К. т. н. В. В. ДАНИЛОВ

Украина, г. Донецк, НИИ комплексной автоматизации

Дата поступления в редакцию 06.07 1999 г. Оппонент к. ф.-м. н. В. Г. ПИЦЮГА

ФИЗИКО-ХИМИЧЕСКИЕ И АКУСТООПТИЧЕСКИЕ СВОЙСТВА МОНОКРИСТАЛЛОВ ТИПА Cs₂HgC₄

Представлены результаты исследования химической устойчивости, общих физических (в т. ч. и акустооптических) свойств монокристаллов Cs₂HgC₄, где C - Cl, Br, J.

The investigation results of chemical stability, common physical (including acoustooptic) properties of Cs_2HgC_4 single crystals, where C - Cl, Br, J, are presented.

Создание лазерных технологий систем обработки информации, измерительной техники, связи, медицины и т. д. предполагает наличие устройств управления лазерным пучком. Физические эффекты, используемые для реализации таких устройств, изложены в [1]. Одним из них является акустооптический (упругооптический) эффект. Среди акустооптических устройств (АОУ) различают акустооптические затворы и дефлекторы, нашедшие применение в системах оптической памяти, модуляторы и линии задержки, используемые в системах спектрального и корреляционного анализа радиосигналов, фильтры, применяемые в системах спектрального анализа оптических сигналов, и др. Базовыми элементами любого АОУ является акустооптическая ячейка, в общем случае содержащая электроакустический преобразователь (ЭАП), предназначенный для преобразования энергии управляющего радиосигнала в энергию акустической волны, и светозвукопровод (C3 Π), в объеме которого в результате взаимодействия акустических волн, генерируемых ЭАП, и лазерным пучком, направленным на СЗП, осуществляется модуляция последнего.

Выбор материала светозвукопровода является важнейшим этапом разработки любого АОУ. Оценка потенциальных возможностей материала СЗП является многокритериальной задачей и поэтому требует множества различных исходных данных по физико-химическим, в том числе оптическим и акустооптическим, характеристикам. Этого требуют:

 необходимость создания технологии химикомеханической обработки материалов СЗП, в качестве которых могут быть монокристаллы или стекла;
необходимость подбора материалов, контактирующих со светозвукопроводом в составе AOУ, химически не активных по отношению друг к другу и имеющих примерно равные температурные коэффициенты расширения, теплопроводность и др;

— необходимость обеспечения устойчивости важнейших технических характеристик АОУ к дестабилизирующим факторам — температуре, влажности, вибрациям и др.

При заданных параметрах сигнала необходимо дополнительно учитывать:

— диапазон оптической прозрачности;

акустооптическую эффективность АОУ (прямо пропорционально связанную с акустооптической добротностью материала СЗП) в линейном режиме акустооптического взаимодействия (АОВ);

 уровень искажений дифрагировавшего лазерного пучка, обусловленных оптическими неоднородностями материала, затуханием акустических волн при распространении по СЗП;

 конструктивные особенности СЗП (например габаритные размеры), обеспечивающие в составе АОУ обработку требуемых по длительности сигналов, число каналов, длину АОВ, и многое др.

Для всех физико-химических (в т. ч. оптических и акустооптических) исследований из монокристаллов Cs_2HgCl_4 и Cs_2HgBr_4 методами химико-механической обработки изготавливались образцы СЗП размерами $10\times10\times25$ мм, вырезанные соответственно вдоль главных кристаллографических направлений (см. **рис. 1**). Образцы СЗП на основе монокристалла Cs_2HgJ_4 имели размеры $5\times5\times8$ мм.

Исследования по химической устойчивости монокристаллов Cs_2HgC_4 под действием окружающих жидких и газовых сред (скорость растворения) показали, что они не растворимы в толуоле, абсолюти-

10 мм

Рис. 1. Образец светозвукопровода на основе монокристалла Cs_2HgBr_4

зированном этиловом спирте, глицерине, четыреххлористом углероде, бензине, бальзамине, в эпоксидных смолах, вакуумном масле ВМ-1. Устойчивы монокристаллы на воздухе (влажность до 98%). Прямой контакт с водой или водными растворами кислот и щелочей нежелателен, т. к. ведет к гидролизу соединения и разрушению СЗП. С ростом температуры растворителей интенсивность разрушения возрастает. Аналогичная картина наблюдается с ростом концентрации кислоты или щелочи.

В процессе проведенных исследований было установлено, что полирующим эффектом для монокристалла Cs_2HgCl_4 обладает безводный диэтиленгликоль, а для Cs_2HgBr_4 — безводный этиленгликоль.

Исследование устойчивости монокристаллов Cs_2HgC_4 под действием лазерного излучения проводилось при нормальном атмосферном давлении и комнатной температуре на длинах волн (λ) 0,63 и 1,16 мкм мощностью до 10 мВт и на λ =0,44 мкм мощностью 40 мВт. Диаметр пятна лазерного пучка на поверхности СЗП во всех случаях соответствовал 0,8 мм. Контроль состояния монокристаллов осуществлялся по спектрам пропускания, контроль поверхности СЗП – под микроскопом. После 8-часового облучения образцы своих свойств не изменили.

Влияние импульсного лазерного излучения на соединения Cs_2HgC_4 исследовалось с помощью неодимового лазера (λ =1,06 мкм, время импульса τ =4 мс, диаметр пучка 1 мм) и рубинового (λ =0,694 мкм, τ =4 мс, диаметр пучка 1 мм). Установлено, что при λ =1,06 мкм пороговая плотность мощности (при которой образуется расплавленный кратер на поверхности заготовки СЗП) составляет $P_{\text{пор}} = = (4...7)10^4 \text{ Вт/см}^2$. На длине волны λ =0,694 мкм для $Cs_2HgCl_4 P_{\text{пор}}$ составляет (1,3...2)10⁵ Вт/см^2 , для $Cs_2HgBr_4 - (1,3...1,6)10^5 \text{ Вт/см}^2$.

Влияние света на изменение окраски монокристаллов типа Cs_2HgC_4 исследовалось по их фотопроводимости. Основу установки составлял монохроматор ДМР-4, источник излучения — лампа высокого давления ДКсШ-1000, дающая непрерывный спектр в ультрафиолетовой и видимой областях спектра, оптический криостат (давление 1,33 · 10⁻² Па), источник питания, электрометрический вольтметр ВК2-16. Исследования показали, что в диапазоне температур 223...323 К в области длин волн 0,2...0,6 мкм монокристаллы Cs₂HgC₄ абсолютно не фоточувствительны. При этом напряжение смещения, подаваемое на Cs₂HgBr₄, и ток составляли 100 В и 8·10⁻¹¹ А, для Cs₂HgCl₄, соответственно, 100 В и 4·10⁻⁸ А, для Cs₂HgJ₄ — 100 В и 4·10⁻¹¹ А.

Данные рентгеноструктурных исследований по выяснению сингонии и параметров кристаллической решетки монокристаллов Cs_2HgBr_4 и Cs_2HgJ_4 сообщались в [3], для Cs_2HgCl_4 получены впервые (см. табл. 1).

Плотность, теплопроводность, теплоемкость, температурный коэффициент расширения, микротвердость, светопропускание измерялись широко известными в физике твердого тела методами. Коэффициент преломления монокристаллов Cs_2HgCl_4 и Cs_2HgBr_4 вдоль главных кристаллографических направлений измерялся на гониометре Г5 методом призмы на длине волны лазерного излучения 0,63 мкм.

Феноменологически поведение веществ в электромагнитном поле описывается диэлектрической проницаемостью (ϵ), электропроводностью (σ) и магнитной проницаемостью (μ).

Влияние магнитного поля на светозвукопровод, реализованный на основе монокристаллов типа Cs_2HgC_4 , исследовалось по данным магнитной восприимчивости ($\chi_{\rm M}$) и представлено на **рис. 2**, где кривая 1 соответствует Cs_2HgCl_4 , кривая 2 — Cs_2HgBr_4 , кривая 3 — Cs_2HgJ_4 . Измерения проводились на автоматизированных весах Фарадея компенсационным методом [4], погрешность измерений не более 5%. Экспериментально было установлено резкое изменение восприимчивости в области температур (T) от 140 до 160 К, причем с заменой хлора на более тяжелые ионы брома и йода проис-

Таблица 1

Физико-химические параметры монокристаллов	Cs ₂ HgCl ₄	Cs ₂ HgBr ₄	Cs ₂ HgJ ₄
Сингония	Ромбическая	Ромбическая	Моноклинная
	P_{mnb} , Z=4	P_{mna} , Z=4	$P_{Z1}, Z=2$
	<i>a</i> =7,585 Å	<i>a</i> =7,918 E	<i>a</i> =11,30 Å
Параметры решетки	<i>b</i> =9,748 Å	<i>b</i> =10,237 E	<i>b</i> =7,94 Å
	<i>c</i> =13,384 Å	<i>c</i> =13,882 E	<i>c</i> =8,46 Å
			γ=110°27'
Плотность, г/см ³	4,05	4,65	4,84
Теплопроводность, 10 ² Вт/(см·К),	0,32,0,25,	0,290,24,	
при 223323 К	анизотропия	анизотропия	
Теплоемкость, Дж/(моль·К)	23,9	24,3	25,0
Температурный коэффициент расширения,	54,	58,	59,
10^{6} K^{-1}	анизотропия	анизотропия	анизотропия
Микротвердость, кгс/мм ²	5660	3035	2530
Коэффициент преломления	$n_g = 1,67$	$n_g = 1,77$	
(λ=0,63 мкм)	$n_m = 1,65$	$n_m = 1,76$	—
	$n_p = 1,63$	$n_p = 1,75$	
Пропускание, % (д=0,63 мкм)	85	85	78

Некоторые физико-химические свойства монокристаллов типа Cs_2HgC_4

Технология и конструирование в электронной аппаратуре, 1999, № 5-6

Рис. 2. Магнитная восприимчивость монокристаллов типа Cs_2HgC_4

ходит смещение температуры скачкообразного изменения восприимчивости в сторону более высоких температур. В области 253...323 К ход кривых характеризуется монотонным уменьшением восприимчивости. Значения и характер изменения $\chi_{_{M}}$ свидетельствуют, что соединения типа Cs₂HgC₄ являются диамагнетиками [5].

Диэлектрическая проницаемость измерялась на установке, аналогичной [6]. Систематическая погрешность измерений не более 8%. Температурная зависимость диэлектрической проницаемости Cs₂HgCl₄ приведена на рис. 3, для Cs_2HgBr_4 — на рис. 4, где кривая 1 - результат измерения ε на частоте 10^3 Гц, кривая 2 - на частоте 10^5 Гц, кривая 3 - на частоте 107 Гц, кривая 4 описывает зависимость диэлектрических потерь $tg\delta = f(T)$. Анализ физических механизмов, объясняющих ход кривых на графиках рис. З и 4, приведен в [5, 7]. Из графиков видно, что в области 253...323 К ход кривых плавный, без резких скачков изменения характера температурной зависимости диэлектрической проницаемости.

Исследования электропроводности монокристаллов типа Cs_2HgC_4 проводились на постоянном (с

Параметры электропроводности монокристаллов типа $Cs_{2}HgC_{4}$, измеренной на переменном токе

- ,			
Соединение	lgσ, См/см,	ε _σ , эΒ	$\lg \sigma_0$,
	при 100°С		См/см
Cs ₂ HgCl ₄	9,3	1,77	2,5
Cs ₂ HgBr ₄	9,3	1,45	0,4
Cs ₂ HgJ ₄	8,0	2,40	8,6

использованием моста P-4060) и на переменном токе (с помощью моста Е8-2). Параметры электропроводности (ε_{σ} – энергия активации, σ_0 – электропроводность монокристаллов при 0°С), измеренной на переменном токе, представлены в табл. 2, на постоянном токе — в **табл. 3**. У соединения Cs_2HgJ_4 участие ионов в проводимости настолько велико, что наблюдение процесса электропереноса на постоянном токе практически невозможно из-за сильных поляризационных явлений. Измерения показали, что анизотропия электропроводности в монокристаллах Cs₂HgCl₄ и Cs₂HgBr₄ выражена слабо, а по параметрам электропроводности они могут быть отнесены к широкозонным полупроводникам, в то время как соединение $Cs_2HgJ_4 - \kappa$ диэлектрикам [8].

Область прозрачности монокристаллов типа Cs_2HgC_4 определена с помощью инфракрасного спектрометра ИКС-29 и спектрофотометра СФ-26. Коэффициент поглощения рассчитан для длин волн лазеров, производимых в Украине; результаты представлены в табл. 4.

Исследования акустооптических параметров монокристаллов Cs₂HgCl₄ и Cs₂HgBr₄, акустооптической добротности, скорости и затухания упругой волны проводились по методикам и на установках, приведенных в [9, 10]. Экспериментальные результаты измерений приведены в табл. 5.

Представленные в работе физико-химические характеристики (в т. ч. оптические и акустооптические) монокристаллов типа Cs_2HgC_4 позволяют сделать следующие выводы.

Основываясь на данных химической устойчивости монокристаллов Cs2HgCl4 и Cs2HgBr4, можно

Таблица 2

Таблица З

Параметры электропроводности монокристаллов типа Cs_2HgC_4 , измеренной на постоянном токе

Соединение	Соединение Состояние		При 100°С			При 20°С		
		–lgσ, Ом/см	ε _σ , эВ	lgσ₀, Ом/см	lgσ, Ом/см	ε _σ , эВ	lgσ₀, Ом/см	
Cs ₂ HgCl ₄	Неориентированное	9,6	1,76	2,1	12,5	1,35	-0,8	
Cs ₂ HgBr ₄	Неориентированное	10,4	1,42	-1,0	12,1	0,78	-5,4	
Cs ₂ HgCl ₄	Вдоль оси х	8,9	1,53	1,4	10,4	0,93	-2,5	
	Вдоль оси у	9,8	1,68	1,4	10,8	0,67	-5,1	
	Вдоль оси <i>z</i>	9,6	1,66	1,5	10,8	0,79	-4,0	
Cs ₂ HgBr ₄	Вдоль оси х	9,6	1,5	0,4	11,5	1,03	-2,8	
	Вдоль оси у	9,0	1,27	-0,5	10,5	0,78	-3,8	
	Вдоль оси <i>z</i>	9,4	1,55	1,0	11,1	0,87	-3,6	

Таблица 4

Область оптической прозрачности и коэффициент поглощения монокристаллов типа Cs_2HgC_4

	Область	Коэффициент поглощения, см ⁻¹						
Соедине-	прозрач-							
ние	ности, мкм	λ=0,34 мкм	0,44 мкм	0,54 мкм	0,63 мкм	1,15 мкм	3,39 мкм	λ=10,6 мкм
Cs ₂ HgCl ₄	0,318	0,38	0,022	0,022	0,022	0,022	0,022	0,025
Cs ₂ HgBr ₄	0,3520		0,025	0,023	0,023	0,023	0,023	0,024
Cs ₂ HgJ ₄	0,422	—	0,080	0,061	0,054	0,054	0,054	0,054

Таблица 5

Акустооптические	параметры	монокристаллов	muna	Cs_2HgC_4
------------------	-----------	----------------	------	-------------

Соединение	Кристаллогра- фическое на- правление рас- пространения акустической волны	Кристаллографи- ческое направле- ние распростра- нения лазерного пучка, λ=0,63 мкм	Акусто- оптическая добротность, 10 ¹⁸ с ³ /г	Скорость акустической волны, м/с	Затухание аку- стической вол- ны, дБ·см, (105 мГц)
	100	010	12	2577	—
	100	001	37	2570	—
Cs ₂ HgCl ₄	010	100	23	1944	—
	010	001	47	1940	0,33
	001	100	39	1910	—
	001	010	48	1910	0,30
	100	010	20	2160	—
	100	001	31	2160	_
Cs ₂ HgBr ₄	010	100	69	1750	0,36
	010	001	38	1750	_
	001	100	71	1770	0,32
	001	010	50	1770	
Cs ₂ HgJ ₄	001		_	2420	_

сформулировать рекомендации по технологическому процессу их химико-механической обработки при изготовлении заготовок светозвукопроводов. В качестве жидкой основы суспензии, используемой для порезки и шлифовки монокристаллов, может быть использовано вакуумное масло BM-1. В качестве моющих средств может применяться этиловый спирт, бензин ("галоша") и др. По данным микротвердости кристаллов, в качестве инструмента для их порезки может быть рекомендована пила на основе металлической нити [11, с. 168]. Химико-механическая полировка монокристаллов Cs_2HgCl_4 и Cs_2HgBr_4 может быть основана на безводных диэтиленгликоле и этиленгликоле [12], соответственно. Прямой контакт с растворами кислот и щелочей недопустим.

Ход кривых температурной зависимости диэлектрической проницаемости, магнитной восприимчивости и электропроводности в диапазоне 253...323 К

монотонен. Это позволяет сделать вывод, что влияние электромагнитных полей на светозвукопроводы, изготовленные из предлагаемых монокристаллов, при изменении температуры изделия, в состав которого они входят, не приведет к ухудшению технических характеристик прибора в целом. Влияние света на изменение окраски монокристаллов (по исследованиям фотопроводимости) показали отсутствие их фоточувствительности, а полученные значения пороговой плотности мощности данных кристаллов значительно превышают значения плотности мощности, развиваемой лазерами систем оптической памяти и обработки информации [1, с. 11].

Полученные данные позволяют при известных параметрах сигнала рассчитать основные технические характеристики любого акустооптического устройства.

Впервые получен ряд физико-химических параметров рассмотренных кристаллов (в частности, определены плотность, теплоемкость, теплопроводность, коэффициент объемного расширения), в т. ч. оптические — показатели преломления вдоль главных кристаллографических направлений, область оптической прозрачности и коэффициенты поглощения на длинах волн лазеров, производимых в Украине.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Васильев А. А., Касасент Д., Компанец И. Н., Парфенов А.В. Пространственные модуляторы света. — М. : Радио и связь, 1987.

2. Гусев О. Б., Клудзин В.В. Акустооптические измерения. — Л. : Изд-во Ленингр. ун-та, 1987.

3. Пахомов В. И., Федоров П. М., Поляков Ю. А., Кириленко В.В. Взаимодействие галогенидов ртути и цезия в системе HgJ_2-CsJ , $HgBr_2-CsBr$ // ЖНХ. – 1977. – Т. 22, № 1. – С.188–191.

4. Данилов В. В., Пименов Ю. А., Богданова А. В. Установка для измерения магнитной восприимчивости // Физическая электроника (Изд-во Львовского гос. унта.). – 1981. – № 23. – С.144–146.

5. Данилов В. В., Богданова А. В., Онопко В. В. Диэлектрическая проницаемость и магнитная восприимчивость некоторых тройных галогенидов ртути и цезия // Там же. – 1981. – № 22. – С. 105–107.

6. Наконечный Ю. С. Автоматическая установка для диэлектрических измерений // Там же. — 1974. — № 9. — С. 28—32.

7. Данилов В. В., Онопко В. В., Богданова А. В., Шульга В. Г. Диэлектрические свойства некоторых комплексных меркуриатов типа A^IB^{II}C^{VII} // ΦΤΤ. – 1981. – Т. 23, № 8. – С. 243–246.

 Данилов В. В., Воробьев А. В., Богданова А. В., Борисова З. У. Электропроводность и природа носителей заряда в монокристаллах соединений Cs₂HgΓ₄// Изв. AH CCCP. Сер. Неорганические материалы. — 1982. — T. 18, № 6. — C.1025—1027.

9. Данилов В. В., Савельев И. О., Богданова А. В. Измерение акустооптических параметров материалов // Физическая электроника (Изд-во Львовского гос. унта.). – 1982. – № 24. – С.142–145.

 Данилов В. В., Савельев И. О., Богданова А. В. и др. Измерение скорости и затухания ультразвука в твердых телах // Там же. – 1982. – № 24. – С. 139–142.
11. Бонд В. Л. Технология кристаллов. – М. : Недра,

1980. 12. А. с. 988853 СССР. Способ травления монокристаллов смешанного галогенида цезия / В. В. Данилов, А.В. Богданова, В. Г. Шульга. — 14.09.82.

Автор приносит благодарность руководителю Ужгородского отд. Института проблем регистрации информации НАНУ А. В. Богдановой за оказанное внимание и помощь в решении ряда химико-технологических вопросов.

Редакция: П. Ф. Маев, Л. М. Лейдерман, Е. А. Тихонова.

Техническая редакция: Е. И. Корецкая. Компьютерное обеспечение: А. П. Соломяный.

Подписано к печати 06.12.99 г. Формат 60х84 1/8. Печать офсетная. Печ. л. 7,0. Уч.-изд. л. 8,1. Тираж 700 экз. Оригинал-макет изготовлен в ДП «Нептун-Технология» (65028, г. Одесса, ул. Б. Хмельницкого, 59). Отпечатано в типографии издательства «Астропринт» (65100, г. Одесса, ул. Преображенская, 24, к. 13).

Технология и конструирование в электронной аппаратуре, 1999, № 5-6