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This article analyses the influence of the external electrostatic field (having an arbi-
trary space configuration) upon the properties of a free quasi-particle (for example, on the
properties of the electron, which was injected into a semiconductor or into a dielectric).
Approximations were formulated, that ensure fulfilment of the generalized Minkowski
equations for the components of the external field for both methods of description: a
quantum method of description within a local frame of reference and a classic method of
description within a global frame of reference. It was demonstrated that the generalized
dynamics of a quasiparticle in the external potential field might be one of the possible
reasons of the abnormal mobility of carriers in the strong fields.
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PaccmarpuBaeTcs BANAHME BHEITHETO 9JIEKTPOCTATMUECKOTO TIOJNA TPOMSBOJLHOI TpO-
CTpPaHCTBeHHO KOHPUTYyparum Ha CBOMCTBa CBOOOAHON KBASWYACTUIIHI TUMA HJEKTPOHA, WH-
JKEeKTUPOBAHHOTO B TIOJNYIPOBOAHUK MIN AUSIEKTPUK. CHOpMYyIUpoOBaHbI TPUOIUIKEHU, KO-
TOpBIe OBGECTIEUYMBAIOT BBITIONHeHUE O0OBIIEHHBIX ypaBHEHWN MHWHKOBCKOTO MEXIYy KOMIIO-
HEHTAMU BHEITHETO TOJA AJd 000OUX CHOCOOOB OMMCAHMSA: KBAHTOBOTO — B JIOKAJLHOM
CUCTEME OTCUEeTa M KJIACCUYECKOTO — B ryrobdanbHOI. IlokasaHo, UTO OZHOI M3 BO3MOKHBIX
TPUYUH 9KCIEPUMEHTAILHO Hab ogaeMoil aHOMaMbLHON TOABU/KHOCTH HOCUTENEH B CUJALHBIX
MONAX MOKeT OBITh MccjegyeMas 37ech 0000IeHHasd AWHAMUKA KBA3WYACTHI[ BO BHENIHEM
TMOTEHINAILHOM TIOJIE.

IIpo ocoGaurocTi ysaradpHeHOI JUHAMIKHM KBAa3iYaCTHHKM IPU HASBHOCTI 30BHIIIHBOTO
noteHniitHOr0 MOaA. YacTuna 2. Pienauaa MiHKOBCBKOTO i BUPOMKEHHA PYXJUBOCTI mpH
Beaukux moaax. AJ[. Cynpyn, JI.B. Illmenvosa.

PosrasgaeThcad BOJIME B0BHINMIHBOTO eJIeKTPOCTATMUHOTO TOJA MOBIMBHOI TPOCTOPOBOL
KoH(irypanii Ha BJIaCTUBOCTI BiNMbHOI KBa3iWaCTMHKU THUNY eJEeKTPOHA, 1HMKEeKTOBAHOTO Y
HanmiBOpoBiZHUK a60 miemekTpuk. ChopmMynnoBaHo HaOMMIKeHHA, AKiI 3a0e3MeUyOTH BUKO-
HAHHA ysaraJlbHeHMX PiBHAHL MiHKOBCHKOTO MiK KOMIOHEHTAMHM 30BHIINHLOTO TOJA IJISA
060x cmocobiB ommcy: KBAHTOBOTO — Y JIOKalbHi#M cucrtemi Bigmiky i Kmacuumoro — y rio-
G6anpuiti. IlokasaHo, IO OAHIEH 3 MOMKJIWBUX NPUUNH AHOMAJBLHOI PYXJUBOCTI HOCIIB, y
CHUJIBHUX TOJAX, IO CIIOCTEPIraeThCed eKCIePUMeHTAJbHO, MOKe OyTHM ysarajabHeHa
AVHaAMiKa KBa3i4acTUHOK, IO AOCHIMKYETHCA, Y S0BHINTHBOMY TOTEHI[ITHOMY TIOJIi.
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1. Introduction

Features of the dynamics of a free quasi-particle have been analyzed in [1] through the example of
the electron, which was injected into a semiconductor. It has been shown that these features are based
on the one of the main characteristics of the excited states of the condensed matters, that is, they are
based on the dispersive dependence of energy (or dispersive dependence of frequency) on the wave vector
[2 — 5]. These articles analyse the electron within the conduction band provided that this electron is in
the external electrostatic field, which has an arbitrary and a weakly variable configuration in space. The
Minkowski equations for the components of the external field were derived for both methods of descrip-
tion of the dynamics of a quasiparticle, i.e. for the quantum and classic methods of description. It was
demonstrated that the observed [6, 7] abnormal mobility of carriers in the strong fields may include a
dynamic factor as one of the mechanisms, which may explain such an anomaly.

2. Materials and Methods. Fundamental Relationships

Certain features of the dynamics of the electron, which was injected into a semiconductor, are ana-
lyzed, first, based on the dimensionless equations of motion:

fo=pF+op; P=G+0G, (1)

which were discussed in detail in the first part of the article [8] (see equations (45) of this part). Here
5 denotes the dimensionless velocity of the quasiparticle with the components f5,: 8 = e,[,, where
Bo = sin(p,). G denotes the “global” field, which is eventually connected with a given external field.
Vectors op and 6G in the components have the form as follows [8] (in the first part — this is the equations

(46) and right after it):
(v &) em) oo tem)

un(Eo[r &) o35 (om0 Zom)) o

Here F denotes the “local” force, pi denotes the effective mass tensor, r, denotes point of conditional

localization of the field source, £ denotes a some coordinate, ro denotes the vector, which has the following
AT,
oz

force. The dimensionless forces G and F along with the dimensionless vector parameters £ and r, are not
specified. They are determined by four Hamiltonian conditions of the dynamics of a quasiparticle.

It was shown in [8] (see equality (47)) that condition op = O is the main one among the other condi-
tions. As it follows from the equation (2), this main condition has the form of three differential equations
for the canonically conjugate variables, namely, pulse p and coordinate of the conditional localization of
a quasiparticle rq :

Kﬁlp%> + (@ g;:) - ((ro oy % (ﬁlF)ﬂ —0, a=1,23. (4)

Another such condition §G = 0, which (as it follows from the equation (3)) also has the form of three
differential equations in respect to the canonically conjugate variables rg and p has the form:

Foo (e 0 or. o -
_—Ga<ﬂ F'%>+<‘P'ax8>—<(ro—f)'%(ﬂ F)>7 a=1,23. (5)

0
These two conditions (op = 0 and §G = 0 ) bring the equations (1) to the following form:

a

o
P

components z§ (o = 1,2,3), ¢, = (r* . ), IT,., denotes a dimensionless representation of a given

rh=8 DP-G, (6)
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and determine the dynamics of the point of conditional localization of the quasiparticle rp in respect to
the “global” frame of reference, which is connected with the crystal. The first (the left) of the equations
(6) are similar to the analogous equations of a free quasiparticle and all procedure of getting the equations
(1) in the form (6) may be regarded as a generalization for the case of dynamics in the presence of an
external field.

In order to ensure the Hamiltonian nature of the dynamics of a quasiparticle, the following scalar

.

equation h = Q — {rg — ¢} - G + p - € was considered (in [8] this equation is given immediately after
the formula (41)). This equation ties the dimensionless Hamiltonian A of the system “injected electron
— external field” with the quantum eigenvalue Q of this system. This definition includes components of
three arbitrary vectors: G , £ , and r, (the latter of them is only included to the ). Availability of
these vectors makes it possible to raise the question concerning coincidence of the Hamiltonian h and
the eigenvalue €2. It is very important from the physical standpoint, because of, on the one hand, the
Hamiltonian of any closed system is constant in time, while, on the other hand, eigenvalue Q2 must be a
constant in time as well. The condition » = Q results in the scalar condition in the form of the ordinary
differential equation in respect of time 7 :

p-{={ro—-¢} G (7)

In [8] considered another condition relating the force components F and G. They are the same force,

but in the different frames of reference, and are connected with each other by the following vector con-

dition: IT,, — G = i 'F (see equations (31) or (50) in [8]). This vector condition decomposed into three
separate conditions (in the same manner as conditions (4) and (5)):

Fy,
2 Gy =T, a=1,23. (8)

o

That is, actually there exist 10 conditions for 12 components of four vectors. Such an overdetermina-
tion ensures some freedom of choice. For example, it is possible to consider that one of these vectors is
the single-component vector. It is most likely that the vector II,,, which is the predetermined function
of r, , may be treated as such single-component vector.

3. Results and Discussion. Some Applications

3.1. Minkowski Equations: Relations between the “global” field G and the “local” field F.
In order to determine relations between the “global” field G and the “local” field F_ it is necessary
to utilise equations (5) and (8), but in the vector representations:

P+ G =1L (9)

iF-G=o,,. (10)

Here oy, denotes the vector, which was determined by analogous to the vector oy, (see definition (2)):

welpr &) @ E) (o dom) o

In respect of the vector G, system of equations (9), (10) is the system of algebraic equations, and this
fact makes it possible to find out this force:

1
G = i(Hr* _Uro)' (12>

From the formal standpoint, with the help of the system of equations (9), (10) it is possible to find
out the force F as well:
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1.
F — JA(IL, +oy,). (13)

However, it is evident from the definition (11), that the equality (13) is the subsystem of the dif-
ferential equations, which complements the subsystem (4) and equation (7) up to the complete system
in respect of the vectors: r,. , &, and F. If there were no amendments o, in the equations (12) and

(13), then Minkowski equations [9, 10] would be valid: F,, = Ga/\/l — 32, which were obtained by

exclusion of the field IL,, from the equations (12) and (13). Here definitions of the components of the
velocity vector S8, = sin(p,), as well as definitions of the elements of the diagonal tensor of the effec-
tive mass p, = 1/cos(py), were also taken into consideration. From these two definitions follows that

po =1 / V1 — 2. Minkowski equations determine interconnection between the force F, which is only
included to the Schrodinger equation [8] (see equations (34) in [8]):

1 9%,
2 ap?,
and the “global” force G. The force F is formulated in its own frame of reference in respect of the point
ro . Variables p, denote components of the vector p = r —ro [8]. Presence of the correction of modifies

the Minkowski equations to the form: Fl, = (Go + afo)/\/l - B2

+(pa+£a)Fa¢oz:O; a:172737

3.2. About abnormal motility of quasiparticles in an external potential field.

Here will be considered application of the obtained results in respect to one of possible interpretations
of the abnormal mobility [6, 7] of the charged carrier in crystal in the external electrostatic field.

If solutions of the system of equations (4), (7), (9), and (10) (solution of (10) must be found taking
into account the equation (11)) for all four unknown vectors: F , G |, £ , and r,. would be found, then these
vectors in the general case must be functions of time 7 , pulse p , and coordinate ry . In the conservative
case, when there is no any explicit dependence on time in these equations, all quantities will only be
functions of p and rq , for example: G = G (p, ro). Farther this case will be considered as physically the
most typical. In the simplest case, this dependence may be represented in the form as follows:

G (p,ro) = Go £ Tdfyzp £ kgynTo. (14)

Here 74, denotes the dimensionless relaxation time, value of which is determined in accordance with
the explicit form of the solution of the system of equations (4), (7), (9), and (10). Origination of kqyy,
parameter is the same, but this parameter has its specific physical significance as an elastic dimensionless
constant. Without the direct solution of the system (4), (7), (9), (10) it is impossible to determine what
should be signs in the expansion (14).

The second and the third summands in this series may also take into account other physical processes,
except for those dynamic processes, which are analyzed within this article. These processes have not been
considered, since aim was to focus on “clean” dynamics of the electron (injected into the crystal) in an
external field. Therefore, in order to ensure the adequate analysis of the abnormal mobility [6, 7], other
factors must be additionally taken into consideration, for example, effects of deceleration of the electron
due to electron-phonon interaction. These factors were analyzed in details in [11]. In particular it has
been shown that such deceleration has the form: “— 7’6;9}1 p’, where 7.5, denotes the dimensionless time of

the electron-phonon relaxation. What is more, the dimensional analogue of loss factor “TEP}l P’ near the

threshold is estimated at [11] as the value of the order of 0.025 eV /A. It has been also noted in [11], that
depending on the physical mechanisms of the relaxation, one of which was analyzed in [7], the losses in
the course of the electron deceleration may achieve 0.06 eV/A, but cannot be lesser than 0.01 eV/A. In

this respect, the second summand in the series (14) will always have the form: “— T,r;ll p’, where
—1 —1 —1
Trel = Toph & Tagn- (15)

Therefore, 74y, factor may only influence upon the value of the electron deceleration within the limits
from 0.01 to 0.06 eV/A, and this fact makes it possible to estimate the value of the electron deceleration.
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Taking into account that the dimensional analogue of the difference 7, php Tdfy;p near the threshold
cannot be lesser than 0.01 eV/ A, as well as taking into account the fact that the dimensional analogue
of r php factor is equal to 0.025 eV/A it is possible to make estimation of the dimensional analogue of
Tdyn|pthr| factor. Its value cannot exceed 0.015 eV/ A. Here |penr| denotes the modulus of the threshold
value of the dimensionless wave pulse.

The presented values make it possible, first, to estimate the value of 7., . For this let us denote the
dimensional value of the electron—phonon relaxation as 0.025 eV/ A. Then, such relationship is valid:

5ph|Pth’f’| - Eph' (16>

Here t.pp, denotes the real time of the electron-phonon relaxation, while |Pyp,| denotes the mod-
ulus of the threshold value of the real wave momentum. It is possible to represent condition (16) in
the dimensionless form with the help of the relationships between the real and dimensionless values:
|Pthr| = m*c*|pthr| s

eph - (|Mbo|/h) eph (17>

These relationships have been discussed in details in [1]. Here m. = h? /(| My, |b2) denotes the effective
mass of the carrier in the conduction band (in [1] this value was denoted as m;); C, = by| My, |/h denotes
the maximum (threshold) velocity of this carrier for this band (in [1] this value was denoted as Cy).
Taking into account this fact in the equation (16), as well as assuming that |pin.| = 7/2, it is possible,
at last, to obtain: 7_ h = 2boL5ph /7| Mp,|. For estimations, we will use the following values: by = 1A, as
well as [Mp,| = 1eV. Then: 7,_, 1 = 0.0159, and, respectively, 7., = 62.83. Taking into account (17), time
of real electron-phonon deceleratlon can be found as well: £.p,, ~ 4107 14¢. And taking into account the
interrelation between 74y, and 7.pn, which was already discussed above, it is possible to obtaln similar

estimates for 74y, and tayn: Tayn = 104.72, tgy, ~ 7-10~ e, And, at last, the range of values 7., based
on the definition (15), will be determined as follows:
ml = 0.0159 £ 0.0096 = 0.0063 = 0.0255. (18)

Such a detailed analysis of the range of values of 7 _ l is required in order to estimate the abnormal
mobility.

For kqy, parameter, similar estimates may be made as well. For example, it is possible to make the
estimates that are connected with the curvature of the conduction band at the interface surface with other
materials. Such curvature is described with the help of the factor, which is similar to the third summand
in the equation (14), but this factor may also have two signs (depending on the interface material). For
the simplicity of further analysis of the abnormal mobility, we will neglect by this summand and will
assume that, for example, curvature of the band largely compensates the third summand in the equation
(14). Then, equation (14) will take the following form: G (p,ro) = Gg — p/7rei- Therefore, the second

(the right) equation in the expression (6) will take the following form: P=Go— 7p- In accordance

with these approximations, it is possible based on the condition f> = 0 to find the stationary solution of
this equation as follows: pgs;. = 7o/ Go, wWhere value of the stationary wave pulse is proportional to the
external field Gg.

At last, mobility can be analyzed using the ratio for the velocity components: 8, = sin (p,), which
definitions are given after the equations of motion (1). In result of the substitution of components of the
vector psie = Trei Go to this equality, it is possible to obtain the following expression for the stationary
velocity:

B2, =sin (17.Gf) . (19)

This dependence ensures the exact coincidence with the description of the similar dependence for the
charged carrier in the molecular-based doped polymer [6]. Namely, first increases with increasing field, and
after reaching a maximum, when G§ .« = 77, / 2, begins to decrease. As concerns the range of values of
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7’;6[1, which is presented in (18), it is possible to obtain that: G ., = 0.01 +0.04. Because the dimension-
less value of this force is determined similarly to the dimensionless force IL,, = —boJr,/|Mp,| (in the first
part [8] this dimensionless force determined immediately after the formula (12)), its dimensional value
é&max must be determined as follows: é&max = [ Mp, |G max / by . Then, the above-presented numerical

values: by = 1A and |M,,| = 1 eV, will determine this force as follows: é&max = (1 +4)-10%V/m. For

relevant strength of the field, we will have the following value: é&max / e = (1+4)-10V/m. This value

is lesser than the value of the electrostatic threshold of the material for a perfect crystal by 2+3 orders.
In non-ideal crystals, the value of electrostatic threshold of material may be smaller, i.e. closer to the

[e3

8 max / € = (1 +4)-10%V/m. In the actual practice, values of the lattice constant may

obtained values: G

be substantially higher than 1A, while width of the conduction band may be substantially lower than 1
eV. This may result in the fact that strength of the field may be lesser than the obtained value by 1+2
orders.

In conclusion, we will present results of the numerical analysis for the differential coefficient of mobility
(derivative of the velocity with respect to the field strength). For this, it is necessary to make a partial tran-
sition from the dimensionless values in the definition of the stationary velocity (19) to the dimensional its

values. In addition to using the above represented definition of force G . = boé&max / | My, |, is used also

the definition of the dimensionless velocity 85, = V.4./C., defined in [1]. As concerns the relaxation time
Trel, it would be more conveniently to use the dimensionless representation, which was determined numer-
ically with the help of the equation (18). At the same time, it is also necessary to use the above-presented
explicit value of the maximum velocity C, = bo|Mp, |/ . As the result, it is possible to obtain the follow-
ing expression for the differential coefficient of mobility: 15, = ;72;3 cos (1,1GY) , where ;72;? = Bi7,ce / h
denotes the peak value of the differential coefficient of mobility. For the used here value of the lattice
constant by = 1A, one can get an estimate: fy;e = (1.6-107°/7_}1) [m?/Vs] = (0.16/7_}) [em?/Vs].
As concerns the values 7’;6[1 within the range of values in accordance with the equation (18), it is possible
to obtain the following maximum value for the coefficient of mobility: fise = 25.4[cm?/Vs]. In the weak
fields: (|7, G| << 1), coefficient of mobility i2,, will have exactly this value. At the same time, in the
strong fields, which are determined by the edges of the Brillouin zone: |7, G§| ~ =, this coeflicient has
the abnormal sign: iy, = —25.4[cm?/Vs]. In [7] was noted that under certain conditions, value of the
negative coefficient of mobility may achieve the level of several hundreds of cm?/V-s. It follows from the
definition 7il;% = biree /R that in the case of application of more actual values of the lattice constant
(as compared with the assumed value at the level of by = L&), it is possible to obtain the greater values
of the mobility coefficients. For example, if by = 2A, then: fig,, = —101.6[cm?/Vs].

4. Conclusions

The dynamic properties of the quasiparticles (of type of the electrons, which are injected into a
semiconductor or dielectric) in the external electrostatic field of the general space configuration, were
analyzed.

Relevant relationships were derived in respect of the components of the external field for the quan-
tum method of description (local frame of reference), on the one hand, and for the classic method of
description (global frame of reference), on the other hand. These relationships are formally coincide with
the generalized Minkowski equations. The analysis of the experimental data in respect of the abnormal
mobility of carriers in the strong fields [6, 7] has demonstrated that one of the reason of this anomaly
may be connected with the investigated here generalized dynamics of the quasiparticles in the external
potential field. Relevant estimates were made in order to determine the values of the field, at which the
differential coefficient of mobility (derivative from the velocity by the field strength) degenerates and as-
sumes zero value. Calculated values of the field are lesser than the values of the electrostatic threshold of
the material by 2+3 orders (while sometimes — more than by 2+3 orders) [7]. Estimates of the abnormal
(negative) mobility, fulfilled in accordance with the results of the theoretical calculations, which were
obtained here, have the order of magnitude, close to that the obtained experimentally [7].
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