Моделирование кристаллического поля и исследование ЯМР ¹⁹F в ван-флековском парамагнетике EuF₃

А.В. Савинков, А.В. Дуглав, Б.З. Малкин, М.С. Тагиров, С.Л. Кораблева

Институт физики, Казанский (Приволжский) федеральный университет ул. Кремлевская, 18, г. Казань, 420008, Россия E-mail: Andrey.Savinkov@gmail.com

Статья поступила в редакцию 16 сентября 2014 г., опубликована онлайн 24 ноября 2014 г.

В порошковом образце ван-флековского парамагнетика ${\rm EuF_3}$ в широком диапазоне температур (55–300 K) измерена температурная зависимость скорости ядерной спин-решеточной релаксации $^{19}{\rm F}$. Наблюдаемое при T>100 K увеличение скорости ядерной релаксации обусловлено флуктуациями магнитных полей, индуциируемых на ядрах фтора магнитными моментами ионов европия с временем жизни, определяемым двухфононными процессами релаксации с участием первого возбужденного состояния электронной оболочки ионов ${\rm Eu}^{3+}$ (${\rm \Delta_1}=370$ K). Набор параметров кристаллического поля, позволяющий удовлетворительно описать электронный энергетический спектр иона ${\rm Eu}^{3+}$ в кристалле ${\rm EuF_3}$, вычислен в рамках полуфеноменологической модели обменных зарядов.

У порошковому зразку ван-флеківського парамагнетика EuF_3 в широкому діапазоні температур (55–300 К) виміряно температурну залежність швидкості ядерної спін-граткової релаксації ¹⁹F. Збільшення швидкості ядерної релаксації, яке спостерігається при T > 100 К, обумовлено флуктуаціями магнітних полів, що індукуються на ядрах фтору магнітними моментами іонів європію з часом життя, котре визначається двофононними процесами релаксації за участю першого збудженого стану електронної оболонки іонів Eu^{3+} ($\Delta_1 = 370$ К). Набір параметрів кристалічного поля, що дозволяє задовільно описати електронний енергетичний спектр іона Eu^{3+} в кристалі EuF_3 , обчислено у рамках напівфеноменологічної моделі обмінних зарядів.

PACS: 76.60.-k Ядерный магнитный резонанс и релаксация;

76.60.Јх Воздействие внутренних магнитных полей;

76.60.Es Релаксационные эффекты;

75.20.-д Диамагнетизм, парамагнетизм и суперпарамагнетизм.

Ключевые слова: ван-флековской парамагнетизм, спин-решеточная релаксация, кристаллическое поле.

1. Введение

Исследования ЯМР в диэлектрических кристаллах ван-флековских парамагнетиков (TmES [1], LiTmF₄ [2], $Pr(NO_3)_3 \cdot 6H_2O$ [1], TmF_3 [3] и др.) показали, что на ядерные резонансные и релаксационные характеристики как самого ядра парамагнитного иона, так и ядер ионовлигандов определяющее влияние при низких температурах оказывают возбуждения электронной оболочки парамагнитного иона. В настоящей работе приведены результаты исследований температурного поведения ядерной спин-решеточной релаксации и спектров ЯМР ¹⁹ F в кри-

сталлическом порошке ван-флековского парамагнетика ${\rm EuF_3}$. Как следует из анализа результатов измерений, при $T>100~{\rm K}$ основным механизмом ядерной спин-решеточной релаксации $^{19}{\rm F}$ в ${\rm EuF_3}$ является двухфононный процесс Орбаха–Аминова с участием первого возбужденного состояния электронной оболочки иона ${\rm Eu}^{3+}$ ($\Delta_1=370~{\rm K}$ [4]). При температурах близких к комнатной характер температурной зависимости скорости релаксации $T_1^{-1}(T)$ ядер $^{19}{\rm F}$ отличается от экспоненциального, возможные дополнительные каналы спин-решеточной релаксации будут обсуждены ниже.

В настоящей работе приведен набор параметров кристаллического поля (КП), позволяющий удовлетворительно описать электронный энергетический спектр иона Eu³⁺ в кристалле EuF₃. В расчете параметров КП учитывалось кулоновское взаимодействие иона Eu³⁺ с точечными ионами кристаллической решетки EuF₃ и дополнительные слагаемые, обусловленные перекрыванием электронной плотности иона европия и ионовлигандов. Рассчитанные параметры КП сравниваются с определенными ранее параметрами КП в изоструктурных трифторидах редкоземельных ионов DyF₃ [5] и TmF₃ [6]. Отметим, что при использовании найденных величин параметров КП оказалось возможным удовлетворительно описать температурную зависимость статической магнитной восприимчивости, измеренную в широком диапазоне температур в кристаллическом порошке EuF₃ [7].

Интерес к трифториду европия определяется несколькими обстоятельствами. Во-первых, все известные исследования ЯМР в ван-флековских парамагнетиках выполнялись при низких (близких к «гелиевым») температурах, что обусловлено небольшими энергиями первого возбужденного состояния парамагнитного иона в этих кристаллах ($\Delta_1 = 32$ см⁻¹ в TmES [4], 32 см⁻¹ в LiTmF₄ [2], 27 см⁻¹ в Pr(NO₃)₃·6H₂O [1], 6,5 см⁻¹ в TmF₃ [3] и др.). В EuF₃ энергия ближайшего к основному состоянию 7F_0 подуровня мультиплета 7F_1 иона ${\rm Eu}^{3+}$ равна $\Delta_1=254$ см $^{-1}=370$ K, т.е. по величине Δ_1 оказывается близким к оценкам температуры Дебая в трифторидах редких земель ($\theta_D = (430 \pm 30) \text{ K в HoF}_3$ [9], (470 ± 20) K B ErF₃ [9], ~ 460 K B DyF₃ [9]). B этом случае эффективными могут оказаться механизмы релаксации ядерной системы EuF₃, отличные от двухфононного процесса Орбаха-Аминова, характерного для других исследованных ван-флековских парамагнетиков, в которых реализуется случай $\Delta_1 << \theta_D$. Вовторых, в кристаллах, содержащих ионы Eu³⁺, реализуется необычный для других ван-флековских парамагнетиков характер взаимодействия электронной оболочки парамагнитного иона с ядерным моментом: внешнее магнитное поле на ядрах 151,153 Eu практически полностью компенсируется внутренним «сверхтонким» полем [10], что значительно ухудшает условия для наблюдения ЯМР на ядрах 151 Eu ($\gamma/2\pi=1{,}056$ кГц/Э, ядерный спин I=5/2, естественная распространенность 47,8%) и ядрах 153 Eu ($\gamma/2\pi=0,466$ кГц/Э, ядерный спин I = 5/2, естественная распространенность 52,2%). По оценкам, приведенным в работе [10], наилучшие условия для наблюдения ЯМР 151,153 Еи могут быть достигнуты в кристаллах с относительно сильным КП низкой симметрии, к которым относится и EuF₃. Наличие модели кристаллического поля EuF3, адекватно описывающей уровни энергии иона Eu³⁺ и соответствующие волновые функции, является важным условием для интерпретации результатов исследований ЯМР в EuF₃.

2. Моделирование параметров КП в EuF₃

Фториды «тяжелых» редкоземельных ионов (от Sm до Lu, включая Eu) имеют орторомбическую кристаллическую решетку с пространственной группой симметрии Pnma (62) и точечной группой симметрии редкоземельного иона C_s [11], элементарная ячейка EuF3 содержит четыре формульные единицы. Параметры орторомбической кристаллической ячейки EuF3: a=0,6622 нм, b=0,7019 нм, c=0,4396 нм [12]. В расчете параметров КП были использованы декартовы координаты ионов Eu $^{3+}$ в позиции 4c, ионов фтора F1 в позиции 4c и ионов F2 в позиции 8d (табл. 1), полученные путем сравнения с соответствующими структурными данными для других трифторидов редких земель (ErF3 [13] и HoF3, TbF3 [14]).

Таблица 1. Координаты атомов в структуре EuF₃

Атом	Позиция	x/a	y/b	z/c
Eu	4c	0,368	0,25	0,0605
F1	4c	0,525	0,25	0,5840
F2	8d	0,165	0,066	0,3840

Параметры электростатического взаимодействия электрона открытой 4f-оболочки иона Eu^{3+} с зарядами ионов кристаллической решетки EuF_3 в первом приближении можно представить суммой слагаемых, отвечающих взаимодействию с электрическими полями точечных зарядов $(B_q^{(pc)k})$:

$$B_q^{(pc)k} = -\sum_L \frac{e^2 q_L (1 - \sigma_k^{nl}) \left\langle r^k \right\rangle (-1)^q C_{-q}^{(k)}(\theta_L, \phi_L)}{R_L^{k+1}}, \quad (1)$$

где eq_L — заряд лиганда L, θ_L и ϕ_L — углы в сферической системе координат с началом на ядре редкоземельного иона, R — расстояние от редкоземельного иона до лиганда L. Значения моментов пространственной плотности 4f-электронов $< r^2 > = 0,834, < r^4 > = 1,706, < r^6 > = 7,528$ ат.ед. и факторы экранирования σ_k^{nl} (здесь n и l — квантовые числа) $\sigma_2 = 0,68$, $\sigma_4 = \sigma_6 = 0$ были определены сравнением с известными из литературы значениями для соседних редкоземельных ионов (см., например, [15]).

Для учета поправок к кулоновскому взаимодействию за счет пространственного распределения заряда лигандов использовалась полуфеноменологическая модель обменных зарядов [16]:

$$B_q^{(ec)k} = \sum_L \frac{2(2k+1)}{2l+1} \frac{e^2}{R_L} S_k^{nl}(R_L) (-1)^q C_{-q}^{(k)}(\theta_L, \varphi_L), \quad (2)$$

где S_k^{nl} — билинейные формы интегралов перекрывания волновых функций валентных 4f-электронов иона

 Eu^{3+} и волновых функций 2*s*-, 2*p*-электронов ионовлигандов (F^-):

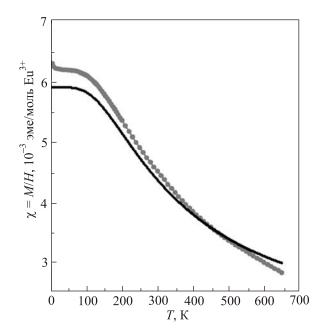
$$S_k^{nl} = G_s |S_s^{nl}|^2 + |G_{\sigma}| |S_{\sigma}^{nl}|^2 + |G_{\pi}\gamma_k| |S_{\pi}^{nl}|^2.$$
 (3)

Здесь $S_s^{nl}(R_L) = \langle nl0 \, | \, n''00 \rangle$, $S_\sigma^{nl}(R_L) = \langle nl0 \, | \, n''10 \rangle$, $S_\pi^{nl}(R_L) = \langle nl1 \, | \, n''11 \rangle$, коэффициенты $\gamma_2 = 3/2$, $\gamma_4 = 1/3$, $\gamma_6 = -3/2$ для 4f-электронов $(n=4,\ l=3)$; G_s , G_σ и G_π — параметры модели с начальными величинами $G_s = G_\sigma = G_\pi = 5,5$. Затем параметры кристаллического поля вычислялись как сумма вкладов, определяемых выражениями (1) и (2):

$$B_q^k = B_q^{(pc)k} + B_q^{(ec)k}. (4)$$

Рассчитанные значения параметров кристаллического поля для ${\rm EuF_3}$ приведены в табл. 2 (колонка « ${\rm EuF_3}$ (calc.)»). Окончательно набор параметров КП в ${\rm EuF_3}$ получен путем варьирования вычисленных величин так, чтобы минимизировать квадрат отклонения полученных теоретически значений энергии подуровней мультиплетов 7F_1 , 7F_2 , 7F_3 , 7F_4 , 7F_5 , 7F_6 , 2D_0 , 2D_1 и 2D_2 иона ${\rm Eu}^{3+}$ от значений, измеренных экспериментально [4] (колонка « ${\rm EuF_3}$ (calc.)» в табл. 2). Стандартное отклонение рассчитанных уровней энергии от измеренных составило ~19 см $^{-1}$. Расчеты спектра ионов ${\rm Eu}^{3+}$ в ${\rm EuF_3}$ выполнены в полном базисе из 3003 электронных состояний иона европия с использованием гамильтониана

$$\mathcal{H} = \mathcal{H}_{fi} + \sum_{k,q} B_q^{(k)} C_q^{(k)}. \tag{5}$$


Таблица 2. Параметры кристаллического поля $B_q^{(k)}$ для EuF_3 , DyF_3 [5] и TmF_3 [6] (см $^{-1}$)

k,q	EuF ₃ (calc.)	EuF ₃ (fit.)	DyF ₃	TmF ₃
2,0	267	287	304	224
2,1	-364	-322	-312	-318
2,2	-206	-294	-224	-227
4,0	-28	-90	-131	-67
4,1	686	555	621	513
4,2	27	90	-29	40
4,3	-53	-76	-62	-79
4,4	198	161	146	118
6,0	26	60	83	64
6,1	466	363	403	289
6,2	-618	-496	-523	-315
6,3	59	52	43	38
6,4	-120	-113	-108	-97
6,5	345	300	315	297
6,6	306	263	276	202

Здесь первое слагаемое представляет собой энергию свободного иона. Константы электростатического и спин-орбитального взаимодействий были приняты соответственно равными $F^2 = 79719 \text{ см}^{-1}$, $F^4 = 58866 \text{ см}^{-1}$, $F^6 = 42242 \text{ см}^{-1}$, $\xi = 1324 \text{ см}^{-1}$ (см. исходные значения в [17]), параметры конфигурационных и трехчастичных взаимодействий взяты из работы [17]. В табл. 3 приведены значения электронных уровней энергии, рассчитанные при помощи полученных параметров КП (колонка « E_i (calc.)») и найденные экспериментально авторами работы [4] (колонка « E_i (exp.)»).

Учитывая неоднозначность процедуры расчета параметров КП, полученные для EuF_3 параметры следует сравнить с определенными ранее параметрами КП изоструктурных трифторидов редкоземельных ионов DyF_3 [5], TmF_3 [6] (см. табл. 2). Это сравнение демонстрирует ожидаемую тенденцию к усилению кристаллического поля от конца ряда редкоземельных ионов к его началу (Yb \rightarrow Sm).

На рис. 1 представлены результаты расчета статической магнитной восприимчивости порошка EuF_3 с использованием найденных величин параметров КП (табл. 2, колонка « EuF_3 (fit.)») и экспериментальные данные, измеренные авторами работы [18]. Как видно на рисунке, вычисленная кривая $\chi(T)$ удовлетворительно согласуется с экспериментальными данными. Небольшое расхождение, наблюдаемое при низких температурах, обусловлено систематическим завышением на 8-10 см $^{-1}$ энергий возбужденных уровней мультиплета 7F_1 (см. табл. 3).

Рис. 1. Статическая магнитная восприимчивость порошка EuF_3 : сплошная линия — результаты расчета $\chi(T)$, серые кружки — экспериментальные данные [18].

Таблица 3. Электронные уровни энергии иона Eu^{3+} в EuF_3 (см $^{-1}$)

$^{2S+1}L_J$	E_i (exp.) [4]	E_i (calc.)	$^{2S+1}L_J$	E_i (exp.) [4]	E_i (calc.)
$^{7}F_{0}$	0	0		3779	3760
⁷ F ₁	258	266		3807	3781
	420	429		3864	3887
	454	464		3916	3912
⁷ F ₂	997	968		3928	3939
	1013	1019	$^{7}F_{5}$	3983	3985
	1045	1039		4007	3996
_	1098	1100		4018	4013
	1144	1151		4037	4017
	1865	1850		4065	4063
	1881	1877			4092
	1898	1891		4827	4839.6
$^{7}F_{3}$	1917	1915			4840
	1959	1930		4897	4879
	1990	1967			4881
	1995	1968		5029	5032
	2775	2784			5034
	2810	2795	$^{7}F_{6}$	5084	5089
	2819	2823		5122	5095
	2851	2836			5096
$^{7}F_{4}$	2862	2849		5136	5156
•	2904	2916			5163
	2923	2963		5229	5255
	2964	2990			5255
	2996	3070	$^{5}D_{0}$	17290	17289
•				19026	19010
			$^{5}D_{1}$	19057	19060
				19067	19075
				21512	21501
				21516	21507
			$^{5}D_{2}$		21527
				21536	21527
				21546	21536

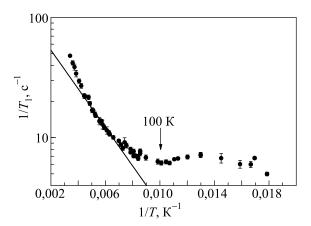
3. Экспериментальные результаты и их обсуждение

Для приготовления порошкового образца был использован кристаллический порошок EuF_3 высокой чистоты (99,99%). Фазовый состав порошка EuF_3 контролировался измерениями рентгеновской дифракции. Анализ рентгеновского дифракционного спектра показал, что все наблюдаемые дифракционные максимумы соответствуют EuF_3 . Других дифракционных максимумов, соответствующих химическим примесям (EuF_2 , Eu_2O_3 и др.), не обнаружено.

Измерения ЯМР ¹⁹F в порошковом образце EuF₃ проводились на стандартном импульсном спектрометре ЯМР на частоте 23,9 МГц в постоянном магнитном поле 5965 Гс. Для измерения сигнала спинового эха применялась двухимпульсная последовательность Хана, для измерения времени спин-решеточной релаксации — трех-

импульсная последовательность $\langle \pi/2 - t - \pi/2 - \tau - \pi \rangle$, в которой t — изменяемая задержка между первым, насыщающим импульсом и «проверяющей» парой импульсов $\langle \pi/2 - \tau - \pi \rangle$. Поскольку в соединениях европия измерение ЯМР 151,153 Еи существенно затруднено из-за ослабления в позиции ядра внешнего магнитного поля внутренним «сверхтонким» полем электронной оболочки Eu $^{3+}$, исследования релаксационных процессов ЯМР в ван-флековском парамагнетике EuF $_3$ выполнены на ядрах 19 F.

Спектры ЯМР 19 F в порошке EuF $_3$ при температурах 4,2; 77 и 300 К восстанавливались из измеренных при этих температурах сигналов спинового эха путем применения преобразования Фурье. В табл. 4 приведена полная ширина порошковых спектров ЯМР 19 F. Как видно из таблицы, в очень широком диапазоне температур ширина порошкового спектра 19 F остается небольшой и изменяется в пределах всего от 33,4 до 40,6 кГц (8–10 Гс).


Таблица 4. Полная ширина на полувысоте порошкового спектра ЯМР $^{19}{\rm F}$ в ${\rm EuF}_3$

Т, К	FWHM, кГц		
4,2	40,6(1)		
77	36,5(1)		
300	33,7(1)		

Это свидетельствует о том, что локальные магнитные поля, наводимые 4f-оболочкой иона Eu^{3+} на ядрах $^{19}\mathrm{F}$, крайне незначительны по величине.

Детальный анализ ядерной спин-решеточной релаксации ¹⁶⁹Tm в кристалле этилсульфата тулия (TmES) [19] показал, что однофононный прямой процесс и двухфононный рамановский процесс не эффективны при низких температурах. Однако оценки скорости двухфононной релаксации Орбаха-Аминова давали хорошее согласие с экспериментом. Результаты последующих исследований процессов ядерной решеточной релаксации в других ван-флековских парамагнетиках также указывают на двухфононный процесс Орбаха-Аминова как наиболее эффективный механизм релаксации как ядер парамагнитных ионов, так и ядер лигандов (TmES [1], LiTmF₄ [2], Pr(NO₃)₃·6H₂O [1], TmF₃ [3] и пр.). Следует отметить, что эти исследования выполнялись при низких температурах (T < 10 K), так как при более высоких температурах наблюдение импульсного ЯМР становилось невозможным из-за слишком коротких времен спин-спиновой релаксации исследуемых ядер. В трифториде европия магнитный момент поляризованной 4f-оболочки иона Eu^{3+} мал, поэтому влияние иона Eu^{3+} на ядро 19 F через суперсверхтонкое взаимодействие также мало, что и было подтверждено в наших экспериментах по регистрации спектров ЯМР 19 F в порошке EuF_3 . Это создает условия для наблюдения в ${\rm EuF_3}$ ЯМР 19 в широком диапазоне температур.

Измерения температурной зависимости скорости спин-решеточной релаксации ядер ¹⁹F в порошке EuF₃ в диапазоне температур 55-300 К показали достаточно сложное ее поведение (рис. 2). В диапазоне температур 55-100 К скорость спин-решеточной релаксации ¹⁹F слабо зависит от температуры, демонстрируя небольшой широкий максимум с центром при $T \sim 75$ К. Однако при температурах T > 100 K спин-решеточная релаксация резко ускоряется. Следует также отметить, что при этих же температурах (T > 100 K) статическая магнитная восприимчивость в порошке EuF₃ отклоняется от постоянного низкотемпературного значения (рис. 1), что обусловлено началом заселения низших возбужденных состояний электронной 4f-оболочки иона Eu³⁺. Естественно ожидать, что квантовые переходы между основным и возбужденными состояниями создают флуктуации магнитного момента иона Ецэ+, а значит, и локального магнитного поля на ядрах ¹⁹F,

Рис. 2. Температурная зависимость скорости спин-решеточной релаксации ядер ¹⁹F в порошке EuF_3 . Символы — экспериментальные результаты, сплошная линия — результат моделирования ядерной релаксации ¹⁹F функцией вида $T_1^{-1} \sim \exp\left(-\Delta_1/kT\right)$.

вызывающие ускорение спин-решеточной релаксации ядер фтора.

На рис. 2 сплошной линией представлена модельная функция $T_1^{-1} \sim \exp(-\Delta_1/kT)$, отвечающая релаксации ядер ¹⁹ F через первое возбужденное состояние иона Eu^{3+} с энергией $\Delta_1 = 258$ см $^{-1}$ (370 K) [4]. Видно, что при высоких температурах (близких к комнатной) скорость ядерной спин-решеточной релаксации уже не может быть описана одной лишь экспоненциально возрастающей функцией. Вероятности однофононных возбуждений следующих возбужденных состояний в электронном спектре иона Eu³⁺ ($\Delta_2 = 600$ K и $\Delta_3 =$ = 650 К) в качестве дополнительных каналов релаксации ядер ¹⁹ F могут быть подавлены вследствие малой плотности высокочастотных колебаний решетки (температура Дебая в трифторидах редких земель со структурой YF3 равна $\theta_D \sim 430{-}470$ K, в частности $\theta_D = (430$ \pm 30) K b HoF₃, (470 \pm 20) K b ErF₃, ~460 K b DyF₃ см. работы [8,9], т.е. $\Delta_3 > \Delta_2 > \theta_D$). Таким образом, требуются дополнительные исследования для прояснения механизмов спин-решеточной релаксации в ядерной системе EuF₃ при высоких температурах.

4. Заключение

В настоящей работе выполнен расчет параметров КП для иона ${\rm Eu}^{3+}$ в кристалле ${\rm EuF}_3$ с использованием полуфеноменологической модели обменных зарядов. Рассчитанные параметры КП оказались в хорошем согласии с определенными ранее параметрами КП в других изоструктурных трифторидах редкоземельных ионов (DyF $_3$ и TmF $_3$). Стандартное отклонение рассчитанных уровней энергии иона ${\rm Eu}^{3+}$ от экспериментальных значений $\sim 19~{\rm cm}^{-1}$. Кроме того, показано, что полученные для ${\rm EuF}_3$ параметры КП позволяют удовлетворительно описать статическую магнитную воспрительно описать статическую магнитную воспри-

имчивость, измеренную в широком диапазоне температур в кристаллическом порошке EuF₃.

Измерения температурной зависимости скорости спин-решеточной релаксации ядер ¹⁹ F в порошковом образце ван-флековского парамагнетика EuF₃ были выполнены в диапазоне температур 55-300 К. Спектры ЯМР ¹⁹ F измерены при температурах 4,2; 77 и 300 К. Показано, что в EuF_3 при T > 100 К основным механизмом ядерной спин-решеточной релаксации ¹⁹F является двухфононный процесс Орбаха–Аминова с участием первого возбужденного состояния электронной оболочки иона Eu^{3+} ($\Delta_1 = 370$ K). При высоких температурах (близких к комнатной) температурный ход скорости спин-решеточной релаксации ядер 19 F становится более сложным, что свидетельствует о наличии дополнительных каналов релаксации. Для выяснения механизмов ядерной спин-решеточной релаксации при высоких температурах требуются дополнительные эксперименты с использованием методов, которые дают возможность измерять скорость ядерной спин-решеточной релаксации при температурах, значительно превышающих 300 К.

Работа выполнена за счет средств субсидии, выделенной в рамках государственной поддержки Казанского (Приволжского) федерального университета в целях повышения его конкурентоспособности среди ведущих мировых научно-образовательных центров, Министерства образования и науки РФ (проект No 02.G25.31.0029).

- 1. Л.К. Аминов, М.А. Теплов, УФН **28**, 762 (1985) [*Usp. Phys. Nauk.* **147**, 49 (1985)].
- 2. А.А. Антипин, С.Л. Кораблева, Р.М. Рахматуллин, М.С. Тагиров, М.А. Теплов, А.А. Федий, *ФТТ* **21**, 111 (1979).
- A.V. Savinkov, G.S. Shakurov, S.L. Korableva, A.V. Dooglav, M.S. Tagirov, H. Suzuki, P.K. Matsumoto, and S. Abe, J. Phys.: Conf. Ser. 324, 012033 (2011).
- 4. H.H. Caspers, H.E. Rast, and J.L. Fry, *J. Chem. Phys.* **47**, 4505 (1967).
- A.V. Savinkov, S.L. Korableva, A.A. Rodionov, I.N. Kurkin, B.Z. Malkin, M.S. Tagirov, H. Suzuki, K. Matsumoto, and S. Abe, *J. Phys.: Condens. Matter* 20, 485220 (2008).
- 6. Готовится к публикации.
- Y. Takikawa, Sh. Ebisu, and Sh. Nagata, *J. Phys. Chem. Solids* 71, 1592 (2010).
- 8. K.M. Lyapunov, A.V. Baginskii, and S.V. Stankus, *J. Alloys Compounds* **306**, 17 (2000).
- K.M. Lyapunov, A.V. Baginskii, and S.V. Stankus, *High Temp.* 45, 131 (2007).
- 10. R.J. Elliott, Proc. Phys. Soc. B 70, 119 (1957).

- 11. A. Zalkin and D.H. Templeton, *J. Am. Chem. Soc.* **75**, 2453 (1953).
- 12. M.E.G. Valerio, R.A. Jackson, and J.F. de Lima, *J. Phys.: Condens. Matter* **12**, 7727 (2000).
- 13. K. Kramer, H. Romstedt, H.U. Gudel, P. Fisher, A. Murasik, and M.T Fernandez-Diaz, *Eur. J. Solid State Inorg. Chem.* **33**, 273 (1996).
- 14. M. Piotrowski, H. Ptasiewicz-bak, and A. Murasikm, *Phys. Status Solidi A* **55**, K163 (1979).
- 15. A.J. Freeman and R.E. Watson, Phys. Rev. 127, 2058 (1962).
- 16. B.Z. Malkin, *Spectroscopy of Solids Containing Rare-Earth Ions*, A.A. Kaplyanskii and R.M. Macfarlane (eds.), Amsterdam: Elsevier (1987), p. 13.
- 17. W.T. Carnall, G.L. Goodman, K. Rajnak, and R.S. Rana, J. Chem. Phys. **90**, 3444 (1989).
- 18. Y. Takikawa, Sh. Ebisu, and Sh. Nagata, *J. Phys. Chem. Solids* **71**, 1592 (2010).
- 19. М.П. Вайсфельд, *ФТТ* **14**, 737 (1972); М.П. Вайсфельд, *ФТТ* **14**, 3568 (1972).

Crystal field analysis and NMR study of ¹⁹F in EuF₃ Van Vleck paramagnet

A.V. Savinkov, A.V. Dooglav, B.Z. Malkin, M.S. Tagirov, and S.L. Korableva

The temperature dependence of spin-lattice relaxation rate of 19 F nuclei was measured in a powdered sample of EuF₃ Van Vleck paramagnet in a broad temperature range 55–300 K. A strong increase of $T_1^{-1}(T)$ is observed at T>100 K. It is suggested that the driving mechanism of the 19 F nuclear spin-lattice relaxation at T>100 K is a two-phonon Orbach process that involves the first excited state ($\Delta_1=370$ K) of the Eu³⁺ 4*f*-electron shell. A set of crystal field parameters for EuF₃ was calculated in the framework of the exchange charge model. The computed crystal field energies of the Eu³⁺ ions in EuF₃ agree satisfactorily with the experimental data available in literature.

PACS: **76.60.–k** Nuclear magnetic resonance and relaxation;

76.60.Jx Effects of internal magnetic fields;

76.60.Es Relaxation effects;

75.20.–g Diamagnetism, paramagnetism, and superparamagnetism.

Keywords: Van Vleck paramagnets, spin-lattice relaxation, crystal field.