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Plasticity of parahydrogen with reduced deuterium contents
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The plasticity of solid parahydrogen with lowered deuterium contents under step-wise uniaxial exten-

sion at liquid helium temperatures 1.8–4.2 K has been investigated. Work hardening curves for single crys-

tals have been measured. Maximum possible values of sample’s elongation without their fracture at mini-

mum stress values have been reached. Features of super-plastic irreversible deformation of samples were

observed. Anomalous temperature dependence of deformation parameters has been found. The character of

this anomaly exhibits evidence of the coherent motion of dislocation kinks in Pierls relief, modified by re-

sidual ortho- and deuterium impurities.

PACS: 62.20.–x Mechanical Properties of Solids;
67.80.–s Solid Helium and Related Quantum Crystals.
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Introduction

Due to delocalization of the wave function, the parti-

cles that form a quantum (including parahydrogen) crys-

tal are able to penetrate by tunneling through potential

barriers, separating one equilibrium position in the lattice

from another [1]. A possible crossover of a quantum crys-

tal to a state with zero static shear modulus [2] can be ob-

served by measuring its plasticity.

Pure p-H2 is a very plastic material down to 1.8 K, i.e.,

about 1% of the Debye temperature [3]. It's deformation

is brought about by extremely small loads [4–6]* and can

be interpreted more adequately in åðó quasi-particle ap-

proach. Isotopic impurities affect considerably the quan-

tum nature of hydrogen crystal flow. Unlike the soft pure

material, p-H2 doped with its stable deuterium isotope ex-

hibit a considerable strengthening and a much lower plas-

ticity [4,5,8]. Some other intriguing findings [6,9] on

very pure p-H2 were tentatively interpreted as being

related with large-scale planar defects**, viz., pseudo-

twins [9,10]. In view of this strong influence of isotopes,

it would be nice to have a method enabling the purifica-

tion of p-H2 in situ in order to obtain more perfect

samples. In this work a new method is suggested for pre-

paring single crystals of p-H2 with reduced isotope con-

tents.

Experimental

Pure p-H2 was produced from normal hydrogen (n-H2,

75% o-H2), purified in a SHPV-500 reactor, according to

the reactor certificate, to a level with less than 1 ppm of

non-hydrogen impurities. The o-H2 fraction was further

reduced to � 0.2% by keeping n-H2 long enough in the

presence of Fe(OH)3 at the H2 boiling temperature.

Part of p-H2 was crystallized in a modified he-

lium-cooled cell of the cryostat [11]. The crystallization

completed, electric power was fed to reheat the cell again

to T � 15 K. After the sample melted, part of the p-H2 va-

por was redirected back to the converter. As a result of the

difference between the partial pressures of deuterium and

hydrogen, the contents of the less volatile component is
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* Our earlier results on the gravity-related low-temperature flow of the crystal [5] are at variance with subsequent experiments [6,7].

** Occurrence of these planar defects in HCP p-H
2

is caused by the small energy difference between HCP and FCC structures.



naturally reduced, thereby enriching the more volatile

component. Single-crystalline samples were grown from

pure vapor above the p-H2 distillate after double rectifica-

tion at a rate of � 0.3–0.5 mm/min; the final heavier iso-

tope fraction was considerably reduced (to [D]/[H]

~0.005–0.006%) compared to its natural abundance

([D]/[H] � 0.0147–0.0156% [12]). The considerable re-

duction of the isotope contents has been confirmed to

within 30 ppm by numerous isotope analyses by a modi-

fied MX-7304 mass spectrometer.

Transparent single-crystalline samples thus grown

were separated from cell walls by pumping off the vapor

over them, then annealed near the melting-point for

40–50 min and cooled slowly down to the test tempera-

ture.

Loading of samples was done with the aid of a 200 mG

sensitive balance scales. Crystal elongations were mea-

sured by the inductance displacement sensor with an ac-

curacy of � �
�1 10 5 cm, the temperature was measured with

semiconductor thermometers to within 20 mK.

Results and discussion

Since planar defects can be easily identified [13], sam-

ples were first load–relieve cycle tested. Figure 1 presents

a typical dependence of the relative elongation � on the

applied stress �. This stress-strain curve � �( ) was ob-

tained by a stepwise stretching. A fully irreversible char-

acter of deformation (no hysteresis observed) implied ab-

sence of large-scale planar defects. Reverse movement of

the rod resulted in loop-like macroscopic deformations

resembling observed earlier [5]

Figure 2 presents initial stages of the � �( ) curves,

which correspond to the boundary temperatures studied

(T = 4.2 and 1.8 K). The strain � here is limited along the

horizontal axis by the lowermost value observed (� 50%)

in experiment. Every crystal was tested (without fracture)

only at one temperature. Depending on the temperature

value, 7 to 9 crystals were examined. The two � �( ) curves

in Fig. 1 plotted from data obtained on those samples

which showed maximum strain at minimum stress, which

correspond to the most favourable orientation of the basal

HCP plane relatively to the stretching axis. The second

longer (almost linear) stages (not shown in Fig. 2) are

characterized by small of strengthening coefficients

� � �� d d/ and by minimum stresses � 0 of the stage to

stage crossover. The � values, normalized to the shear

modulus of solid p-H2 [3] were 3 10 5
�

� and 2 5 10 5. �
� at 4.2

K and 1.8 K, respectively. Such low values of � are typical

of the developed flow stage of the materials with HCP

structure [14], including p-H2 single crystals [5]. They

demonstrate that the p-H2 deformation occurs due to dis-

location displacements in any one of the possible crystal-

lographic planes [14]. It is interesting that the � �( ) curve

in Fig. 2 for the lower T is below the curve for the higher

T, which contradicts the standard notion of thermally acti-

vated deformation processes. The same concerns the � 0

versus T relation. The anomalous character of the yield

stress is evidence that quantum tunneling mechanisms

definitely prevails over classical thermally activated pro-

cesses. For comparison, � �( ) curves measured under com-

pression of single crystals of p-H2 at 2 K and 4.2 K [6] are

also shown in Fig. 2. Note that quite small stresses are

needed to obtain of comparatively great (� 3–7%)

strains. But further compression leads to a strong

strengthening of samples. It is possible that the twins (or

other packing faults), which are presumably responsible

for the hysteresis first observed in Ref. 6, lead to the

strong hardening in their samples. It should be remarked

that their samples were extremely pure if ortho-and iso-

tope impurities are concerned but contained much more

(20 ppm) non-hydrogen impurities, which are capable of

influencing crucially the plasticity of solid hydrogen.
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Fig. 1. Typical � �( ) obtained during load–relieve cycling for

p-H2 ([D]/[H] � 50–60 ppm) at T = 4.2 K.
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Fig. 2. Typical � �( ) curves, measured on single crystals of

parahydrogen: curves 2 and 3 are data of this work (o-H2 �

� 0.2%, [D]/[H] � 50–60 ppm, nonhydrogen impurities 1 ppm;

T � 4.2 K (2), T = 1.8 K (3); curves 1 and 4 are compression data

[6] for 2 K and 4.2 K for super-pure p-H2 (o-H2 � 0.01–0.005%,

[D]/[H] � 1/5–1/7 of the natural abundance, nonhydrogen impuri-

ties ~ 0.002%).



Thus, the data presented here suggest that the plastic

flow is provided by individual dislocations moving

through the lattice via some tunneling mechanism, like it

was claimed in Ref. 5. Our present results give also evi-

dence that an important role in plastic flow belongs to mi-

croscopic defects (vacancies and dislocation kinks) and

their coherent band motion.

Since our samples contained low ortho-fractions

(about 0.2%), the number of pairwise ortho-clusters that

can interact significantly with moving dislocations (see

[15]) was small number (of the order of 2 10 6
�

� ). There-

fore, the main obstacle for dislocation motion was the

Pierls relief, modified by the deuterium impurities, which

might be efficient stoppers.

Summing up, the main agent that provides the disloca-

tion motion in the p-H2 crystals studied is, most likely,

dislocation kink [16,17]. The anomalous character of the

temperature dependency of both the yield stress � 0( )T

and the hardening coefficient is evidence of a band-like

character of their motion.
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