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ALGORITHMS WITH STABILIZING COEFFICIENTS FOR SOLVING POORLY DETERMINED
RADIOPHYSICS PROBLEMS

This article describes the algorithms with correcting and stabilizing coefficients to provide sustainable solutions to systems of
equations related to poorly determined tasks of electrodynamics and nonlinear dynamics. It demonstrates the use of the modified algorithms
in the task of Eq-waves propagation in irregular waveguide and dynamic model of Réssler’s chaos. In the latter case the article demonstrates
that “deterministic” (i. e. regenerating) chaos is impossible. Fig. 5. Ref.: 6 title.
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There is a wide class of poorly determined or
incorrectly formulated tasks in both electrodynamics and
nonlinear dynamics. For example, in electrodynamics
there are tasks of calculating the supercritical or partial
(irregular structures) waveguide supercritical waves, in
nonlinear dynamics there are dynamic (“deterministic™)
chaos modes in oscillatory systems. In the first case,
an arbitrarily small calculation errors or initial
conditions lead to an exponential error, i.e. to the
divergence of the solution [1, 2]. In the second case,
an arbitrarily small calculation errors lead to their
accumulation and to attractor malfunction so appears
“strange attractor” [3]. It should be noted that
“strange attractor” in real structures described by
these models appears actually. But here its
“actuation” is produced by natural noises in physical
systems, rather than “numerical noise” of numerical
model, where chaos has indeed “deterministic”
nature.

The article suggests several modifications
for “numerical noise” elimination to ensure the
sustainability of solutions in relation to calculation
errors.

1. Egi-wave propagation in irregular
waveguide with circular cross-section. The theory
of wave propagation in irregular waveguides based
on the method of coordinate transformation and
projection method leads in the end to double point
boundary-value problem for system of ordinary
differential equations (ODE) in relation to the
amplitudes of coupled normal waves in a transformed
coordinate system [1]. ODE for irregular waveguide
with circular cross-section is divided into Hg- and
Eoi-waves (zero-azimuth index waves), i. e. Hg- and
Eo-waves systems become independent [1]. Thus,
excitation problems are solved independently for
Hoi- and Egi-modes.

The proposed article uses (for formulation of
excitation equation Eg-waves) suitable approach
(from the point of view of the above considerations
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[4, 5]): E’ is excluded in the transformed system and

the equation of the second order is solved for H'.
After such an approach the boundary value Eg-waves

problem becomes a scalar (H' has only one
component pH',), and the resulting ODE system
relative to normal waves amplitude is transformed to
even form. The demonstrated examples of numerical
solution of Egy-waves tasks allow illustrating the
stability of numerical algorithms for solving ODE
system received for Eg-waves.

It is important to emphasize the relevance of
equation formulation for Egy-waves excitation in
irregular waveguides with a circular cross-section in
adequate form for stable numerical methods, as these
types of waves are used in superpowerful
Cherenkov's amplifiers and generators ensuring the
creation of radar systems and anti-ballistic missile
systems of new generation.

Here we consider the longitudinally-irregular
waveguide with circular cross-section, internal border
set as b(z), b is the waveguide radius, z is the
longitudinal coordinate. Boundary condition on a
perfectly conductive inner surface b(z) is specified as

[ﬁé]r:b(z) =0. @)

After a coordinate transformation (moving
from real coordinate system r, ¢, z to p, ¢, z, where
p=r/b(z2)), get the boundary condition (1)

[fE], =0, @)
then Maxwell's equations are the following form
(vacuum medium) [1, 5]:
~ OH'

—_— 3
9— ©)
Here &, o are the dielectric and magnetic
permeability of vacuum accordingly, and auxiliary
vector components E’, H’, J' this way are

associated with covariant vectors E, H, J (physical

rotﬁ’:gogA%+ §J’, rotE’=—pu,
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vectors of electric and magnetic fields and electric
current density) [1, 4, 5]:

- 'zl 1 =2 133
E=E,a +E,pa” +E,a",
1 _yrsl r 52 rz3
H=H,a +H,pa" +H,a",

_1rzl r . z52 r=z3
J=J,a+J,pa"+J;a

Where al, a2, 3%  are
unorthogonal coordinate system vectors p, ¢, z:

reciprocal

g-fo_zpd 2 A sy
b bdz' bp'
Covariant tensor § is [1, 5]:
91 0 053
g=l o 1 o
g1 0 Oz 4)

o dbY? b2
g =1+p s 1013 = 931:—Pb 1933— .

Contravariant tensor §* is

1 0 Gy
gt={ 0 0 o0 |
G31 0 G33 (5)
db 1 p?(dbY’
G3 =Gy = ﬁ dz + Ga3 :FE_Z(EJ :

Now eliminate from the system (3) E’ then

get the equation for H':
2

rot(@’lrotH) Sotlo —7 0 (gH) rotJ’ =0. (6)

Believing that the process is periodic and established
(stationary modes of relativistic TWT and BWT) can

present the solution H' in the form of
M .
H'=Re Y Hpel™ (7)

Now return to the item of Eg-wave
excitation in the waveguide. Then taking into account

boundary condition (2) I—;|r’n
next finite series [1, 4, 5]:
. |
Hi =2An“1”. (2) @031 (voi ).
= (@)
‘]O(VOI):O' izl, 2,...

For getting the ODE system finding Eg;
associated normal wave amplitudes will take
advantage of projection Galerkin’s  method.
Substitute solution (7), (8) in the source system (6)

and replace its equivalent projection system of
equations:

can be represented as the

1 271 o _ a2 -
P {Hrot(g rotH ’)_80ﬂ06t_2(gH,]}x

x (5031("0,3 p)pdp d(wt) =
2zl

= i ” rotj’(ﬁoJl(vop p)pdp d(wt);
00

{rot[@lrotH;;n]Jr mza)zgoyo(@ﬁr’nj}x

O —y

©)

X
I}
(&

0di(Vop ) pdp =

27l
1 .
= IjrotJ (poJl(vOpp)pdp e Mt (wt);
00

1 . .
Hrot[@‘lrotﬁ,’nJ + mzwzgoyOQHr’n}x
0

X (BO‘JI(VOp P) pdp=
1
=——X
2
27l
J; ‘]’ — jmat
I %'a_}Jl[VOpPJPdp e T d(wt)=
=—mp(2), p=12..1, m=12.M.

After insert equations (8) taking into account (4),
(5) into (9) for H/, is ODE systemto AM:

a*Aw
dz?
1 <« 2db, An
I N i
h Z{ bdz oz

pp

wll 3(db)® 1d% 1 db
2 2 s =222, ——— 2, (b=
+Am'Hb2[dZJ +bd22 1pi b2 dz 3ip

=1y (2).

Boundary condition for ODE system (10) matched on

regular waveguide ends has the standard form [1].
The system (10), however, does not satisfy

our task, because it contains the first derivative of

AM " function that leads to instability of the
computational algorithm. Therefore, we introduce the
replacement: AN - b(z)Cpy, (z). Then ODE system
has required even representation (the main part).
Physical magnetic field intensity at m o frequency is
expressed as H, = @,Hy,,, where

I .
- Zch(z)J{vop ﬁje'mwt. (11)

p=1

.

(10)
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And physical electric field intensity Em,

1 {a(erq,)fo_aHm%}

- 7
. 0
" imwe, | ror oz

here complex amplitude Cr?]"p is used by the equation:

d%Cop [ 5, vop 1 (db)> 2d%
+IM——t—=| —| +——-
dz? b2 b2ldz b dz?

1(db |3pp M
- —=|—IC
bz(dzjhpp m

| | . M
+ {—%ﬁl—k“[@cg‘k +bdcmk]+ (12)
kipek | D7 dzZ hy | dz dz

2
pgu [ 3(db)" 1d% |l
™\ b2\dz) bdz? |hy

_ 1 (dbY s -0
b2\ dz ) hy, '

Here are the following designations: b(z) — profile
waveguide; v, — p - root of the Bessel function Jo(x):
Jo(vep) = 0; hpp = J%(vep)/2; p= 1Ib(2).

1

Lo :J.‘JO(VOkp)Jl(vOpp)VOkpzdp,
0

1
I3kp = J‘Jl(VOk ) ‘]l(VOp P) (Vox p)zdp-
0

Equations (11) and (12) are given in length
units for z, b(z). It is obvious that if the left and the
right of these equations are multiplied by 1/k*= c%/«f,
that quantity z, b(z) are converted into dimensionless,
that obviously comfortable for making calculations.
From this point on let us take designation of these
values without modification that is for (11) and (12)
equations b(z) = kb(z), z = kz.

The even form of excitation equations
Eo-wave (12) opens the way to use even algorithms
for step-by-step solution of these equations proposed
in [5] and tested on solution of Hy-waves tasks [5].
Let us use step by step algorithm described in [5] of
even equation solution for Hg-waves
d*c

dz?

+Q(z)C=f (13)

in the following form:
T T
where 7>1 the number selected when specific
calculations, at that z— 1 when reducing integration
step. Introduction to algorithm (14) parameter 7 > 1
is caused necessity to ensure the uniqueness of

s
1)
T

_ Ck+1 thk+1 + h2
T

solution of boundary-value problem for the
equation (12): the decision must have the only field
component excited by sources at the left end.
Actually when using standard algorithms through
very minute calculation errors appears backward field
component which is not consistent with the physical
meaning, which for supercritical modes increases
exponentially in +z direction, leading to a rapid
solution collapse. Introduction of the parameter zin
algorithm  excludes appearance of incorrect
component and thus ensures the sustainability of step-
by-step procedures for the calculation. Note that the
introduction of the parameter 7 is necessary to meet
the conditions of the uniqueness of a solution
theorem: the environment must have a place at least
small losses.

The calculated waveguide profile b(z) in

Fig. 1, a, and in Fig. 1, b — distribution ‘Cl'\,")‘ when

the number of steps for even algorithm N =20 000.
Acceptable accuracy is achieved when N = 2 000.
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Fig. 1. E-wave field calculation using an even algorithm: waveguide

Cly|(z) when N=20000:

profile and vop: -.- o1, - w2 (@);

~p=1--p=2,—p=3;--p=4(b)

Fig. 2 illustrates the convergence even
algorithm when increasing N: here are the
dependences of maximum along z for relative error

5‘C'1'\g‘ and the dependences 1/t, fromN(p =1, 2, ...).
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Fig. 2. The convergence even algorithm when increasing N:
&»=0N)@); UnpN);—p=1-—-p=2,-—-p=3,—~p=4(b)

Fig. 3 illustrates the effect of higher postcritical
Eq-waves on the structure of the fields in the waveguide.
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Fig. 3. Effect of higher postcritical Eqp- , Egs-, Eos-waves on structure

of fields in waveguide: waveguide profile b(z) (a); Co“f (b); mode

composition of full field in waveguide: —p=1;---p=2;--p=3;
—=p=4()

2. The elimination of  exponential
calculation errors. Let us use recurrent calculation

formula of exponential function et (A —a complex
number) [2]:
eAAn - (2+AA)n
(2-AA)"
Here t = An; A —step, n — node number.
Let function f(t) is calculated by using a
simple one-step algorithm:
fn+1 = fn +Afr;!
fn+1 = f(tn+l) = f(A(n+D)), fn = f(tn) = f(An).
A simple numerical way to “separate from”
the exponent with power (at) can be illustrated by
calculation example with formula (15) (e - “separate
from” exponent):
_(2+AA)
(2-AA)
multiplicand S8 =[1-Aa] and provides a “separate

from” exponent.

One of the most famous mathematical
nonlinear dynamics models demonstrating the
“deterministic chaos” is the Rdssler’s equation
system [6]:

(15)

(16)

fn_l[l—Aa] 17

n

—=—(y+12),

a (y+2)

y

— =X+ey, 18
it y (18)
dz

— =W-mz+XzZ

dt

Here e, w, m — constant numbers, model parameters;
t — argument of the functions x, y, z.
Let us introduce the function

. 2 2
pif =27j1 — 7 — (21 — 2) (Zyan + 24)-

This function determines a numerical residual
of “energy” solution z(t) and therefore is “numerical
noise” indicator.

Solving the equation system (18) by the
usual step-by-step methods in phase plane x, y one
gets the “strange attractor” and demonstrates
“deterministic” i. e. regenerating chaos. Fig. 4 shows
a similar solution with using 1V order Runge-Kutta
method at e=w=0.2; m=6.5 A=0.00042,
Nmax = 100 000. The same solution is obtained by
using any other standard method — Adams, Hamming,
Bimon, Werle, and others.

Note that pif-“surges” correlate with the
occurrence of “peaks” when finding z(t), that is an
indicator of “attractor” malfunction in the plane x, y.
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Fig. 4. “Strange attractor”, “deterministic chaos” with the
following model parameters e=w=0.2; m=6.5; A=0.00042,

Nmex = 100 000, a=0.0979, pif =27, — 2 — (2, — 2, )21 + 2,)

Now construct the calculation algorithm (18)
with correcting factor 8 =[1-Aal:

Xy = [_ (yn +Z, )A+ Xn ]ﬂ’
Yna = [(Xn + eyn)A+ Yn ]ﬂ, 19)
Zpy = [WA— MAz, +AX,Z, + zn],B.

Basing on algorithm (19) let us find solution
of equation system (18) given the same as in the
previous case of options: e=w=0.2; m=86.5;
A=0.00042, nn=100000, «=0.0979, *“strange
attractor” and “chaos” are not present, the solution
leads to steady-state limit cycle.

Solution  repetition ~ when A =0.008,
Nmax = 10 000, a=0.1017 leads to exactly the same
result, that is shown in Fig. 5.
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Fig. 5. The exact solution of equation (8) with the following model
parameters e=w=0.2; m=6.5 A=0.008 nma=210000,

@=0.1017, pif=27, 2% = (2,1 =202, +2,)

As can be seen from Fig. 5, pif =0 if t > 0.5,
i. e. “numerical noise” is eliminated while forming
limit cycle. The system solution (18) gives a
stationary attractor in the plane x, y. Thus, emergence
of “strange attractor” and “deterministic chaos” is the
consequence of the exponential calculation error
accumulation of poorly determined model equation
system. The introduction correcting coefficient g
eliminates the numerical error and chaos does not
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occur as it should be for a deterministic mathematical
model. In real physical system described by
model (18) chaos might occur because the system is
unstable due to natural noise. But it will not be
deterministic, i. e. regenerating chaos, since natural
noise cannot be regenerating.

Conclusion. Mathematical physics equations
related to poorly determined tasks electrodynamics
and nonlinear dynamics can be solved by the listed
algorithms with correcting or stabilizing coefficients
P u rin the article.
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A. A. Kypaes, B. B. Marseenko, T. JI. [TonkoBa

AJIT'OPUTMBI CO CTABMJIM3NUPYIOINIMU
KOSOOUITMEHTAMM UL PETINEHM A
IJIOXO OBYCJIOBJIEHHBIX 3AJIAY
PAJNODPU3UKN

B craTthe mpHBeICHB! ANTOPUTMBL C YTOUHSIONIMMH H
CTaOMITM3UPYIOIMMH KO3 (UIIMEHTaMH, TTO3BOJISIONIME TTOTy4aTh
YCTOWYUBBIEC PEIICHUS CUCTEM YPaBHEHUH, OTHOCSIIHUXCS K IIIOXO
00yCIIOBJICHHBIM 3aJlauaM 3JICKTPOJMHAMUKN U HENHHEHHOH IH-
HaMuKH. [IposeMOHCTPHPOBaHO HpPHMEHEHHE MOAU(DUIUPOBAH-
HBIX aJIFOPUTMOB B 3ajaue pacnpocTpaHeHus Eoi-BoiH B Hepery-
JSIPHOM BOJHOBOJE M MOJETH AMHAMHYEcKoro xaoca Pecciepa.
B nocnenHem ciydae moka3aHo, YTO «JICTEPMUHHPOBAHHBIN» (T. €.
BOCIPOHM3BOJHMBII) Xa0C HEBO3MOJKEH.

KimioueBbie ¢J10Ba: IWI0X0 00YCIOBICHHAS 3aa4a, YCTOi-
YMBBIE YHCIIEHHBIE METO/IBI, 3aKPUTUUECKUE BOJIHBI B BOJIHOBOJE,
JMHAMHYECKHH Xaoc.

0. O. Kypaes, B. B. Matseenko, T. JI. [TonkoBa

AJITOPUTMMU 31 CTABIIII3YIOUNMHU
KOE®ILIEHTAMU JJIA PO3B’ A3AHHA
IIOI'AHO 3YMOBIJIEHUX 3AJJAY
PAIIODI3UKN

V crarTi HABEIEHO ANTOPUTMH 3 YTOYHIOIOUHMMH i CTa-
6imi3ytounMu Koe(ilieHTaMH, IO JO3BOJISIOTh OTPHMYBATH CTiiKi
PO3B’S3KH CHCTEM DIBHSAHB, IO BITHOCATBCA JO TIOTaHO 3yMOBIIC-
HUX 3324 eJICKTPOAWHAMIKM Ta HeNiHiiHOoi auHamiku. [Ipoxemon-
CTPOBAaHO 3aCTOCYBaHHS MOIM(IKOBAHMX AITOPUTMIB y 3amadvi
nomupeHHs Eqi-XBUIb y HEperyisipHOMy XBHJICBOAI Ta MoZeni
JuHaMidyHOro xaocy Pecciepa. B ocraHHOMY BHIA/IKy IOKa3aHo,
10 «AeTepMiHOBaHUI (TOOTO BIATBOPEHHI) Xa0C HEMOMKIHBHUIH.

KarodoBi csioBa: moraHo oOymoOBIIeHa 3ajaya, CTiHKi
YHCIIOBI METOMH, 3aKPUTHYHI XBUJI Y XBHJICBO/I, TMHAMIYHHIT Xa0C.



