IMPLEMENTATION OF THE MODERN PLASMA SIMULATION CODES
VIAPIC METHOD FOR PARALLEL COMPUTING SYSTEMS

D.1. Dadyka, 1.0. Anisimov
Taras Shevchenko National University of Kyiv, Kiev, Ukraine

E-mail: d.dadyka@gmail.com

The comparison of common open source software for the simulation of plasma via particles-in-cell (PIC) method
using parallel computing systems is presented. The problems of field equation solving, load balancing, general-
purpose computing on graphics processing units are considered. All the reviewed programs have some
disadvantages, in particular associated with the used field solving methods, data caching and with lack of the
adaptive grids support. The approach for cache misses minimizing based on the particles sorting is brought forward.

The algorithm for effective Poisson solving is proposed.

PACS: 02.60.Pn, 52.65.Rr, 52.80.Tn

INTRODUCTION

Computer simulation has become one of the
important research methods in plasma physics. The
particle-in-cell (PIC) method is one of the most
common methods for such simulation. However, the
existing packages are imperfect. In particular, the used
parallelization schemes are not optimal. The purpose
of this work is the investigation of the possible ways
for improving these packages.

The implementation of modern open source
simulation programs via PIC method is considered.
The review includes the programs XOOPIC [1],
PICCANTE [2], PSC [3, 4], PIConGPU [5] and CPIC
[6]. All these programs support the operation via the
distributed parallel computing systems with MPI
(message passing interface). The program codes can
be downloaded from "github" and compiled by "GNU
make" utility. The comparison of packages is shown in
Table 1.

1. CACHE MISSES AND PIC SIMULATION

The most modern computer systems’ architectures
use the caching. When CPU (central processor unit)
accesses to the main memory, some data array is
copied from the main memory into the faster cache

memory. Thus, access to the following memory cells
will be faster because the data will be cached. But

cashing requires a consistent memory access addresses
[7]. In typical PIC code we need to integrate the
equations of motion:

m—- =qE, , 1
at qEy @
Ky, @
dad "
where V, is the velocity of current particle i, Ek is the

field in the grid cell k where the particle is placed, k is
determined by the coordinates of particle X,. The

relationship between i and k is random. Fig. 1,a
illustrates the memory accesses scheme. Cache misses
happen very often, so low productivity is obtained.

We propose to make the sorting of particles with a
certain periodicity, so i becomes dependent on k.
Particles can’t move to more than one cell for one time
step, so sorting may not be frequent. We propose to
use space-filling Peano curve for mapping 2D space at
1D one by PC(x, y)=n formula which binds Peano
curve point coordinates x,y in 2D space and point
number n. For sorting we propose to use the
smoothsort algorithm [8] because it comes closer to
O(n) time if the input is already sorted to some degree.

Table 1

PIC packages comparison. Abbreviations: MG — multi grid solver, CG — conjugate gradient solver,
ADI — alternating direction implicit solver, FDTD - finite difference time domain solver, LB — load balancing
support, GPGPU — general purpose computing on graphics processing unit

Package Year LB GPGPU Dimensions Field solver Interactions
XOOPIC 1996 - - 2D MG, CG, ADI Monte-Carlo

PSC 2012 + + 3D FDTD Monte-Carlo
PICCANTE 2014 - - 3D FDTD -

PIConGPU 2013 - + 3D FDTD Thomas-Fermi ionization
CPIC 2014 - - 3D MG -

ISSN 1562-6016. BAHT. 2017. Nel(107)
64 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, Ne 1. Series: Plasma Physics (23), p. 64-67.

Tests’ result for moving 10° particles in 2D space
without sorting and for sorting every 20 steps is
presented in Table 2. Sorting time is very small because
the particles’ array is sorted partially and sorting is rare.

Table 2
Computation time for particles motion in 2D space
without sorting and for sorting every 20 steps
Time without sorting, ms 62
Time for sorted particles, ms 10

Field memory

—

Particles Memory

Field memory

Particles Memory

b

Fig 1. The memory accesses in the typical PIC code (a)
and after 2D particles sorting (b)

2. GENERAL-PURPOSE COMPUTING ON
GRAPHICS PROCESSING UNITS

GPGPU is very efficient for PIC methods because:
1.2D and 3D vector operations are the built-in
functions on GPU and can be performed by one step.

2. Linear and bilinear interpolations used in PIC for
charges’ and forces’ weighting are the built-in functions
on GPU and can be performed by one step.

3. For the particle motion we use a multitude of very
simple calculations. GPU is optimized for solving such
problems. A huge number of simple processor kernels
that are used in Single instruction, multiple data
(SIMD) architecture can substantially improve the
performance [7].

Some existing packages (PSC, PIConGPU) use
GPGPU. The computation time for particles motion and
linear weighting problem is given in Table 3.

Table 3
CPU and GPU computation time for different number
of particles in 2D space

Particles' number 10’ 10°
CPU time, ms 430 56
GPU time, ms 20 35

3. LOAD BALANCING AND PARALLEL PIC
METHOD

When we use parallelization, the problem of the

system balancing appears. Let us consider the case of

significantly inhomogeneous plasma (Fig. 2,a). If the

modeling area will be decomposed into domains of the

ISSN 1562-6016. BAHT. 2017. Nel(107)

same square, the amount of data in each computing
node will differ substantially. In this case the run-time
calculations on each node will be different. Nodes
performing calculations faster will be idle while waiting
for the other nodes. So we need to balance the system
by dividing the area into domains with roughly equal
number of particles (Fig.2,b). This problem was
considered only in PSC package [3,4].

However, there is a problem that was not considered
in any of the packages. Different Debye radii can occur
for different domains. In this case, one should use
meshes of different steps for optimal usage of the
computing resources (Fig. 3). We developed an
algorithm based on [8], allowing to solve the Poisson
equation in the case of grids with different steps.

Node 11

Node| Node
6 =

Node | Node
10

Fig 2. Unbalanced (a) and balanced (b) domain
decomposition (background brightness corresponds to
the plasma density)

4. FIELD EQUATION SOLVER

The significant feature of the most advanced
programs is the use of the finite-difference time-domain
method (FDTD). This approach is efficacious and
simple for parallelization. However, many problems
can’t be considered by this method. For example,
modeling of the electrostatic problem can’t be
performed by the FDTD methods because the
divergence equation of electrostatic field can’t be
solved via this method. This is a significant
disadvantage of PSC, PICCANTE and PIConGPU
packages.

65

Li
l_____| //!‘h“‘""d—"‘\,
i Al
LA N
I bt
’ \
{ L: h
f [Mt |
o
{)
\ /
5 i
1]
N /
RN L/
\“‘“‘\\‘_] //
Li>la

Fig 3. System with different Debye length

Another common approach to the parallel solving of
the Poisson equation uses iterative methods such as
multigrid, conjugate gradients, or alternating direction
implicit methods. These methods can be efficiently
parallelized. However, iterative methods’ productivity
is very low and does not allow to use them for the large
size problems. This is a significant disadvantage of
XOOPIC and modern power CPIC packages.

Table 4
Computation time comparison for common Poisson
equation solvers (1024x1024 grid).
Abbreviations: CR — cyclic reduction,
ICR — incomplete cyclic reduction, MG — multi grid,
CG - conjugate gradient

Method Complexity Time, s
CR O(N*log;N) 0.18
Fourier O(Nlog;N) 0.2
ICR O(Nlog;N) 0.07
MG O(N%ne™), eis the 308
rate of convergence.

CG ON?) 215
Proposed O(Nlog;N) 0.24

So, efficient parallel solution for electrostatic
problem is not represented at the moment in any
existing package. A direct method for Poisson equation
solutions based on the domain decomposition and
joining [9] was proposed [10]. The comparison of full
(successive) computation time for proposed method and
other common methods is presented in Table 4.

CONCLUSIONS

1. Cache misses avoiding is very important problem
for PIC methods which can improve the performance
up to 10 times. This problem wasn’t solved in the
existing simulation packages. The method for reducing
the number of misses via periodical sorting is proposed.
The Peano curve mapping 2D space to 1D one is used.

66

2. GPGPU using can improve the performance more
than 30 times. There are packages containing GPGPU
technique, but their application is limited by methods
used for solving of the field equations.

3. Balancing problem should be solved to obtain the
high performance load. This problem is solved in PSC
package, but it uses FDTD field solving and can’t
simulate the electrostatic problems.

4. The problem of parallelization for field equation
solving is still actual. Good parallelization was obtained
only for solving of the wave propagation in plasma by
FDTD method. The efficient parallel algorithm for
solving Poisson equation was not yet proposed in the
existing packages. We have developed an algorithm
based on domain decomposition [9] for Poisson
equation solving with high performance [10].

5. There is no package including all techniques
(GPGPU or cache misses avoiding for CPU, load
balancing, Poisson equation parallelization) for
maximum performance. The new package should be

developed that will have substantially higher
performance.

REFERENCES
1. PJ. Mardahl, J.P. Verboncoeur. ~ Progress in

Parallelizing XOOPIC // EECS Department, University
of California, Berkeley, CA 94720-1772, USA.

2. A. Sgattoni, L. Fedelia, et al. PICCANTE — an Open
Source Particle-in-Cell Code for Advanced Simulations
on Tier-0 Systems // Technical report, PRACE white
papers. Accessed 23 May 2015. arXiv:1503.02464
[cs.DC] (online).

3. K. Germaschewski, W. Fox, S. Abbott, N.Ahmadi,
K. Maynard, L. Wanga, H. Ruhl, A. Bhattacharjee. The
Plasma Simulation Code: A modern particle-in-cell
code with load-balancing and GPU support // arXiv
preprint, 12 Nov 2015. arXiv:1310.7866
[physics.plasm-ph] (online).

4.S.J. Plimpton, D.B. Seide, et al. A load-balancing
algorithm for a parallel electromagnetic particle-in-cell
code // Computer Physics Communications. 2003,
v. 152, p. 227-241.

5. PIConGPU: A Fully Relativistic Particle-in-Cell
Code for a GPU Cluster // IEEE Transactions on
Plasma Science. 2010, v. 38, issue 10, p.2831-2839.
doi: 10.1109/TPS.2010.2064310.

6. G.L. Delzanno, E. Camporeale, J.D. Moulton, et al.
CPIC: A Curvilinear Particle-in-Cell Code for Plasma-
Meterial Interaction Studies // IEEE Transactions on
Plasma Science. 2013, v. 41, Ne 12.

7. D.A. Patterson, J.L. Hennessy. Computer
Organization and Design, Fourth Edition: The
Hardware/Software Interface. Morgan Kaufmann.

2011, p. 57-475.

8. Hertel, Stefan. Smoothsort's behavior on presorted
sequence // Information Processing Letters. 1983,
v. 16 (4), p. 165-170. doi:10.1016/0020-0190(83)90116-3.
9. N.V. Snytnikov. A parallel algorithm for solving 2D
Poisson’s equation in the context of no stationary
problems // Computational Methods and Programming.
2015, v. 16, p. 39-51.

ISSN 1562-6016. BAHT. 2017. Nel(107)

10. D.I. Dadyka, 1.0. Anisimov. Direct parallel Poisson Controlled Fusion. Book of Abstracts. Kharkov,
solver with the multiply grid spacing support for Ukraine. September 12-15, 2016, p. 72.
plasma simulation via PIC method // International
Conference —School on Plasma Physics and
Article received 05.10.2016

OCOBEHHOCTH PEAJ/IM3AIINN COBPEMEHHBIX ITAKETOB MOJAEJNPOBAHUS I1JTA3MbI
METO/JOM KPYIIHBIX YACTHUII B AYEUKAX JJI51 ITAPAJIJIEJIBHBIX CUCTEM

J.U. /laovika, H.A. Anucumos

[IpoBeneHo cpaBHEHHE PACIPOCTPAHEHHBIX MPOrPaMM C OTKPBITBIM HCXOAHBIM KOAOM IJIsI MOZAEIUPOBAaHUS
IJ1a3Mbl METOAOM YacTHIl B SYEHKaxX Ha MapajliebHbIX BBIYUCIUTEIbHBIX CUCTEMax. B 4aCTHOCTH, pacCMOTPEHBI
BOTIPOCHI PEIICHUS YPaBHEHUH OIS, AMHAMIYECKONW OalaHCHPOBKH M BBIYHCICHHN Ha TpaUIECKUX YCKOPUTEIIIX.
OTMedYeHBl HENOCTaTKH CYIIECTBYIOUIIMX HPOTPaMM: OTCYTCTBHE S((EKTUBHBIX METOIOB PEIICHHS
SIIEKTPOCTATHYECKOMN 3a7aun (ypaBHeHHs [lyaccoHa), HEONTHMAIBHOE HCIONB30BAHUE KEIIUPOBAHHS, MpobiemMa
MOJICIMPOBAHMS CYLIECTBEHHO HEOJHOPOAHOW mia3Mbl. PaccMOTpeHO BIMsSHHE MPOMAaxoB KdIla Ha
npousBoauTeabHOCTh PIC-komoB. IlpemokeH cmocod MHUHMMHU3AIUH MOPOMAaxXxOB MYTEM MEPUOTUUCCKOM
COPTHPOBKHM YAaCTHII B JBYXMEPHOM TpocTpaHcTBe. IlpemtokeH moaxox K 3(GGEeKTUBHOMY MapalieIbHOMY
peleHuto ypaBHenus [lyaccona.

OCOBJIMBOCTI PEAJIIBAIIIT CYYACHUX ITAKETIB MOJAEJIOBAHHS IIJIA3MHW METO/I0OM
KPYIITHUX YACTHHOK Y KOMIPKAX JIJIS1 TAPAJIEJIBHUX OBUNCJ/IIOBAJIBHUX CUCTEM

.1 laouka, 1.0. Anicimos

BuKOHAaHO TOPIBHSAHHA MOLIMPEHUX MPOrpaM i3 BIIKPHUTHUM BUXIZHHM KOJIOM JUIS MOJCITIOBaHHS IUIa3MH
METOJIOM YaCTHHOK Y KOMIpKax Ha MapaieibHHX OOYHCIIOBAIEHHX CHUCTEMax. PO3IIIIHYTO NHTAaHHS PO3B’S3KY
PIBHSHB TOJSI, TWHAMIYHOTO OallaHCYBaHHS Ta OOYHCIICHB Ha TpadivHAX NMPUCKOpIOBavax. Bim3Ha4ueHO HEMONiKH
ICHYIOUHX TpOTpaM: BiACYTHICTh €(EKTUBHUX METOIIB PIllIEeHHs eleKTpocTaTHdHOi 3amadi (piBHsHHA I[lyaccoHa),
HEONTHMaJlbHe BHKOPHCTAHHS KEIIYBaHH:], MpoOlieMa MOJCIIOBAHHS CYTTEBO HEOTHOPiNHOI mia3Mu. Po3risHyTO
BIUIMB NPOMaxiB Kemla Ha NpoaykTuBHicTh PIC-koniB. 3ampornoHoBaHO croci0 MiHiIMI3alii MpoMaxiB ILISIXOM
MepioJIMYHOT0 COPTYBAaHHS YAaCTHHOK y JBOBHMIPDHOMY MPOCTOpi. 3alpoloOHOBAHO MiJXiZ A0 e(pEeKTHBHOIO
napasesbHOro po3B’si3anHs piBHsiHHs [TyaccoHna.

ISSN 1562-6016. BAHT, 2017. Nel(107) 67

