces in plant growth and development //Gravit.Space Biol.Bull. 2000. – 13, N2. – P. 67–73.
- Dolan L., Poethig R.S. The Okra leaf shape mutation in cotton is active in all cell layers of the leaf //Amer.J.Botany. - 1998. - 85, N3. - P. 322-327.
- 10. *Кизилова Н.Н.* Транспортная система и рост листа // Современные проблемы биомеханики. **10**. Механика роста и развития. М.: Изд-во МГУ, 2000. С. **379**–405.
- 11. Штейн А.А., Логвенков С.А. Пространственная самоорганизация тонкого слоя биологического материала, растущего на подложке. //Докл. РАН. 1993. **328**, N4. C. 443–446.
- Kantor B.Ya., Kizilova N.N. Biomechanics of the Developing Plant Tissues //Problems of Machinery. - 2002. - 5, N2. - P. 96-103.
- 13. Buis R., Barthou H., Briere Ch., Gefflaut J. Leaf Dissymmetry and Vein Growth Field: The Case of the Tropaeolum Leaf Veins //Acta Biotheoretica. 1995. 43, N 1/2. P. 81-94.

- Kizilova N.N. Identification of rheological parameters in models of growing continuums //EUROMECH Colloquium «Identification and Updating Methods of Mechanical Structures»: Book of Abstracts. – Prague, 2002. – P. 22.
- 15. Шмидт В.М., Васильев Б.Р., Колодяжный С.Ф. К обобщению математического анализа роста и органогенеза у растений // Журн. общей биол. 1978. **39**, N 6. С. 878–885.
- 16. *Арутюнян Н.Х., Дроздов А.Д., Наумов В.Э.* Механика растущих вязкоупруго-пластических тел. М.:Наука, 1987. 472 с.
- 17. Эзау К. Анатомия семенных растений: В 2х т. М.: Мир, 1980.
- Штейн А.А. Приложение методов механики сплошной среды к моделированию роста биологических тканей // Современные проблемы биомеханики. Механика роста и развития. – М.: Изд-во МГУ, 2000. – 10. – С. 148–173.
- T.E.Proseus, J.K.E.Ortega, J.S.Boyer Separating Growth from Elastic Deformation during Cell Enlargement // Plant Physiol. - 1999. - 119, N2. - P. 775784.
- H.-Ch.Spatz, L.Kuhler, K.J.Niklas Mechanical Behaviour Of Plant Tissues: Composite Materials Or Structures? //J.Experim.Biol. - 1999. - 202. - P. 3269-3272.
- S.Kerstens., W.F.Decraemer, J.-P. Verbelen Cell Walls at the Plant Surface Behave Mechanically Like Fiber-Reinforced Composite Materials // Plant Physiol. - 2001. - 127, № 10. - P. 381-385.
- Sternberg E. Load-treasfer and load-diffusion in elastostatics. //Proc.Sixth U.S.National Congress of Applied Mechanics. – 1970. – P. 34–61.
- 23. Уфлянд Я.С. Интегральные преобразования в задачах теории упругости. М.:Наука, 1968. 327с.
- Stamenovic D., Coughlin M.F. A quantitative model of cellular elasticity based on tensegrity // J. Biomech. Eng. - 2000. - 122. - P. 39-43.

Харьковский национальный ун-т им.В.Н.Каразина knn__Qukr.net

Получено 30.10.02