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one to explaine of the experimental data on interaction of phonon pulses.
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Introduction

The dispersion relation of superfluid helium
(He II) has an important role in determining the inter-
actions in its phonon systems. The dispersion relation
can be written as

� �( ) ( ( ))p cp p� �1 , (1)

where � is the phonon energy, p is its momentum, c is
the sound velocity in He II, �( )p �� 1 is the deviation
of the spectrum from linearity, which is small but
nevertheless completely determines the mechanisms
of phonon interactions. We note that, as well as at
p � 0, there is a critical momentum pc at which the
function �( )p is zero:

� �( ) ( )0 0� �pc . (2)

When p pc� the function � � 0 (anomalous disper-
sion). In this case the conservation laws of energy and
momentum allow processes which do not conserve the
numbers of phonons. The fastest of these processes is
the three-phonon process in which one phonon decays

into two or two interacting phonons combine into one
phonon. This paper is devoted to the consideration of
such processes.

When p pc� the function � � 0. In this case the
dispersion is normal and three-phonon processes are
prohibited by the conservation laws of energy and mo-
mentum. Then the fastest processes are four-phonon
processes.

Phonon systems can be isotropic or anisotropic, de-
pending on whether or not there is a special direction
in momentum space. Isotropic phonon systems can be
easily created experimentally by heating a volume of
fluid He II. These systems have been intensively inves-
tigated theoretically over several decades. Anisotropic
phonon systems are a relatively new area of low-tem-
peratures physics. In experiments they are created by
a plane heater which injects a pulse of phonons into
superfluid He II (see, for example, [1–3]).

The stimulus for carrying out this investigation
were the experiments [4,5], where the interaction of
phonon pulses was observed. These experiments have
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shown that pulses interact at pressures from 0 to 12
bar, and when the pressure is higher, for example, at
18 bar, there is no interaction. Also in these experi-
ments the dependence of the interaction on the angle
between the axes of the pulses was investigated. It
was found that pulses interact strongly if the angle be-
tween their axes is 8.8�, but at 46� there is no inter-
action.

The purpose of this paper is to calculate the rate of
three-phonon processes in isotropic and anisotropic
phonon systems of superfluid helium at different pres-
sures and to compare the results of the calculations
with experimental data [4,5].

2. The main characteristics of three-phonon
processes

The dispersion relation (1) is very important for
studying three-phonon processes. As the behavior at
different pressures will be considered in this paper,
it is necessary to take into account the pressure de-
pendence of the parameters in expression (1).

For calculations in this paper we use a simple ana-
lytical approximation of the function �, which never-
theless describes all the available experimental data
(see, for example, [6,7]) rather well:
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where p Pc( ) is the critical value of momentum,
which depends on pressure P and � max( )P is the
maximum value of the function �( , )p P which is
reached when p p /c� 2. The expression for function
� max( )P can be written as

� max( ) . .P P� � � � �� �4 551 10 5 537 102 3

� � � �� �2155 10 2 415 104 2 6 3. .P P . (4)

Expression (4) is obtained from an analysis of Refs.
6,8 and 9.

The expression (3) is valid in the region p pc� for
any pressures up to P � 19 bar, the pressure at which
the dispersion becomes normal. To calculate the rate
of three phonon processes in isotropic and anisotropic
phonon systems at different pressures, it is necessary
to have the dependences c P( ) and ~ ( )p Pc �
� c P p P /kc B( ) ( ) , which can be written as

c P P P( ) ( . . . )� � �10 238 3 7 33146 0 091412 2 , (5)

~ ( ) . .p P P Pc � � �10 0 20915 0 01669 2. (6)

Expression (5) is obtained from an analysis of experi-
mental data [10] and (6) from [7–9,11,12]. Here and

below values of the variables are given in CGS units
except that ~pc is in Kelvin and pressure in bar.

We write out the dependences of the density �( )P
and Grüneisen constant u /c c/� ( )( )� � �� on pressure,
as they will be necessary for our further calculations:

�( ) . .P P� � �014513 0 00171

� � � �� �3 7661 10 5 29924 105 2 7 3. .P P , (7)

u P P P( ) . . .� � � �2 84 0 05537 0 00201 2

� � �3 24998 10 5 3. P . (8)

These dependences were found from experimental
data of Ref. 10 as well as expression (5).

It has long been realized that three-phonon pro-
cesses cannot take place all the way to the critical mo-
mentum pc. From the conservation laws of momentum
and energy which must apply in such processes:

� � �� �p p p, (9)

� � �( ) ( ) ( )p p p� � � � , (10)

and also from expression (1) we obtain restrictions on
the momenta of the interacting phonons. Starting
from (1), (9) and (10), we calculate the angles be-
tween phonons with momenta p�, ��p and p,p�. As a re-
sult we have:

� � � �p p
p p

p p
p p p p p p p� �� �

�� ��

� ��
�� �� �� �� � � � � ��[( ) ( ) ( ) ( ��p )] ,

(11)

� � � �pp
p p

pp
p p p p p p p p� �

� �

�
� � � � � � � �[ ( ) ( ) ( ) ( )] ,

(12)

where � �p p p p� �� � ��� �1 cos , � �pp pp� �� �1 cos and
�p p� �� , �pp� are the angles between p�, ��p and p,p� re-
spectively.

The values � p p� � � and � pp� should be greater than or
equal to zero, in order that three-phonon processes be
allowed by the conservation laws (9) and (10). Hav-
ing put quantities � p p� � � and � pp� equal to zero, we ob-
tain the boundaries of the regions in which three-
phonon processes can take place.

Substituting (3) into (12) and equating the result-
ing expression to zero, we obtain an equation in the
fourth power of p p�( ). Its solutions are

p p p p p� � � �� ( ) ( )max
1
2

3 2 2 , p p p� �( ) , (13)

where

p pcmax �
4
5

. (14)
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Only three solutions of the quartic equation are
written because the solution p p p� �( ) is a 2-fold root.

Having equated expression (11) to zero, after sub-
stituting relation (3) in it, we have an equation of the
fourth power in p p� ��( ). The solutions of this equation
are:

p p p p p� �� � � �� � � ��� ( ) ( )max
1
2

3 2 2 , p p p� �� � � ��( ) .

(15)

Here the solution p p p� �� � � ��( ) is also a 2-fold root.
We note that the only physical solution in this case is
� ���p p( ) because other solutions have one or both

momenta with negative values.
Relations (13)–(15) determine the boundaries of

regions where three-phonon processes are allowed. In
Fig. 1,a,b, based on (13) and (15), the area where
three-phonon processes are allowed is shown shaded.
As we have used the dimensionless variable normalized
to pc, the specified area does not depend on pressure.

From relations (13)–(15) (see Fig. 1) it follows
that values of the momentum of phonons participating
in three-phonon processes, can change in the ranges:

0
3
5

� � �� � �( , ) minp p p pc , (16)

0 � �p pmax. (17)

At saturated vapor pressure we have ~ .minp � 7 7 K,
and ~ .maxp � 8 9 K.

We note that pmin and pmax can be expressed in
terms of the function � and its first derivative. From
the conservation laws (9) and (10) it follows that
when p p�� min, �� �p 0. As a result of the fact that
�� �p 0, from (9) we find, that p p� � and consequently

� pp� � 0. Then, taking into account that
p p p� � ��min , we expand expression (12) as a series
in ��p , with the result

� �� �� ��pd /dp p p|
min

0. (18)

Taking into account expression (3), we have

p pcmin �
3
5

, (19)

as obtained above.
The maximum value of the momentum of a phonon

p which is created as a result of combining phonons p�
and ��p , in accordance with [13], is defined by the
equality

� �( ) ( )max maxp / p2 � , (20)

from which, taking into account (3), we obtain rela-
tion (14).

Boundary values of the momenta of phonons partic-
ipating in three-phonon processes were studied in
Refs. 7,14–17, however, except Ref. 16, the regions of
momenta where three-phonon processes are allowed
(see Fig. 1), were not obtained. In Ref. 16, an area
similar to that shown in Fig. 1,a was shown. Never-
theless it has some difference with Fig. 1,a, appar-
ently because a less adequate approximation to the
phonon spectrum was used for the computer evalua-
tions. In Refs. 7,14–17, analytical relations for the
boundaries of the areas and the expression (18) for the
boundary momentum of phonon p� expressed by means
of the function � and its first derivative were not ob-
tained.

The probability density of three-phonon process,
according to [18], can be written as

�W
c

pp p u( ) ( ) ,p p p p p p� �� � � �� � �� ��
�
�

�
�

1 2 . (21)

From (21) it is clear, that the probability density
does not depend on the angles between the momenta
of the interacting phonons as long as such processes
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Fig. 1. The restrictions on the momenta of phonons participating in three-phonon processes. Three-phonon processes are
allowed in the shaded areas.



are allowed by the conservation laws (9) and (10). It
follows from (21), that the most probable process is
when

� � �� � �� � /2. (22)

Starting from relation (11), we calculate the angle
between phonons with momenta p� and ��p as function
of p and the relation between the momenta of phonons
p� and ��p . For that we need the p� and ��p dependences
on p and m p /p� � �� which, taking into account (10),
can be written, in the zeroth approximation of �, as

p
m

m
p� �

� 1
, (23)

�� �
�

p
m

p
1

1
. (24)

Substituting (3) into (11), taking into account (23)
and (24), and expanding the resulting expression
� p p� �� as a series in the small parameter �p p� �� up to
second-order terms, we get
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From (25), it follows that when the value of m is
fixed, the function �p p� � � reaches the maximum value

�
�

�p p p p m
m m

� �� � � �
� �

( ) ( )
( )

max
max3 1

2

5 12 (26)

at

p
m

m m
pc� max �

�

� �

3
10

1

12
. (27)

In accordance with (26), function �p p� �� reaches the
maximum value at m � 1, i.e., when the requirement
(22) is satisfied. We note that at m � 1

p pc� max �
2
5

(28)

and

� �p p� �� �max max
24
5

. (29)

In Fig. 2 we show the dependence of the relation
� �p p p p/� �� � �� max on p/pc, for different relations be-
tween the momenta of phonons p� and ��p which we get
from (25). Here �p p� �� max is the maximum angle be-
tween the momenta of the phonons participating in
the three-phonon process, which is defined by
Eq. (29). We note that in the chosen variables, the
form of this curve does not depend on pressure.

In Table 1, numerical values of angle �p p� �� max and
the critical momentum ~pc are given for different pres-
sures which correspond to the conditions of the experi-
ment [4].

Table 1. The pressure dependences of maximum angle
�p p� �� max (see Eq. (29)) between two phonons created in a
3pp decay process and the critical momentum ~pc (see
Eq. (6)).

P, bar �p p� � �max, deg ~pc, K

0 27 10

5 19 8.54

10 12 6.24

12 10 5.09

18 5 0.83

It can be seen from Table 1 that the maximum angle
of three-phonon processes decreases with increasing
pressure. From (29) this can be explained as � max de-
creasing with increasing pressure. Also when the value
of pressure increases, the value of pc, which deter-
mines the maximum values of the momenta of phonons
which can participate in three-phonon interactions,
decreases. These two factors lead to a reduction of the
volume of momentum space in which three-phonon
processes are allowed by the conservation laws of en-
ergy and momentum.

3. The rates of three-phonon processes in isotro-
pic phonon systems

The rates of three phonon processes in isotropic
phonon systems, at the saturated vapor pressure, were
calculated in [18]. Experiments [4] were carried out
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at pressure of 0, 5, 12 and 18 , so in this work we
investigate the rates at different pressures. Besides
this the expression obtained in Ref. 18 for the rate
of three-phonon processes is valid only in range
0 � �p pmin. Here we shall carry out a detailed analy-
sis of the rate of three-phonon processes in the range
of momenta p p pmin max� � in which the rate of
three-phonon processes changes from the maximum
value to zero. Some results of this section were re-
ported on International Conference Phonons 2004 (see
Ref. 19) and were partly published in [20].

We follow the scheme of the Ref. 18 to calculate
the rate of three phonon processes, starting from the
kinetic equation:

�dn

dt

W1 1 2 3
3

1
2 2

� "#
( )

( )

p p p

��

" � � � � "[ ( ) ( )( )]n n n n n n2 3 1 1 2 31 1 1

" � � � � �� � � � �[ ( ) ( ) ( )] ( )p p p p p p1 2 3 1 2 3
3

2
3

3d p d p

�
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W
n n n n n n
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[ ( )( ) ( )]

p p p3 1 2
3 3 1 2 1 2 3

2
1 1 1

��

" � � � �� � � � �[ ( ) ( ) ( )] ( ) ,p p p p p p3 1 2 3 1 2
3

2
3

3d p d p

(30)

where n ni i� ( )p is the number of phonons in the
given quantum state, and �W( )p p p3 1 2 is the proba-
bility density of transitions in phase space, which is
defined by expression (21).

To calculate the typical rate of three-phonon pro-
cesses in isotropic phonon systems, we follow [18],
and substitute in the Eq. (30):

n n n n n n n1 10 2 20 3 30� � � �� , , , (31)

where the subscript «0» specifies an equilibrium dis-
tribution

n p p /k TB0
11( ) {exp [ ( ) ] }� � �� , (32)

and �n is the deviation of the distribution function
from equilibrium.

The typical rate of three-phonon processes $3pp is
naturally defined by the equation

$
�

�
3 1

1
pp n

d n
dt

( )p � � . (33)

Starting from expressions (21), (30)–(33) we have

$
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3 1

2

4 1 1 2 1
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( ) ( )p p p�

�
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(
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*�
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where

J
cp

n1 1
1

10
( )p � "

� �" � � "##dp d p n p n p p

p

2 12 2
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1 2 0 2 0 1 2

0

2

0

1

� p p ( ) ( )

� �" � � �� � � �( ( ) ( ) ( ))p p1 2 1 2p p , (35)

J cp2 1 1( )p � "

� �� �" � � � "## dp d p n p p n p

p

p

3 13 3
3

3 1 0 3 1 0 3

0

2

1

� p p ( ) ( )
max

� �" � � �� � � �[ ( ) ( ) ( )]p p3 1 3 1p p . (36)

Here

�12
1 2

1 2
1� �

p p
p p

, (37)

�13
1 3

1 3
1� �

p p
p p

. (38)

Doing the integration on �12 and �13 with the help
of the �-functions in Eqs. (35) and (36), we obtain for
$3 1pp ( )p from (34) the following relation:

$
��

+ ,3 1

2

4

5

1 1
1

4

1
2pp

Bp
u k

c
p p(~ )

( )
(~ ) (~ )�

� 	
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*
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where ~p cp /ki i B� ,

+ - �(~ ) ~ ~ (~ ~ ) ( ~ (~ )) ( (~ , ~ )p dp p p p n p p p1 2 2
2

1 2
2

0 2 1 21 2� � � ) ,

~

0

1p

#
(40)

,(~ ) ~ ~ (~ ~ )
~

~
max

p dp p p p

p

p

1 3 3
2

3 1
2

1

� � "#

� �" � �~ (~ ~ ) ~ (~ ) ( (~ , ~ ))n p p n p p p0 3 1 0 3 3 1- � . (41)

Here

~ (~) [exp (~ ) ]n p p/T0
11� � � , (42)

�(~ , ~ )
~ ~

~ ~p p
p p

p pi j
i j

i j
�

�
"

" � �(~ ( ~ ) ~ ( ~ )p k p /c p k p /ci B i j B j� �

� � �(~ ~ ) ( (~ ~ ) ))p p k p p /ci j B i j� (43)

and

-( )
, ,

, .
x

x

x
�

.

�
%
&
'

1 0

0 0
(44)

Expression (39), together with (40)–(44), com-
pletely determines the typical rate of three-phonon re-
laxation in isotropic phonon systems. We underline
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the fact that the final result (39) contains parameters
that describe the nonlinearity of the phonon spectrum
of He II. Mathematically this fact is expressed by the
appearance of --functions which restrict the integra-
tion range. The rates represented in [18] do not con-
tain these - functions. We note that these - functions
cause the rapid decrease of the rates near the boundary
momentum pmax.

Starting from expression (39), we get an analytical
expression for rate of a three-phonon scattering in the
case p p pmin max� �1 . When p p1 � min the term
,(~ )p1 is equal to zero because phonons with momen-
tum p p1 � min cannot participate in combining pro-
cesses (see Fig. 1,b). In this case expression (39) will
have only the first term +(~ )p1 , which is defined by ex-
pression (40). It corresponds to the decay of a phonon
with momentum p1. We note that the term +(~ )p1 de-
scribes the stimulated decay of a phonon with momen-
tum p1 which corresponds to the term with the Bose
function, in the brackets of the integrand of (40), and
spontaneous decay of a phonon with momentum p1
which corresponds to the first term, unity, in the
brackets. In our case p p pmin max� �1 we do not take
into account stimulated decay, because its rate is
much smaller than the rate of spontaneous decay. If
the momentum of one of the phonons, which is created
as a result of decay, is small, then the contribution of
such decay processes in expression (40) is small, too.
Also when the momenta of both phonons are signifi-
cant, the term with the Bose function is much smaller
than unity. As a result, we can neglect the term that
contains the Bose function in the brackets of the
integrand (40). On integrating we have:

$
��

3

2

4
2

1
21

240
3pp

u
p p�

�
� "

( )
max

�

" � �( )min min9 14 61
4

1
2 2 4p p p p . (45)

Expression (45), in the range p p1 � max, de-
creases rapidly and goes to zero at p p1 � max due to
the radicand going to zero. The expression in the
brackets increases but tends to a finite value equal to
1.2pc

4. As a result, the rate decreases from a maximum
to zero in a small range of momenta (see Fig. 3). The
change of the rate is determined by a competition be-
tween the expression under square root, which de-
creases as p p1 � max, and the factor in the brackets.
As a result of the competition, expression (45) reaches
a maximum value at p pc1 0 84/ . , and at p pc1 0 89/ . it
is equal to zero. Therefore the rate changes from the
maximum value to zero in a small momentum range.

We now consider the typical time of three-phonon
processes. Equation (39) can be interpreted as the re-
ciprocal lifetime of a phonon with momentum p1 in an
equilibrium field of thermal phonons with tempera-
ture T. Let us consider the limiting cases which follow
from Eq. (39). First, we consider the hypersound
limit, when ~p /T1 1�� . Thus

,(~ )p1 0/ (46)

and

+(~ ) ~ ~ (~ ~ )
~

~

p dp p p p
p

p

1 2 2
2

1 2
2

0

1
51

30
/ � �# . (47)

Substitution of relations (46) and (47) in (39) gives

$
��

3 1

2

4 1
51

240
pp p

u
p( ) ( )

( )0 �
�

�

. (48)

This expression was obtained in Ref. 21 for the first
time. From relations (46) and (47) it is clear that this
limiting case corresponds only to decay processes as
p p p1 2 3� � . It is should be noted, that formula
(48) has actually a rather restricted area of applica-
tion. This is because two requirements must be satis-
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fied: ~p /T1 1�� and ~ ~
minp p1 � ; therefore it can be used

for numerical evaluations for pressures up to 12 bar at
temperatures up to 1 K, and at lower pressures if the
temperature is higher.

The other limiting case is ~p /T1 1�� , corresponding
to the absorption of acoustic sound waves by an equi-
librium phonon field with temperature T. In this case
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Substituting (49) and (50) into (39), we have
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and thus we come to the result obtained in Refs.
22,23. We note that in expression (50) we replace
~

maxp by 0. Such a replacement can be made when
~

maxp /T �� 1. There was no such requirement in [18]
because the condition is always satisfied at the satu-
rated vapor pressure. However with increasing of
pressure, it starts to play an important role and re-
stricts the area of applicability of expression (51).

In contrast to the process of decay of high-energy
phonons (see (48)), mentioned above, the limiting
case (51), which follows from relations (49), (50),
corresponds only to combining processes such as
p p p1 2 3� � . Equation (51) has been used many
times for the description of various relaxation pro-
cesses in pure He II and also in superfluid mixtures of
3He–4He (see Ref. 24).

It is important to note that equation (39), taking
into account dependences (3)–(8), is valid for any
pressure at which the dispersion is anomalous. In
Fig. 3, rates for three-phonon processes are shown for
different pressures and temperatures. In Fig. 3,a it can
be seen that with increasing of pressure, the rate be-
gins to decrease. This is caused by the decreasing of
value pc, and by the change in the parameters u, �,
and c of superfluid helium. As pressure increases from
0 up to 12, at fixed value of pc, the rates decrease /
five times, and as the pressure is further increased up
to 18, the rate decreases approximately 2 times. An-
other cause of decreasing rates with increasing pres-
sure is the decreasing momentum range in which
three-phonon processes are allowed. This is due to the
decreasing of value pc which leads to a reduction of
the phase volume in the integration.

We note that the decreasing rates, which is con-
nected with the decreasing of value pc, has a strong

temperature dependence: at temperatures T 1 1 K, the
decreasing of value pc with growth of pressure from 0
to 12 bar, at fixed parameters u, � and, c, leads to the
rates decreasing up to 2 times, and for a further in-
crease of pressure to 18 bar, the rate decreases up to
300 times. At temperatures T � 01. K, the decreasing of
value pc with growth of pressure from 0 up to 18 bar
does not affect the rates of three-phonon relaxation
which in this case is caused only by the change in
the parameters of liquid helium. Such a temperature
dependence can be explained by presence of the Bo-
se–Einstein functions which contain the expression
exp (~ )p/T in the integrands.

The temperature dependence of the rate, $3pp , in
the limiting cases (48) and (51), as one can see in
Fig. 3,b, is as follows: at small values of p1,
$3

4
pp T2 , and at large values of p1, $3pp has practi-

cally no temperature dependence.

4. Phonon distribution function
of an anisotropic phonon system

Systems with an anisotropic distribution of phon-
ons in momentum space are created in experiments
(see, for example, Refs. 1–5) using a heater immersed
in superfluid helium 4He, which is at such a low tem-
perature that the effect of thermal excitations can be
neglected. The heater is a metal film evaporated onto
glass. When current flows through the metal film,
phonons are created in the superfluid helium within a
narrow cone with a solid angle 3 p �� 1 and with an
axis perpendicular to the surface of the heater. The di-
mensions in coordinate space of this strongly an-
isotropic phonon system are defined by the area of the
heater and the duration of the thermal pulse.

Such anisotropic phonon systems can be described
with a help of approximate quasi-equilibrium distribu-
tion function (see, for example, Refs. 25–28) which
can be written as

n /k Tp p B p( ) ( )[exp ( ) ]p � � � �- � � � 1 1. (52)

This distribution function has simple physical
meaning and includes all the necessary parameters of
anisotropic phonon systems: temperature Tp , and the
value of an anisotropy which is given by angle �p . The
approximation (52) has allowed the successful solu-
tion of a number of problems [20,25–28].

However, this function does not make the integral
of the three-phonon collisions equal to zero. The exact
equilibrium distribution function of phonons in
anisotropic phonon systems, in accordance with
Ref. 29, is
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where

u N� �c( )1 4 , (54)

is the drift velocity, N is the unit vector directed
along the full momentum of phonon system, which
defines the axis of anisotropy of phonon system, and 4
is the parameter of anisotropy. It is obvious that func-
tion (53) makes the integral of the three-phonon col-
lisions equal to zero. In order to derive the further re-
sults we use exact equilibrium distribution function
(53).

In a weakly anisotropic case the parameter 4 is close
to unity. In our case, which corresponds to the experi-
ments [4,5], the phonon pulses are strongly
anisotropic phonon systems and 4 �� 1.

The expression (53), taking into account (1) and
(54), can be written as

n p
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where � � �1 pN/p.
The values of the parameter of anisotropy 4 and

temperature T, which are contained in the distribution
function (55), can be related to the values of the pa-
rameters �p and Tp of the approximate distribution
functions (52), which have a clear physical meaning.
Starting from the equality of energies and momenta of
anisotropic phonon systems, calculated with a help of
distribution functions (52) and (55), we have a sys-
tem of two equations which connects parameters �p
and Tp with parameters 4 and T:

� �n d p n d pp u
3 3# #� , (56)

p pn d p n d pp u
3 3# #� . (57)

This system can be solved numerically relating
parameters 4 and T, to values of parameters
� �p p� �1 cos and Tp . In the following calculations
we always use the relation

� �p /� max 2, (58)

which is a good approximation to the real situation
and represents a pressure dependence of � p . Values of
parameters 4 and T which correspond to parameters
� p and Tp can be obtained solving the combined
equations (56),(57). These values will be used in our
further calculations and are represented in Table 2.
We note that the choice of pressures in this paper cor-
responds to the choice of pressures in experiments [4].

Table 2. The relation between parameters �p, Tp of the ap-
proximate distribution function (51) and the parameters 4,
T of the local equilibrium distribution function (54) at dif-
ferent pressures. The dependence of the average momentum
5 6~p on parameters 4, T and the angle �eff at which two
phonons combine with momenta 5 6~p .

P,

bar
�p

Tp,

K
4

T,

K

5 6~p ,

K

�eff,

deg

0 0.023

0.5 0.019 0.016 0.934 11

0.6 0.020 0.021 1.075 13

0.7 0.019 0.025 1.207 14

0.8 0.020 0.030 1.317 15

0.9 0.020 0.036 1.462 17

1 0.020 0.041 1.581 18

5 0.011

0.5 0.0093 0.0084 0.906 9

0.6 0.013 0.012 0.992 10

0.7 0.010 0.014 1.183 11

0.8 0.010 0.016 1.28 12

0.9 0.010 0.019 1.424 13

1 0.010 0.022 1.569 14

10 0.0046

0.5 0.0043 0.0041 0.835 7

0.6 0.0044 0.0053 0.964 8

0.7 0.0045 0.0064 1.085 9

0.8 0.0044 0.0076 1.232 10

0.9 0.0043 0.0086 1.361 10

1 0.0041 0.0095 1.492 11

12 0.003

0.5 0.0029 0.0029 0.788 6

0.6 0.0029 0.0037 0.919 7

0.7 0.0028 0.0044 1.074 8

0.8 0.0027 0.0050 1.208 9

0.9 0.0025 0.0056 1.349 9

1 0.0024 0.0060 1.442 10

18 0.00079

0.5 0.00018 0.00057 0.368 5

0.6 0.000092 0.00062 0.403 5

0.7 0.000037 0.00066 0.429 5

0.8 0.000011 0.00071 0.455 4

0.9 0.0000034 0.00078 0.484 4

1 0.0000022 0.00084 0.506 3

The value 5 6~p given in Table 2 corresponds to the
average momentum of phonons in a pulse and is deter-
mined by expression
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and �eff is an angle between the two interacting
phonons with momenta 5 6~p which is defined by con-
servation laws of energy and momentum.

5. Relaxation in anisotropic phonon systems,
caused by three-phonon processes

The expression for the rate of three-phonon pro-
cesses in anisotropic phonon systems, can be obtained
from the kinetic equation (30) in a way similar to ob-
taining expression (39) for the rate of three-phonon
processes in isotropic phonon systems:
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� � � � � � � �i j i j i j ip p p p p, (~ , ~ ) (~ , ~ ) ( )[ (~ ,� � � � � �1 1 1 1
22 2 ~ ) (~ , ~ )]p p pj i j� �2 , (65)

and �(~ , ~ )p pi j is defined by relation (43).
As in the isotropic case, the first term in expression

(60) corresponds to the decay of a phonon with mo-
mentum p1, and the second to the combining of a
phonon with momentum p1 with phonons of the
anisotropic phonon system. The relation for the rate of
three-phonon processes in the anisotropic case differs
from the isotropic case only by the dependence of
phonon distribution function on the angle �. As a con-
sequence, the integration cannot now be made analyti-
cally. We note that if we substitute the distribution
function (55) with the distribution function of phon-
ons in the isotropic phonon system (32) in expression
(60), then the integration over angles can be made and
expression (60) for the rates of three-phonon processes
in anisotropic phonon systems will turn into expres-
sion (39).

Figures can be obtained with a help of expression
(60). Figure 4,a shows dependence of the relaxation
rate of a phonon with momentum p1 in anisotropic
phonon systems on the angle �1 between the axis of
anisotropy of phonon system N and phonon momen-

tum p1 at Tp � 1 K and different pressures. Values of
� p corresponding to different pressures is calculated
with the help of equality (58) (see Table 2). The
phonon momentum p1 is considered to be equal to the
average momentum of phonons in a pulse 5 6p . It fol-
lows from Fig. 4,a, that the rates of three-phonon pro-
cesses decrease with increasing pressure. This has the
same cause as for the isotropic case. We note that with
the growth of angle �1 the rate $3pp increases, reach-
ing a maximum value, and then decreases and ceases
to depend on an angle. In order to understand such an-
gular dependence of the rates we turn to Fig. 5. In
Fig. 5, curve 1+2 is the same as curve 1 in Fig. 4,a. It
is the sum of curves 1 and 2, which correspond to the
first and the second terms of expression (60), respec-
tively. Curve 1 in Fig. 5 corresponds to the decay of a
phonon with momentum p1, and curve 2, to the com-
bining of a phonon with momentum p1 with a phonon
of the anisotropic phonon system. The increase in the
rates, which is represented by curve 1 at small values
of angle, is caused by stimulated decay of a phonon
with momentum p1 due to the presence of the
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anisotropic phonon system. At greater values of the
angle between phonon momentum and the axis of ani-
sotropy, the phonon ceases «to feel» the presence of
the anisotropic phonon system, and as a result there is
no angular dependence. In this case the rate of decay
corresponds to the rate of spontaneous decay of a
phonon. The maximum of curve 2 can be explained in
the following way. We replace the anisotropic phonon
system by a monochromatic phonon pulse which mo-
ves along the z axis. Then the average momentum
of phonons in such pulse is equal to 1.581 K (see
Table 2). We calculate the interaction angle of such
phonons and see from Table 2 that �eff � 18�. This is
in good agreement with the location of the maximum
in Fig. 4,a. The locations of the maxima of the other
curves in Fig. 4,a can be calculated in a similar way
and they are given in Table 2. In Fig. 4,b is shown the
effect of different temperatures at the saturated vapor
pressure and � p � 0 023. . Curves in this case have an
angular dependence which is similar to that shown in
Fig. 4,a. The locations of the maxima in this case are
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also given in Table 2. Fig. 4,c and 4,d represent
the dependence of rate $3pp on momentum p1 at
� �1 � eff ( , )P T at different pressures and tempera-
tures. The value of � p was defined by expression (58)
(see Table 2). We note that the dependences repre-
sented in Fig. 4,c and 4,d look like the dependences of
the rates on momentum p1 for relaxation in isotropic
systems. However in this case the rates are smaller.

The dependence of the rate of three-phonon pro-
cesses on the value of anisotropy of phonon system can
be obtained by calculating the rate of three-phonon
processes in anisotropic phonon systems with the dis-
tribution function (52) instead of (53). Calculating
the rates in this way makes it possible to see the transi-
tion from anisotropic phonon system to isotropic. This
transition is shown in Fig. 6 where �p is the typical
angle which the anisotropic phonon system occupies in
momentum space. When the angle is zero, there is no
anisotropic phonon system. In this case this rate corre-
sponds to the rate of decay of a phonon with momen-
tum p1 which was originally obtained in Ref. 21.
As the angle increases the rate begins to increase
reaching the isotropic value when �p 1 27�. Such a re-
sult is connected with the fact that phonons can inter-
act with each other if the angle between their
momenta does not exceed the maximum angle for
three-phonon processes. In this case the value of this
angle equals to 27�.

6. Comparison of the theory with experimental
data on interaction of phonon pulses

In experiments [4,5] the interaction of two phonon
pulses was studied. In this connection the problem of
calculating of the rate of their interaction is of un-
doubted interest. The calculation of these rates is
based on the above solution of the problem of one

phonon relaxing in an anisotropic phonon system. In
Fig. 7 the dependence of the rate of such an interac-
tion on angle between axes of anisotropy of phonon
systems is shown. This angle is shown in the inset in
the right upper corner of Fig. 7,a (anisotropic phonon
systems are represented by cones). This rate was ob-
tained from relation (60) in the following way: the
value of the relaxing phonon momentum was consid-
ered to be equal to the average value of momentum of
phonons in a pulse, and the averaging over angle was
made in order to take into account that actually we are
dealing not with one phonon but with an anisotropic
phonon system. To average over angles, we took three
values of the rate at values of angle � �uu� � p , �uu� ,
� �uu� � p and calculated their simple average value.
We note that such an approach does not take into ac-
count spontaneous decays of a phonon with mo-
mentum p1, because anisotropic phonon systems by
themselves are in equilibrium. However it is necessary
to take into account the decay stimulated by the
anisotropic phonon system, which, as follows from our
calculations (see Fig. 5), gives a small contribution
compared to phonons combining processes.

Phonon pulses have enough time to interact if the
time to cross the region where the two sheets overlap
7cross is greater than the relaxation time of phonons
$3

1
pp

� . The expression for 7cross , according to Ref. 29,
can be written as

7 �cross � �
�t /p ( sin ( ))2 22 1

uu , (66)

where tp is a duration of the thermal pulse which cre-
ates the phonon pulse. In this case in the volume,
where the pulses intersect, there is enough time for
three-phonon processes to occur and create a new for-
mation, which following the terminology of Ref. 5 we
call a hot line.

The formation of a hot line was experimentally ob-
served in [4,5] and it was shown that at high pressures
and at large values of angles between pulses, a hot line
is not formed. Such a situation can be explained with
a help of Fig. 7. At values of angle �uu� in experiments
[4,5], i.e. 8.8�, 26� and 46� time 7cross at tp � 100 ns is
equal to 8 5 10 6. � � s, 9 88 10 7. � � s, 3 28 10 7. � � s respec-
tively. Then as shown in Fig. 7,e, when the pressure is
18 bar, at all values of angle and temperature, the in-
equality

7 $cross � �
3
1
pp (67)

is satisfied. Thus pulses have no time to interact and a
hot line is not formed.

We note also, that at the saturated vapor pressure
and at an angle equal to 46� and Tp � 0 7. K the in-
equality (67) is satisfied and hot line also has no time
to be formed. With a temperature Tp of 1 K, the given
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angle is about 50� (see Fig. 7,a) and again no hotline
is formed.

At the saturated vapor pressure, when �uu� equals to
8.8� and 26�, for all six values of temperature which are
represented on Fig. 7,a by curves 1—6 the inequality

7 $cross � �
3
1
pp (68)

is satisfied. In this case pulses have enough time to in-
teract.

The dependence of the interaction of two phonon
pulses on angle between their axes at different values
of pressure and temperature obtained here, is in full
agreement with the results of experiments [4,5].

We note that in experiments [4,5] the angle be-
tween pulses �uu� and the temperature of the pulses
change during motion of pulses from the heater to the
detector. An account of these effects was given in
Ref. 29. However the comparisons carried out above,
answer the question about the possibility of pulses in-
teracting in the conditions of the experiments [4,5].

7. Conclusion

In this paper three-phonon processes in isotropic
and anisotropic phonon systems of superfluid helium
at different pressures were investigated. The approxi-

mate dependences (5)–(8) of He II parameters on
pressure were obtained. Restrictions on the momenta
of the phonons participating in three-phonon processes
(see Fig. 1) were studied and analytical expressions
(13)–(19) for the boundaries of regions in which
three-phonon processes are allowed by the conserva-
tion laws of energy and momentum were obtained.
The dependence (25) on the angle �p p� �� between
phonons with momenta p� and ��p created as a result of
the decay of a phonon with momentum p, using differ-
ent relations between the momenta of the created
phonons, was obtained. This dependence is repre-
sented on Fig. 2. The maximum angle (29) of three-
phonon processes at different pressures was found.
Also it was shown, that this angle decreases as pres-
sure incrases.

Starting from the kinetic equation, the expression
(39) for the rate of three-phonon relaxation in isotro-
pic phonon systems valid for all phonon energies at
which three-phonon processes are allowed by conser-
vation laws at different pressures was obtained. The
results of rates evaluated using (39) for different pres-
sures and temperatures, are shown in Fig. 3. Also the
analytical expression (45) which describes the behav-
ior of rates in the range p p pmin max� �1 was found.
Starting from (45) it was shown that the rates of
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Fig. 7. The rate of three-phonon processes $3pp as a function of an angle between the axes of the two interacting anisotropic
phonon systems. Curves 1–6 of each Fig. are for temperatures Tp 1, 0.9, 0.8, 0.7, 0.6 and 0.5 K. Figures (a), (b), (c), (d),
(e) are for pressures 0, 5, 10, 12 and 18 bar, respectively. The value of �p is defined by Eq. (57) (see Table 2).



three-phonon processes in a small interval of momen-
tum, reach a maximum value and then rapidly vanish.
In this paper the pressure dependence of the rate of
three-phonon processes in isotropic phonon systems
was investigated, and it was shown that the rates de-
crease with increasing pressure. The reasons for this
decrease were explained. Starting from expression
(39) the regions, in which the limiting cases (48) and
(51) are valid, were found.

In the paper the relaxation rates (60) in anisotropic
phonon systems at different pressures were calculated
for the first time. Dependences of these rates on the
energy of a relaxing phonon (Fig. 4,c,d) and on the
direction of its motion relative to an axis of anisotropy
(Fig. 4,a,b), were found. Dependences of the rates on
the angle between an axis of anisotropy of the phonon
system and on the momentum of the relaxing phonon
were investigated, and the presence of a maximum in
this dependence was explained. The terms correspond-
ing to combining of a phonon with momentum p1 with
a phonon of the anisotropic phonon system and to the
decay of a phonon with momentum p1 (see Fig. 5),
were compared.

In this paper the transition from an anisotropic
phonon system to an isotropic one (Fig. 6) was inves-
tigated. It was shown, that starting from some value
of �p , the rate of three-phonon processes becomes sat-
urated.

Based on the solution of a problem of relaxation in
anisotropic phonon system, the rates of two interact-
ing anisotropic phonon systems (see Fig. 7) were cal-
culated and compared with experimental data [4,5].

In the conclusion we note that three-phonon relax-
ation causes the dissipative coefficients of He II and
superfluid mixtures of 3He–4He (see, for example,
[24]). The pressure dependence of three-phonon pro-
cesses rate obtained here allows the determination of the
change of this contribution with increasing pressure.
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