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     Stochastic equations of charged particle motion in toroidal plasma are derived using the Ito theory of stochastic 

processes. Expressions for stochastic differentials of the full set of drift variables associated with the kinetic theory 

of charged particles in plasma with Coulomb collisions are obtained. Equations obtained may be used for the 

modelling of fast charged particle motion in toroidal plasmas, namely for Monte-Carlo simulation the dynamics of 

charged fusion products and beam ions in tokamaks.  
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INTRODUCTION 

   Description of the charged particle behaviour in 

toroidal plasmas usually is based on the kinetic 

equations with the Fokker-Plank collisional term 

accounting for the effect of Coulomb collisions. 

Alternatively the detailed microscopic depiction of 

single particle motion may be achieved on the base of 

the Markov theory in terms of the Ito approach of 

stochastic differential equations [1, 2].  

     This paper aims the derivation of stochastic 

equations of single particle motion in plasma using the 

Ito theory of stochastic processes. We obtain the 

expressions for the stochastic differentials of the full set 

of drift variables in exact correspondence with the 

kinetic theory of charged particles in plasma with 

Coulomb collisions [3].  Equations derived can be used 

for the Monte-Carlo simulation of the dynamics of 

charged fusion products and beam ions in tokamaks. 

Notice that such kind of modelling is usually based on 

the use of supporting Monte-Carlo models [4].   

 

1. BASIC FORMULAS OF STOCHASTIC 

ANALYSIS 

      

     Ito stochastic differential equations [1, 2] of multi-

dimensional diffusive process X(t) = (X1(t),..., Xn(t)), 
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as well as the Kolmogorov equation for the transition 

probability of Markov process 
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( , )t XP t X from the state 

X0  in an arbitrary time t0  into the state X at a time t>t0 
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represent the alternative approaches of the complete 

description of the process. According to Ito approach 

the coefficients a, b in expression for stochastic 

differential are determined by the left edge of time 

interval (t, t+dt) and supposing the values X(t) to be 

known the stochasticity of differentials dX is delivered 

by the independent increments of the components dWj = 

Wj(t+dt) – Wj(t) of Wiener process. Namely the above 

structure of Ito stochastic differential results in the 

Markoviety of process X(t) (alternative definitions of  

stochastic differential, e.g. Stratonovich meaning, are 

not considered here). The components of Wiener 

process are independent and represent the elementary 

Markovian Gaussian processes with the independent 

growths and transition probabilities as 

follows

   
2

, ( , ) exp 2 2       
  jt X j j jP t X X X ,   (3) 

where τ is an arbitrary value. It follows from Eq. (3) that 

the random part of stochastic differential (1) is the 

dominant as the Wiener differential is of the order of 

.dt  Respectively the random part may be represented 

as j jdW dt with γj – the Gaussian random numbers 

with a dispersion that equals 1. This circumstance is 

crucial for the process calculation.  Nevertheless the 

quadratic terms dWjdWk are of the order of dt. From Eq. 

(3) it follows that for infinitely small τ = dt the square 

of infinitely small growth dWj=Wj(t+dt)–Wj(t) is 

determined by the process dispersion with a probability 

one and can be considered as a non-random value, i.e. 

dWj
2 = dt, with                                   

 

  dWjdWk = δjkdt                                 (4) 
 

for multidimensional processes. From above equation it 

follows also the subsequent equality 
m

k=1

 =i j ik jkdx dx b b dt .                         (5) 

These relations determine the rule of correspondence of 

the diffusion coefficients 
1


m

i j ik jk

k

D b b  in stochastic 

equations (1) and in Kolmogorov equation (2). They 

represent the basis of Ito formula for the stochastic 

differential of arbitrary function F(X) – 
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as well. Eqs. (1-5) represent the basis of Ito analysis that 

essentially extends the classical mathematical analysis. 

     The number of Wiener components m in stochastic 

differential equation (1) can be less than the number n 

of the components of process X and what is more  not 
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every of Eqs. (1) may contain a fluctuating part. Namely 

such a situation is realised in plasma theory formulated 

in terms of the kinetic equations for the distribution 

functions fa(r,v) of plasma components a in the phase 

space of spatial coordinates and velocities. The most 

complete form of these equations is as follows [4] 
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where Ca/b is the collisional term, Λ – the Coulomb 

logarithm. Kinetic equations (6) can be treated as the 

direct Kolmogorov equations for the unconditional 

simultaneous single-particle probability renormalized in 

accordance with the definition of distribution function fa  

as  the density of particles a in the phase space X=(r,v). 

Though the kinetic theory does not use the approach of 

Markov processes the unambiguous correspondence of 

kinetic and Markov approaches is established by the 

equality  
0 0

0 0 0
,

, ( ) ( , ) ( , ) 
n

t X
f t X dX f t X P t X  that 

serves as the basis for the Monte-Carlo modelling of a 

macro-canonical ensemble. Therefore the stochastic 

differential equations of particle motion corresponding 

to the kinetic theory have a form: 

 

, ( ) ,      d dt d dt dr v v a A b W D b b .    (8) 

 

Here W is a 3D Wiener process. 

 

2. VELOCITY DIFFUSION IN GYRO-

TROPIC PLASMA 

     Stochastic equations (8) are rather compact and 

striking for the numerical modelling. Though, even if 

the problems of the numerical modelling of random 

changes are solved, in general case of 3D velocity 

diffusion there is a complex problem of the expansion 

of the matrix of diffusion coefficients D  of kinetic 

equation as a product of two matrixes of diffusion 

coefficients  b  in equation of stochastic motion. In 

practice this problem is avoided in modelling of charged 

particle motion in strong magnetic field. In this case the 

fast gyration can be excluded from the analysis using 

the drift theory of motion for longitudinal u=vh and 

transverse w =v-uh velocity components with h = B/B 

[5, 6]. Drift theory is developed for determinable motion 

of charged particle and is based on the averaging over 

the fast gyration. Similar approach is applicable for 

stochastic equation of motion as well. The basic 

formulae of drift theory are written in local orthogonal 

coordinate system (h, e1, e2) associated with the 

inhomogeneous magnetic field: 
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Thus if the potential φ of kinetic theory is independent 

on gyro phase ζ the problem of the expansion of 

diffusive matrix is simplified as the 2x2 block of the 

matrix can be represented as two matrixes of same 

dimensionality (corresponding solution will be provided 

separately).  It should be pointed out that 3D Wiener 

process determined in Eq. (7) in arbitrary (not related 

with the magnetic field) coordinate system is 

characterised by the components ( , , )h uW W W , which 

are the standard independent Wiener processes. In fact, 

using relationships (4), it can be shown that 

     0h w w wdW dW d d dt     h W e W h e . 

Derivation of the stochastic equations for u, w is based 

on the Ito formula (5) as the differential dr does not 

contain the Wiener fluctuations, variable u=hv is linear 

with respect of v and differentiation of u is equivalent to 

a standard differentiation: 

     

.hh h hw w
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Variable w is linear regarding v with   
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Correspondingly the equation for dw has a following 

form: 
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Finally last two stochastic equations should be averaged 

over the gyro phase. Correct averaging procedure 

supposes the usage of stochastic integrals for growths  

, ,

t t

t t

u du w dw

 

 
 

    

where time interval δt includes a lot of gyro periods, 

however, is small over the time scales of the 

characteristic variation of values u,w. This procedure 

leads to the well-known (in drift theory) regular terms 
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proportional to δt, while the stochastic contributions are 

introduced using the independent Wiener components 

δWh, δWw. In drift stochastic differential equations the 

values δt, δWh, δWw  are supposed to be infinitely small. 

Finally we get: 
2

div ,
2
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Using Ito formulae 

   2 22 , 2 ,uu wwd u udu D dt d w wdw D dt     

we get equations for well-known constants of motion 
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Knowledge of the stochastic equation of motion allows 

deriving a corresponding direct Kolmogorov equation or 

Fokker-Planck equation. Below is the relevant 

derivation. 

 

3. VELOCITY DIFFUSION IN ISOTROPIC 

PLASMA 

     In case of isotropic plasma, when the distribution 

function of charged particles fb in collisional term Ca/b 

depends on the absolute value of the velocity v=(u2+ 

w2)1/2, the potentials φ, ψ depend only on v and diffusion 

coefficients are as follows: 
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Important is the orthogonality of U and U , 

0  U U  and following relationships  ,   U U U  

, U U U  0. U e  Consequently the problem of 

the expansion of the matrix of diffusion coefficients is 

easily resolved. The stochastic equations of the velocity 

diffusion are of the following form (drifts are not 

included): 
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In variable u, w the equations can be rewritten as  
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(10҆) 

However, usage of the asymmetric matrix of diffusion 

coefficients allows the more compact matrix expansion. 

With new independent Wiener differentials dUt, dWt the 

basic equations of stochastic dynamics can be 

essentially simplified 
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Ito stochastic differential equations for energy  = 

(u2+w2)/2, pitch-parameter  = 0/; and transverse 

energy 0 = w2/2 
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In Eq. (12) terms with dWt annihilate and term in Ito 

differential d is reduced to dUt dWt. Finally 
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4. SPATIAL DIFFUSION 

 

In guiding centre coordinates R = r - ,   = gv, g = 

h/ the Ito differential of R looks like 

 

( ) .d d d d   R r r g×v g× v            (13) 

 

For fluctuating Wiener part of dR we get 
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1
[ ( ) ]wu u ww w wd b dW b dW b dV  

       


R e e . (14) 

   Considering stochastic Ito integral within the interval                            

( , ), 1t t t t   we account for the Gaussian nature 

of stochastic integrals which can be approximated by 

Wiener processes with dispersion and correlation 

determined by the integrals 
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Gyro averaging of above expression results in 

*2 *2 *2

2
( )( )

2
wu ww

t
b b b


     


R R 1 hh .      (16) 

 

In axisymmetric tokamak-like configuration  
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where Ds the 2D spatial diffusion. Finally we get 
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CONCLUSIONS 

Correct stochastic equations of charged particle 

motion which correspond to the drift kinetic approach 

are derived in terms of Ito theory of stochastic 

processes. They represent the set of four equations 

containing the four independent Wiener components. 

Obtained equations are consistent with the theory of 

Coulomb collisions and are not more complex as 

compared to those used in the conventional approaches 

[4]. They can be used for the Monte-Carlo simulation of 

the dynamics of charged fusion products and beam ions 

in tokamaks.   
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СТОХАСТИЧЕСКИЕ УРАВНЕНИЯ ДВИЖЕНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ  

В ТОРОИДАЛЬНОЙ ПЛАЗМЕ  

А.А. Гурин, В.А. Яворский 

     В терминах теории стохастических процессов Ито получены выражения для стохастических 

дифференциалов полного набора дрейфовых переменных, соответствующих кинетической теории 

заряженных частиц в плазме с кулоновскими столкновениями. Полученные стохастические уравнения 

движения являются последовательными с точки зрения учёта эффектов кулоновских столкновений и не 

являются более сложными по сравнению с теми, что обычно используются в традиционных модельных 

подходах. 

 

СТОХАСТИЧНІ РІВНЯННЯ РУХУ ЗАРЯДЖЕНИХ ЧАСТИНОК  

У ТОРОЇДАЛЬНІЙ ПЛАЗМІ  

А.А. Гурин, В.О. Яворський 

     В термінах теорії стохастичних процесів Іто отримано вирази для стохастичних диференціалів повного 

набору дрейфових змінних, що відповідають кінетичній теорії заряджених частинок у плазмі з 

кулонівськими зіткненнями. Отримані стохастичні рівняння руху є послідовними щодо врахування ефектів 

кулонівських зіткнень, та не є складнішими у порівнянні із тими, що використовуються зазвичай в 

поширених модельних підходах. 


