К. ф.-м. н. В. П. СИВОКОНЬ

Украина, г. Херсон, Экономико-правовой институт

Дата поступления в редакцию 13.10 1998 г. Оппонент д. ф.-м. н. В. А. ДРОЗДОВ

ГИБРИДНАЯ ВЫСОКОРАЗРЕШАЮЩАЯ ЭЛЕКТРООПТИЧЕСКАЯ СИСТЕМА ДЛЯ ПОДАВЛЕНИЯ ФАЗОВЫХ ИСКАЖЕНИЙ

Предложенная система способна компенсировать фазовые искажения не только плоской волны, но и лазерных пучков с неоднородным амплитудным профилем.

The proposed circuit is able to compensate phase distortions not only flat waves, but laser beam of rays with non-uniform amplitude profile.

За последние годы в технологии производства фазовых корректоров высокого разрешения - таких как адаптивные зеркала, жидкокристаллические модуляторы (ЖКМ) и жидкокристаллические телевизоры (ЖКТВ) — произошли значительные изменения. Теперь возможно получение фазовых корректоров с числом каналов управления N=200 (зеркала) [1] и даже 10000 (ЖКТВ) [2]. Использование для таких систем старых алгоритмов управления наталкивается на ряд трудностей. Классические адаптивные системы, основанные на оценке волнового фронта с помощью гартмановского датчика, резко теряют свою эффективность и катастрофически дорожают с ростом N [3]. Другие подходы, основанные на послерегистрационной обработке, такие как метод фазового разнообразия [4], восстановление по биспектруму [5] или прямое восстановление фазы по зарегистрированным распределениям интенсивности [6], характеризуются низким быстродействием и вряд ли смогут быть использованы в реальных адаптивных системах ближайшего будущего.

В данной статье представлена гибридная высокоразрешающая электрооптическая система для подавления фазовых искажений и итеративный алгоритм для ее управления. Главным преимуществом системы является то, что она работает только с распределениями интенсивностей (зарегистрированных в ближнем и дальнем поле), избегая, таким образом, прямого измерения фазы. Каждый корректирующий шаг алгоритма включает регистрацию распределения интенсивности и его простую обработку (в основном фильтрацию в спектральной области). В основу алгоритма положен тот факт, что благодаря дифракции фазовые искажения могут быть трансформированы в неоднородности интенсивности в ближнем поле. Используя это распределение интенсивности, мы можем организовать отрицательную обратную связь так, что работа нашей электрооптической системы будет приводить к подавлению фазовых искажений.

В настоящей реализации алгоритм слабо чувствителен к крупномасштабным фазовым искажениям, так что предполагается, что они (по крайней мере наклоны и дефокусировка) компенсируются независимо с помощью обычной адаптивной оптики. В силу различия временных и пространственных масштабов у крупно- и мелкомасштабных фазовых искажений такое разделение каналов может дать заметные дополнительные преимущества. Однако это требует и слабого взаимного влияния каналов, что как раз и реализуется в нашем алгоритме.

Предлагаемый алгоритм управления высокоразрешающими фазовыми корректорами весьма близок к процессам, происходящим в оптических системах с нелинейной двумерной оптической обратной связью [7], которые доказали эффективность коррекции фазовых искажений у плоской волны. Главным отличием является то, что в нашей системе обратная связь реализована не оптически, а электронно, обеспечивая тем самым большую свободу конструкции системы и модификации алгоритма.

Проведенное нами численное моделирование работы системы показало, что предложенная система способна компенсировать фазовые искажения не только плоской волны, но и лазерных пучков с неоднородным амплитудным профилем. Обнаружено также, что в некоторых случаях компенсация искажений сопровождается возникновением локализованных фазовых состояний (малых областей), где фаза имеет сдвиг на 2π . Такой сдвиг фазы ровно на 2π никак не проявляется в реальных оптических системах видения или фокусировки излучения, но может оказаться полезным в иных оптических приложениях (оптическая память, выделение особенностей и т. п.).

Конфигурация системы

Оптическая схема системы высокого разрешения для подавления фазовых искажений представлена на **рис. 1**, *а*. Система имеет два раздельных канала, причем коррекция крупномасштабных аберраций φ_v осуществляется обычной адаптивной опти-

Рис. 1. Оптическая схема высокоразрешающей системы подавления фазовых искажений

кой (OAO), а подавление мелкомасштабных фазовых искажений $\phi_{\rm M}$ производится высокоразрешающей адаптивной системой с обратной связью (ACOC), более подробная схема которой представлена на рис. 1, δ .

Падающая световая волна с комплексной амплитудой $A^{\text{пад}}(r,t)=A_0(r)\exp(i\varphi(r,t))$ (где $i^2=-1, t$ время, $r=\{x,y\}$ — пространственные координаты в плоскости, перпендикулярной оси распространения z, $A_0(r)$ — амплитуда, $\varphi(r,t)$ — фаза волны) проходит последовательно через крупномасштабный фазовый корректор (обычно гибкое деформируемое зеркало ДЗ) и высокоразрешающий сегментный корректор (обычно ЖКМ или ЖКТВ). Выходящая волна $A^{\text{вых}}(r,t)=A_0(r)\exp(i\psi(r,t))$ имеет остаточную фазу $\psi(r,t)=\varphi(r,t)+u(r,t)$, где u(r,t) — полная корректирующая фаза, вносимая как ДЗ, так и ЖКТВ. Подавление искажений приводит к тому, что фазовые аберрации выходящей волны заметно меньше аберраций входящей: $|\psi| \ll |\varphi|$.

Главной частью контура подавления мелкомасштабных аберраций является преобразование фазы в интенсивность ("визуализация фазы"), которое в данной системе осуществляется посредством дифракции выходящей волны от z=0 до z=L и последующей ее фильтрации в спектральной области. Эта фильтрация может быть проведена оптически посредством пары линз и малой диафрагмы, входящих в состав Фурье-фильтра (см. рис. 1, *б*). Интенсивность дифрагировавшей и отфильтрованной волны, которая при определенных условиях будет пропорциональна фазе волны, затем регистрируется стандартным устройством на основе прибора с зарядовой связью (ПЗС-камерой) и служит входным сигналом в цепи электронной обратной связи. Отметим, что можно удалить оптический Фурьефильтр и провести требуемую фильтрацию дифрагировавшей волны электронным образом посредством компьютера. Таким образом можно осуществить более гибкую и сложную обработку интенсивности, что в ряде случаев может быть очень эффективно.

Итерационная схема коррекции

Пусть падающая волна $A^{\text{пад}}(r,t)$ имеет стационарный профиль интенсивности $I_0(r) = |A_0(r)|^2$ и фазы $\varphi(r)$. Тогда комплексная амплитуда поля A(r,z,t) сразу после фазового корректора (в плоскости z=0, рис. 1, δ) имеет вид

$$A(r,0,t) = A_0(r) \exp[iu(r,t) + i\varphi(r)].$$
(1)

Определим итерационную процедуру коррекции фазы для управляющего сигнала $u^{(m)}=u(r,t=t_m)$ как

$$u^{(m+1)} = (1 - \alpha^{(m)})u^{(m)} + \alpha^{(m)}Ru^{(m)}_{oc}, m = 1, 2, 3, ...; (2, a)$$

$$u^{(m)} = f_{(CII}^{(m)} I_{(2, a)})$$
(2.4)

$$\mu_{\text{OC}} = -f_{\text{TB}}(O(I_L - I_0)). \tag{2,0}$$

Здесь $a^{(m)}$ — некоторый параметр, R — коэффициент обратной связи, $u_{oc}^{(m)}(r)$ — сигнал обратной связи, $f_{\rm TB}(I(r))$ — кривая чувствительности ЖКТВ или ЖКМ, применяемого в системе, а G обозначает оператор, который описывает требуемую фильтрацию интенсивностей волны: $I_0(r)$ — до дифракции и $I_L^{(m)}(r)$ — после дифракции на расстояние L. Если Фурье-фильтр (рис. 1) реализован электронно, то

$$G\{I_{L}^{(m)} - I_{0}\} \equiv F^{-1}\{TF\{I_{L}^{(m)} - I_{0}\}\},$$
(3)

где *F*, *F*⁻¹ — соответственно прямое и обратное Фурьепреобразование; *T*=*T*(*q*) — передаточная функция фильтра. (В дальнейшем мы будем иметь дело только с ротационно-инвариантными фильтрами, передаточная функция которых зависит только от модуля *q*=|q| вектора пространственной частоты *q*={*q_x*, *q_y*}: *T*(*q*)=*T*(*q*).)

Смысл алгоритма коррекции (2) состоит в том, что на каждом шаге для получения новой фазы корректора $u^{\text{нов}}$ к текущей фазовой оценке $u^{(m)}$ добавляется вклад, пропорциональный распределению интенсивности дифрагировавшей волны $Ru_{oc}^{(m)}$, изменение которого, как можно показать, отражает изменение самой фазы $u^{(m)}$. При этом отрицательность коэффициента обратной связи *R* гарантирует уменьшение абсолютного значения остаточной фазы $\psi = \varphi + u$ на следующем шаге: $|\psi^{(m+1)}| < |\psi^{(m)}|$. Следует также отметить, что алгоритм (2) можно в какой-то степени считать дискретным, конечно-разностным аналогом дифференциального уравнения, описывающего процессы в нелинейных оптических системах с обратной связью. Как было показано в [7], такие системы способны компенсировать фазовые искажения, но только у плоской волны. В отличие от таких нелинейных оптических систем фильтрация в $(2, \delta)$ не само́й интенсивности I_I дифрагировавшей волны, а разности между ней и интенсив-

ОПТОЭЛЕКТРОННЫЕ СИСТЕМЫ

ностью входной волны I_0 , позволяет устранить паразитное перерастание крупномасштабных неоднородностей интенсивности в неоднородности фазы. Это обеспечивает эффективную коррекцию фазовых искажений не только для плоской волны, но и для более реального случая — светового пучка.

Для сегментированного корректора с функциями отклика $S_n(r)$ поршневого типа (случай ЖКТВ) управляющая фаза принимает вид

$$u(r,t) = \sum u_n(t) S_n(r), \ n = 1, \dots, N,$$
(4)

где $u_n(t)$ — сигнал управления *n*-го сегмента (канала) — определяется как

$$u_n(t) = (1/a^2) \int u(r,t) S_n(r) d^2r, \ n = 1, \dots, N.$$
(5)

(Здесь мы предполагаем, что все сегменты имеют одинаковую квадратную ($a \times a$) геометрию, и их функции отклика $S_n(r)$ не пересекаются. Данная ситуация типична для ЖК-телевизора, работающего в фазовом режиме.)

Обобщенная схема итерационной процедуры коррекции волнового фронта для предлагаемого алгоритма показана на **рис. 2**, где через $I_{\rm oc}$ обозначена интенсивность "обратной связи" (используемая для вычисления сигнала обратной связи $u_{\rm oc}$). Поскольку этап дифракции реализован оптически, то каждый шаг процедуры требует выполнения только двух преобразований Фурье (для оператора G), что может быть быстро выполнено в реальном масштабе времени.

Рис. 2. Итерационная схема коррекции

Анализ спектрального коэффициента подавления фазовых искажений $P(q)=\Psi(q)/\Phi(q)$ для данной итерационной процедуры в линейном приближении был проведен в [8], где было получено следующее выражение для P(q):

$$P(q) = 1/[1 - 2RI_0 T(q) \sin(q^2 L/2k)].$$
(6)

Здесь $\Phi(q)=F\{\varphi\}$ и $\Psi(q)=F\{\psi\}$ — спектры исходной и остаточной фазы, $k=2\pi/\lambda$ — волновой вектор, λ — длина волны излучения.

В соответствии с (6) подавление фазовых искажений происходит в спектральных областях, где |P(q)| < 1. Для отрицательного коэффициента обратной связи (R < 0) это приводит к требованию

$$T(q)\sin(q^2L/2k) > 0. \tag{7}$$

Во избежание самовозбуждения и усиления искажений необходимо изменять знак передаточной функции фильтра T(q) в тех спектральных областях, где синус в (7) меняет знак. Легко показать, что эти области соответствуют кольцам с радиусами $q_{\kappa}(q_{\kappa}^2L/2k=K\pi, K=1, 2, 3,...)$. В силу квадратичной зависимости от q в (7) такой фильтр трудно реализовать на практике, и обычно ограничиваются работой только в первом кольце $q < q_1$, где условие (7) заведомо выполнено.

Моделирование системы

Мы провели компьютерное моделирование работы итерационного алгоритма как для сегментного, так и для непрерывного фазового корректора. Во всех вычислениях коэффициент обратной связи был равен *R*=-8, параметр α=0,1. Дифракция световой волны описывалась с помощью уравнения квазиоптики

$$-2ik\frac{\partial A}{\partial z} = \frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2}, \quad k = 2\pi/\lambda,$$
(8)

которое решалось по стандартной методике с помощью быстрого преобразования Фурье [9, с. 258]. Вычисления проводились на квадратной однородной сетке 128×128. Для моделирования коррекции фазы для светового пучка диаметра *D* мы использовали супергауссовский профиль в виде

$$A_0(r) = \exp\left(-\left(\frac{2r}{D}\right)^{16}\right).$$
(9)

Каждая реализация случайной фазы $\phi(r)$ формировалась в спектральной области, и условие $\mathcal{D}^*(q) = \mathcal{D}(-q)$ всегда выполнялось, чтобы $\phi(r)$ была действительной функцией. Сила аберраций задавалась изменением $|\mathcal{D}|$ и характеризовалась стандартным отклонением σ фазы и соответствующим числом Штреля (St) [9, с. 62]. (Напомним, что число Штреля равно отношению интенсивности искаженной волны в фокусе линзы к соответствующей интенсивности для неискаженной волны. Оно всегда меньше или равно 1 и показывает относительную степень деградации волны за счет фазовых искажений.)

Для оценки деградации в коррекции, вызванной конечным числом каналов управления сегментного корректора N, мы провели серию вычислений. Передаточная функция фильтра T(q) тождественно равнялась 1 всюду внутри первой зоны стабильности $q < q_1$ и 0 — вне ее. Внутри этой зоны спектральная плотность фазы имела постоянную амплитуду $\mathcal{D}(q) = \mathcal{D}_0$ и случайную δ -коррелированную фазу, однородно распределенную в интервале [0, 2π], так что в идеальном случае корректор был способен произвести полную коррекцию этих искажений.

В качестве модельной функции $f_{_{\rm TB}}$ ЖК-телевизора использовалась модуляционная кривая реаль-

Рис. 3. Типичная модуляционная кривая ЖК-телевизора

ного ЖКТВ из работы [10]. Ее график приведен на **рис. 3**.

Результаты численного моделирования представлены в виде графика эффективности фазовой коррекции в зависимости от числа каналов управления (числа сегментов корректора) N для случая умеренных фазовых искажений (St=0,69, σ =0,61 рад) **рис. 4** (σ^2 – дисперсия фазы). Примеры искаженной и скорректированной фазы (точки a-f) представлены в нижней части рис. 4. Изображения g и h — это спектры искаженной (a) и скорректированной (f) фазы. Корректор с $N=128\times128$ соответствует управлению каждым узлом вычислительной сетки, т. е. корректору с непрерывной поверхностью. Характерным примером таких корректоров могут являться жидкокристаллические пространственные модуляторы света. Сегментация корректора типична для ЖК-телевизоров, работающих в фазовом режиме [2, с. 585]. Количество итераций, необходимых для сходимости итерационного процесса, во всех случаях было в пределах 20-30.

Представленные результаты подтверждают эффективность итерационного алгоритма коррекции (2). Они также показывают, что сегментный корректор обеспечивает приемлемую коррекцию только если характерный размер сегмента $a=1/\sqrt{N}$ меньше характерного размера фазовых неоднородностей: $a<2\pi/q_{\phi}=2\pi/q_1=1/16$. Физический смысл данного результата очевиден.

Проведенный анализ демонстрирует высокий потенциал данной системы для коррекции фазовых искажений световых пучков, в т. ч. с неоднородным распределением интенсивности по сечению пучка. Перспективным представляется также возможность использования данной адаптивной системы как

Рис. 4. Эффективность подавления фазовых искажений

вторичного контура адаптивной коррекции мелкомасштабных искажений, наведенных атмосферой.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Roggemann M. C., Welsh B. M. Imaging through turbulence. – Boca Raton, Florida: CRCPress, 1996.

2. Spatial light modulator technology: materials, devices and applications / Ed. U. Efron. - N.-Y.: Marcel Dekker Press, 1995.

3. Primmerman C. A., Price T. R., Humphreys R. A. et al. Atmospheric-compensation experiments in strong-scintillation conditions // Appl. Opt. - 1995. - Vol. 34. - P. 2081-2088.

4. Gonsalves R. A. Nonisoplanatic imaging by phase diversity // Opt. Lett. - 1994. - Vol. 19. - P. 493-495.

5. Beckers J. M. Adaptive optics for astronomy: principles, performance and applications // Annual review of astronomy and astrophysics. – 1993. – Vol. 31. – P. 13–62.

6. Ivanov V. Yu., Sivokon V. P., Vorontsov M. A. Phase retrieval from a set of intensity measu rements: theory and experiment // J. Opt. Soc. Am. - 1992. - Vol. A9. - P. 1515-1524.

7. Degtiarev E. V., Vorontsov M. A. Spatial filtering in nonlinear two-dimensional feedback systems: phasedistortion suppression // Ibid. – 1995. – Vol. B12. – P. 1238–1248.

8. Sivokon V. P., Vorontsov M. A. High-resolution adaptive phase distortion suppression based solely on intensity information // Ibid. - 1998. - Vol. A15. - P. 207-215.

9. Воронцов М. А., Шмальгаузен В. И. Принципы адаптивной оптики. — М. : Наука, 1985.

10. Dou R., Vorontsov M. A., Sivokon V. P., Giles M. K. Iterative technique for high resolution phase distortion compensation in adaptive interferometers // Optical Engineering. - 1997. - Vol. 36. - P. 3327-3335.