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A general approach to the derivation of the spectral relations for the multitime correlation functions is pre-
sented. A special attention is paid to the consideration of the non-ergodic (conserving) contributions and it is
shown that such contributions can be treated in a rigorous way using multitime temperature Green functions.
Representation of the multitime Green functions in terms of the spectral densities and solution of the reverse
problem, i.e., finding the spectral densities from the known Green functions, are given for the case of the
three-time correlation functions.
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1. Introduction

One of the main tasks of the quantum statistic physics is calculation of the correlation functions
for many-body systems of different kind because they contain the most important information
about the observable quantities and system properties. As it was first noticed by Kubo [1], linear
transport coefficients are expressed in terms of the Fourier transforms of appropriate correlation
functions, which relate by spectral relations to the two-time Green functions. Since that time the
Green’s function method has been noticeable and extensively developed [2—4], providing equations
that permit to calculate the expectation values of operators and observable quantities. But very
soon it was noticed that spectral relations should be completed by a special treatment of the
pole at zero frequency, which gives additional contribution connected with the presence of the
conserving quantities [5-7]. Later, it was shown that such contributions describe the difference
between the isothermal and isolated response of the many-body system and are specific for the
non-ergodic systems [1,6-8] where the regions exist in the phase space which cannot be achieved
by the trajectory of the point that describes an evolution of the many-body system. In the Green’s
function formalism, the issue of ergodicity appears as a difficulty in determining the zero-frequency
bosonic propagators [5-7,9-18]. Nevertheless, even now many textbooks on the quantum statistics
and many-body theory do not provide complete discussion of the spectral relations and special
treatment of the zero-frequency functions.

The equations of motion do not uniquely determine the causal and retarded Green’s functions,
but only up to d-function of frequency with some unknown coefficients which produce additional
contributions in the zero-frequency functions (see, section 2). Usually, these zero-frequency func-
tions are fixed by being assigned their ergodic values, but this cannot be justified a priori. A
wrong determination of them dramatically affects the values of directly measurable quantities like
compressibility, specific heat, and magnetic susceptibility. In order to handle these zero-frequency
functions, different approaches were developed, e.g. anti-commutator bosonic Green functions [14],
direct algebraic method [19], singular-value decomposition [20], algebra constraints in the compos-
ite operator method [21,22], etc.

On the other hand, temperature Green functions [23,24] are free from these issues and make
it possible to avoid all complications connected with the presense of the non-ergodic terms [13],
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e.g. they permit to calculate isothermal susceptibilities for the Ising model, where Kubo response
is equal to zero, as well as for the more complicated spin and electron [26,27] and pseudospin-
electron [28] systems, and for the infinite-dimensional Falicov-Kimball model [29,30], where the
exact expression for the isothermal charge susceptibility [31,32] contains both Kubo response,
which is finite at all temperatures, and non-ergodic contribution, whose divergencies give the phase
transition points.

The above mentioned issues concerning a special treatment of the zero-frequency functions are
mostly investigated for the two-time correlation and Green functions, but nobody has cosidered
this for a multitime correlation. In the original Kubo’s paper [1], the formulation of the transport
theory is not limited to the linear phenomena, and the solution of the Liouville equation for the
density matrix is given to the arbitrary order in the strength of disturbance. Resulting multitime
correlation and Green functions can be used for the description of the nonlinear transport phe-
nomena and resonances [33-35]. Besides, multitime correlation functions also appear as puzzles in
different orders of the perturbation theories for many-body systems [36]. Moreover, cross-sections
of the inelastic scattering processes can be expressed in terms of the multitime correlation func-
tions too, e.g. for the electronic inelastic light (Raman) scattering. The nonresonant, mixed, and
resonant responses are connected with the two-time, three-time, and four-time temperature Green
functions [37,38], respectively, and can be rewritten in terms of the multitime correlation functi-
ons. Nonresonant contribution is connected with the spectral density of the two-time correlation
function

Ry (q,9) = 2mg° (k) g* (ko) I55(92, —Q), (1.1)

mixed contribution is connected with the spectral density of the three-time correlation functions
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and resonant contribution is connected with the spectral density of the four-time correlation
functions
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where Iap. (w1,ws,...) are spectral densities of multitime correlation functions (see below) and ’:y
and j(i’o) are expressed in terms of the stress tensor and current operator, respectively.

In general, spectral relations include (a) representation of the observable quantities in terms of
the spectral densities of the multitime correlation functions [like equations (1.1), (1.2), and (1.3)
for the inelastic light scattering], (b) extraction of the non-ergodic contributions in the spectral
densities, (c) representation of the multitime temperature Green functions in terms of the spectral
densities, and (d) solution of the reverse problem, i.e., finding the spectral densities from the known
multitime temperature Green functions and based on this calculating the observable quantities.
Spectral relations for multitime correlation functions were formulated in [4,39] only for the case
of the multitime generalizations of the retarded and advanced functions without considering the
zero-frequency non-ergodic contributions. The main purpose of this paper is to show how non-
ergodic contributions enter the multitime correlation functions and how a complete set of spectral
relations for the multitime correlation and Green functions can be derived.
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2. Two-time correlation functions

Before we start considering the spectral relations for the multitime correlation functions, let us
remind basic relations and the main results for the two-time correlation functions. In general, a
two-time correlation function is defined by the following expression

Kap(ti — t2) = (A(t1)B(t2)), (2.1)
where A(t) = it Je~iHt jg an operator A in the Heisenberg representation, and angular brackets
denote statistical average with total Hamiltonian of the many-body system. Here and below we
shall consider the case of the bosonic operators only, generalization for the fermionic one being
obvious. We can perform Fourier transformation of equation (2.1) that gives a spectral density for
the two-time correlation function

—+o00
1 . B B
Iap(wi, —w1) = o /d(t1 —to)et TR, p(t —ty) = Tap(wi, —wi) + 0(w1)lap(0,0), (2.2)

— 00

where we have separated two contributions

~ 1 [
Iap(wi, —wi) = }Z e 7% A Bi;b(eji + wr), (2.3)
5l
. 1 e
Lap(o,0) = = Zl: e P% A 1By, (2.4)
EjJ:El

with different frequency and time dependences. The first one is time-dependent and includes sum
over states with different energies (¢, = ¢; —&; # 0) denoted by prime (2.3). We shall call it regular
contribution, and the second one is purely static and includes sum over the states with the same
energy (2.4). We shall call it non-ergodic contribution. Here, A;; = (j|A|l) are matrix elements
of the operator A, Z = Zle_ﬁsl is partition function, and o denotes that given contribution
does not depend on the respective frequency. Besides, spectral densities (2.2) satisfy the following
permutation relation

Iapg(wi, —wy) = IBA(—whwl)eB‘”l (2.5)

and for the given operators A and B there is only one nonidentical spectral density. At this point
there is no special need separating regular and non-ergodic contributions, and, as a rule, in the
textbooks nobody does it. But such separation becomes important when one is going to find
spectral densities using spectral relations for the two-time retarded Green’s function

Gty — to) = <<A(t1)|3(t2)>> = _iO(t; — t2) <[A(t1),3(t2)} > (2.6)

Its Fourier transformation, from the formal point of view,

(oo}
1 . ~ -~
Gaplwi, —w1) = 5 /d(tl — tg)e TG gty — ty) = Gaplwi, —w1) + 6(w1)Ge(0,0)  (2.7)
also includes two contributions with different time dependences

+oo

G A1 T (@n, ) = 2.8
AB(w1, —w1) = / w1 AB(Wla_wl>m7 (2.8)
éAB(Ov O) = jAB (Oa O)? (29)

but only the first one can be derived using an equation of motion techniques
wiGap(wi, —wi) = wiGap(wr, —w) (2.10)
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and the second one is omitted in the equations of motion
wlé(wl)GAB(o, O) =0.

As a result, a corresponding static contribution into spectral density cannot be handled directly
by the spectral theorem for the retarded Green functions.

On the other hand, a method of the temperature or Matsubara Green functions permits to avoid
all the complications connected with the presense of the non-ergodic terms and obtain all contri-
butions in the spectral density in a straightforward way [13]. In general, a two-time temperature
Green’s function can be defined as

K.(m1 — 1) = (TA(1)B(m)), (2.11)

where A(T) = ef7Ae=H7 7 is imaginary time (inverse temperature), and 7 is operator of the
imaginary time chronological ordering. Its Fourier transform

B
K(ivy, —in) = /d(ﬁ — 1)t TR (1 = 75) = Ke(ive, —inn) + BA(1)Ke(0,0),  (2.12)
0

where iv) = iw,, = 27iTv; are Matsubara’s frequency and

Alz) = { é 28 (2.13)

is generalization of the Kronecker symbol, also contains two contributions with different time
dependences

K +Ood i Lo 4

c i 5 —i = » » y X — 2.1

(iv1, —iry) / O lap(@1,—w1) o (2.14)
Ke(o,0) = I45(0,0). (2.15)

As a rule, temperature Green functions are handled using different kinds of diagrammatic techni-
ques which permit to calculate contributions with A-symbols and according to (2.15) they can be
identified as non-ergodic contributions in spectral densities, which is the main difference from the
case of the retarded Green functions. For the non-ergodic systems such contributions are the main
ones that determine the critical behavior. A typical example is the Ising model for which there are
only non-ergodic contributions whose divergencies give Curie points and there are no regular ones.
Another example of the non-ergodic fermionic system is the Falicov-Kimball model [29,30] whose
isothermal charge susceptibility contains both non-ergodic and regular contributions but only the
first one determines the critical point [31,32]. Regular contribution in spectral density is connected
with nonanalyticy (imaginary part) of the Green’s function at real axis and can be obtained by
performing an analytic continuation of the Matsubara Green’s function from the imaginary to
complex frequencies and then to the real one ivy — 21 — wy £ i

_ z1=w1+id B
K.(21,—21) = Iap(wi, —wi)(1 — e 1), (2.16)

zZ1=wi—1d

~ 1

K.(z1,—2 = —
c( 1 1) . o

that completes spectral relations for the two-time correlation functions.

3. Three-time correlation functions

Now let us proceed to the consideration of the three-time correlation functions. Generalization
for the case of the higher-order multitime correlation functions can be done in the same way, but
it is much more cumbersome and will not be considered here.
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Three-time correlation function can be defined in a usual way as
Kapo(ti,ta, ts) = (A(t1)B(t2)C(t3)). (3.1)

Here, we shall consider only the case of the equilibrium many-body systems which are time-shift
invariant
Kapc(ti,ta,t3) = Kape(ti —t,t2 — t,t3 — ). (32)

Spectral density is defined as its Fourier transform

—+oo +oo
1 )
IABC(WDW%WB) — W / d(tl _ tS) / d(tg _ t3)ez(wltl+w2t2+w3t3)KABC(t1;t2;t3)
—00 —00

= [Tapc(wr,wa,ws) + 8(wi)Iapc (0, —ws, w3) + 6(w2) L apc(wi, 0, —wr)

+ 6(ws) L apc(—wa,wa, 0) + 6(w1)d(wa2) Lapc(,0,0)| Alwr +wa +ws)  (3.3)

and includes five different contributions with different time dependences

fABC(wl,wg, —w1 —ws) ZZ e Pei AL aBirCrid(ej +wr)d(ery + wa), (3.4)
Jtf

~ 1 A
Tape(o, —ws,w3) = Zz Z e P Alelfoj(S(&‘fj + ws), (3.5)
Jlf

cj=eites
Iapoloro ) = 2 3 e AuBuCridles +wn), (3.6)
et e,
Iapo(—wnwn0) = 3 30 e AuByCridas +w), (3.7)
es2e) 2
fABC(o,o,o):% > e AuB;Cy;. (3.8)
Jlf

Ef:Ej:é‘l

Besides, the total spectral density (3.3) as well as each contribution satisfy the following cyclic
permutation identities (w1 + wo + w3 = 0) [4,36]

Tapc(wi,we,ws) = Ipca(ws,ws,wr)e’™ = Ioap(ws,wr,ws)e 73 (3.9)

and for the given operators A, B, and C there are only two nonidentical spectral densities, e.g.
Iape(wi,w2,ws) and Iopa(ws, w2, wr).
Now we introduce three-time temperature Green’s function

Ke(71,72,73) = (T A(11) B(72)C(73)),
K.(m,70,13) = K.(11 — 7,70 — 7,73 — T). (3.10)

Due to the imaginary time ordering its Fourier transform contains 3! = 6 terms which can be
collected into two groups of three terms connected by the cyclic permutations

B
1 . .
K. (iv1,ive,ivs) = B/ / /dT3€(1V1TI+W27—2+W3T‘°’)KC(Tl,7'2,7'3)
0 0
1

N

fz AuBisCriB(j,ive, L ive, f.ivs) + CjpBuAyB(j, ivs, f.ive, Livy)], (3.11)
gL
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where

‘B(]v iylal,il/27fa iVS)
T3 T3 T3

i B Ty T2 B T2 B
= 5[6_651 /dTl/dTg/dTg—‘re_ﬂgl /dTg/dT?,/dTl —|—e_55f/d73/d71/d7'2}
0 0 0 0 0 0 0

0 0
x exp|(eji +iv1)m1 + (e1f + ive)me + (€45 + ivs)T3). (3.12)

In the general case, when all Matsubara frequencies are nonzero or when there are no eigenstates
with the same energy value, function (3.12) is equal to
%(]7 il/l, l, il/27 f, il/3) = A(illl + iVQ + iljg)

e—Pe; e P e Ber :|
X

- - + - - + - - 3.13
(ei; —ivn)(eg; +ivs)  (eqr —ive)(eju +iv1)  (eif — ivg)(erf + ivo) ( )

Besides, we must consider several special cases, when we have levels with the same energy value:

case €; = €; # €y and ivy = —ivp —ivz = 0, when
) ) ) ) ) ﬂefﬁsl e Ber _ o= Ba
0,1 — =A 3.14
23(.]3 9 a1V27fa IVQ) (11/2 +1V3) |:€fl —iVQ (Efl —iV2)2 ( )
case € = €5 # €5 and vy = —ivg —ivy = 0, when
.. . . . BePer e~ Pei — g Ber
— 1,0 =A 3.15
g’B(]a 13, ¢, ,f71U3) (1V3+u/1>|:5jfi1/3 (Ejf 711/3)2 ( )
case €5 = €5 # €, and iv3 = —iv; —ivy = 0, when
. . . ) Be=Pei e Pe _ o= Bs
) ) lv - 9 0) = A N P 3 3.16
B(j, iy vy, f,0) (ivg + i) [Elj iy (e — i1)? ( )
and the case ¢; = ¢; = €5 and iv; = ivy = ivz = 0, when
62
mmahafﬁyzaf%@. (3.17)

The second term in the r.h.s. of equation (3.14) can be derived from equation (3.13) by the analytic
continuation of the Matsubara frequencies to the complex one iy — z; and ivg — —ivg —z; followed
by the limit z; — 0, but the first one cannot be derived from equation (3.13) by manipulating
by frequencies only and corresponds to the additional non-ergodic or conserving contribution,
which originates from the presence of the states with the same energies, and appears only at zero
frequency. Such non-ergodic contributions can be derived from equation (3.13) by

lim lim — lim lim
€51 —021—0 z1—0¢€;,—0

(3.18)

~ . e*ﬁfz
:| m(%zlvlaz%f,_zl _22) = L

b
Efl — 22

but such derivation involves manipulations with the many-body quantum states energies, that
cannot be, in general, reproduced by the quantum statistics many-body methods. A similar analysis
can be done for equations (3.15) and (3.16) and, after analytic continuation from the imaginary
axis to the complex plane iv; — z; using a constraint

> z=0, (3.19)

?
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equation (3.12) can be rewritten as

2
s’p(.]a 21, l; 22, f7 Z3) = A(Zl + z2 + 23) QA(zl)A(ZQ)AEj,EL,Efe_ﬁsj

2
e—Pe e ey e 75
+ BA1) Ay ey ———— + BA(2) Ay o) ——— + BA(3) Ay o, ———
Ef1— 22 €if — 3 A
—Pe; —Be e
e © ¢
N . N . (320
e A s SR I v [ Eyars | M
where
A _ll ==y (3:21)
€5l S 0, other case ' .

Now, after substitution of equation (3.20) in equation (3.11), we get the following representation
for the analytically continued three-time temperature Green’s function

2 ~ ~
Kc(21,22,23) = %A(ZDA(Zz)A(Z:s)Kc(O, 0,0) + BA(21)A(z2 + 23)Kc(0, 22, 23)

+ ﬂA(ZQ)A(Z3 + Zl)KC(Zlv o, 23) + ﬂA(ZS)A(Zl + ZZ)KC(Zla 22, O)

+ A(z1 + 22 + 23) Ko (21, 22, 23). (3.22)

It includes five contributions which always can be distinguished by the different A factors. The
first contribution is expressed directly by the spectral densities of the (3.8) type

Kc(ovoao) :iABC(anvo) +fCBA(OaOa O)? (323)

the next three contributions are expressed in terms of the spectral densities of the (3.5)—(3.8) type

+oo ~ ~
~ T —29) — Topa(— 1 - .
Ro(o, 29, —29) = / iy apc (0,22, —2) — Icpa(—x2,22,0) 1 [Iapc(0,0,0) — Iepa(o,0,0)],

Lo — Z2 zZ92
(3.24)
N Bas _ f g
~ _ T3 _ _ —Bxs3
Ro(—23,0,23) = / des aBc(—x3,0,x3)e cBa(xs, 0, —x3)e
xr3 — 23
1 - -
+ ;I:IABC(O7O7O) _ICBA(0707O)}a (325)
3
and

Kc(z1,—21,0 — —[Tapc(o,0,0) — Icpalo,0,0)],

“+o0 ~ ~
=~ ) = / dxllABC(l'h —x1,0) — Iopa(o,—x1,21) 1
1 — 21 z1
— 00

(3.26)
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and the last contribution is expressed in terms of the spectral densities of the (3.4)—(3.7) type

+o0 ~ T
K(21,20,23) = / g, B (0@, —w2) (1 = e77%2) + [opa( =25, 73,0)(1 — ™2)
c\<1, <2, <3 2 (ZQ —932)(23—|-I2)

— 00
+oo -~ ~
n / dx Iapo(—wx3,0,23) (7% — 1) + Iopa(ws, 0, —x3)(e " — 1)
3
(23 — x3) (21 + x3)

— 00

“+o00 - ~
/ Iapo (21, —21,0)(1 —e P®) + Iopa(o, —x1,21) (1 — e7%1)
+ dl‘l

(21 — 1) (22 + 1)

o0
+oo +oo ~ ~
_ / dis / dxllABC(Il; —x3 — x1,73) + lopa(zs, —3 — 21, 21)
(z3 — 23) (21 — 21)
—o0 —o0

+o00 +oo ~ ~
/ de / de Iapo (1,22, —21 — 22)e P + Iopa(—21 — T2, 22, 271 )e’™
- 1 2
(x1 — 21) (22 — 22)
— 00 — 00

“+o0 “+oo ~ ~
Iapc (=2 — 23,29, 23)eP% + Iopa(w3, 10, —21 — T2)e ™23
— dxg d{E3 .
(z2 — 22)(z3 — 23)
—o0 —o0

(3.27)

Here, we have used the cyclic permutation identities (3.9) according to which there are only two
nonidentical three-time correlation functions, e.g. Ixpc (w1, w2, ws) and Iepa(ws,ws,ws). Equati-
ons (3.22)—(3.27) give a complete representation of the three-time temperature Green functions in
terms of the spectral densities.

Now we pass to the solution of the reverse problem — finding the spectral densities from the
known multitime temperature Green functions. According to equations (3.22)—(3.27) each of five
contributions in the three-time Green’s function (3.22) has different set of branch cuts, which
permits to extract all ten spectral densities that enter.

First of all we perform an analytic continuation of equation (3.24) (23 — wo £ 10, 23 = —29,
z1 =0):
K.(0,29, —20)| = —Ke(0,~23,23)| = 8(w2)Ro(0,0,0) + &1(0,ws, —w2), (3.28)
2 3
where
£o(0,0,0) = Iapc(o,0,0) — Iopa(o,0,0), (3.29)
R (0,ws, —w2) = Iapc(o,ws, —w2) — Iopa(—ws, w2, 0). (3.30)
Next, we perform an analytic continuation of equation (3.25) (23 — w3 £ 10, 21 = —z3, 22 = 0)
K.(—z3,0,23) \ = —K(z1,0,—21) 1 = —§(w3)Ro(0,0,0) + Ra(—ws,0,ws), (3.31)
R (—ws, 0,ws) = Iapo(—ws, 0,ws)e?™s — Inpa(ws, 0, —ws)e Pw2, (3.32)

and of equation (3.26) (21 — w1 10, 20 = —21, 23 = 0)

K (z1,—21,0) :_IA{’C(_22722)O)

1
Rs(wi, —w1,0) = Lapc(wi, —wi,0) — Iepalo, —wi,w). (3.34)

= 6(w1)ﬁ0(ovo,o) +R3(w17—w1,o), (333)
2

One can see, that in equations (3.28), (3.31), and (3.33) all factors at d-functions are the same.
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The next step is more complicated and requires a two-stage procedure. First of all we perform
an analytic continuation of equation (3.27) over the first frequency z; — wy £16 (23 = —w; — 22)

1 .- .
Ko(z1,20,23)| = —[Lape(wr, 0, —wi)(e™ ™" = 1) + Iopa(—wi, 0,w1) (™ —1)]

1 *2
I — Ber 1)+ 1, — fur _q
22+wl[ABC(W1a wi,0)(e )+ Icpa(o, —wi,wi)(e )]
—+oo - ~
/ Iapo(wi,ze, —wi — x2)(e 1 — 1) + Iopa(—wi — T2, T2, wr) (e — 1)
+ dl‘g
zZ9 — X2

(3.35)

and then an analytic continuation over the second one zo — we 16 (23 — —wy — wa F 10)

K (21,22, 23)

= _K’C(Zl’ 22, z3>
2

1 113

= 5((.«)2).@5?%(7&)3, o, u}3) —+ 5((4)3).@(1‘2 (wl, —wi, O) —+ RLQ(U}l,Wg, W3), (336)

where
ﬁf%(—w&o,wg) = —Iapc(—ws,0,ws) (e’ — 1) — Iopa(ws, 0, —ws)(e % — 1), (3.37)
ﬁf%(wly —wi,0) = —Iapc (w1, —wi,0)(e™1 — 1) — Iopa(o, —wi,wy) (€™ — 1), (3.38)
R (w1, wa,ws) = —Iape(wr,wa,ws) (e 7" — 1) — Iopa(ws, wa, w1) (™' —1). (3.39)
We can perform another sequence of the analytic continuations: zo — wy +10 (21 = —wy — 23) and

23 — w3 10 (21 — —ws — w3 Fid), that gives a different set of relations

K.(z1, 22, 23) = _I?c(zlszaZB)

213 211
= 6(w3) RS (w1, —wr,0) + 8(w1) RS S (0, wo, —ws) + Koz (Wi wa,ws),  (3.40)
where
A (w1, —w1,0) = —Lape(wi, —wi,0)(1 — e #1) — Topa(o, —wi,w)(1 — 1), (3.41)
ﬁgg(o,wg, —wo) = —INABC(o7w2, —wg)(e_ﬁw"‘ —-1) - fCBA(—wQ,wg, o)(eﬁ“’2 - 1), (3.42)
ﬁlg(wl,w@,w:g) = 7[1430((4)1, Wwa, wg)(eﬁ‘*’“” — eiﬁwl) — jCBA(wg, wa, (.«Jl)(ei'@w‘q' — e'B‘*’l). (343)
One can see that
KC(21,22723) # KC(ZhZQ,Zg) 5 (344)
112 211
but there are common elements in final expressions, e.g.
Rf’%(wl, —w1,0) + Rgi%(wl, —wy,0) =0, (3.45)
and the following Jacobi type identity is fullfilled
Ko(z1,22,23)| | 4+ Ko(21,20,23)| | + Ke(21, 22, 23) =0. (3.46)
112 213 31

Due to this identity the procedure is unambiguous and the resulting set of equations for the spectral
densities is not overdetermined.

In general, the three-time temperature Green’s functions (3.22), as well as multitime Green
functions of higher order, have very complicated analytic properties as a function of the complex
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frequencies z;, but they can be separated into contributions with different A-factors and different
frequency dependences. Analytic properties of these contributions can be also complicated. Never-
theless, we can always derive a complete set of equations for the multitime spectral densities from
the multitime temperature Green functions by different sequences of the analytic continuations
z; — w; £ 1§ accompanied by the constraint (3.19).

Finally, we find from equations (3.23) and (3.29):

- 1.~ ~ 1.~
IABC(O7 o, O) = 5 [Kc(o7 o, O) + ﬁ0(07 o, O)] ) ICBA(Oa o, O) = 5 [KC(Oa o, O) - ﬁo(ov o, O)} 3
(3.47)
from equations (3.30) and (3.42):
1 —pw
I (0, wa, —wg) = £ (0, wa, —wa) ﬁéy%(O,WQ,fWQ)e Purz
ABC\©,WwW2, 2 1_ e—5w2 (1 — e—ﬁwz)Q )
1) Bw
T ﬁl(oaw27 _(“)2) ﬁ273(O,WQ,—w2)e 2
Iopa(—wa,w2,0) = Fon 1 (eBwz —1)2 , (3.48)
from equations (3.32) and (3.37):
Ro(~ws,0,w3) | Aip(—ws,0,ws)
INABC(—Q)g ° (.4)3) — 2 w3, 0, W3 1,2 35 “y W3
o efws — 1 (efws —1)2
(2)
T RQ(_w&vaB) ﬁ1,2(7w3707w3)
ICBA(w?n o, 7(")3) = 1 — o Bws (1 — e—ﬁwa)Q s (349)
from equations (3.34) and (3.38) or (3.41):
R3(wy, —w1,0) &%) (w1, —wi,0)e™Pwr
jABC(wl —w O) _ 3\W1, Wi, _ 1,2 1 1
' ’ 1 —e B (1 —ePur)2 ’
(3) Bwi
i Ra(wi, —wi,0)  Rip(wr, —wi,0)e
Iepa(o,—wi,w) = = 51— — — — T (3.50)
and from equations (3.39) and (3.43):
Fane(wr,ws, ws) = Rog(wi,wo,wz)  Rip(wi,wr,ws)
ABC 1,wW2,wW3 (eﬂu& _ 1)(eﬁw3 _ 1) (eBUJg, _ 1)(1 . e—ﬁwl)’
= Rz,3(w1, w2, ws3) Ri2(wi, w2, w3)
1 : = : - : 3.51
CBA(UJj;WQ;Wl) (1—67’81“]2)(1—67@*}3) (1—675[“)3)(6[3“)1 — 1)) ( )

that complete our main task and find spectral densities for multitime correlation functions from
the known multitime temperature Green functions.

4. Summary

In conclusion, we have presented a general approach to the derivation of the spectral rela-
tions for the multitime correlation functions. An analysis of the frequency dependences of their
spectral densities is performed with special attention paid to the consideration of the non-ergodic
(conserving) contributions. It is shown that such contributions can be treated in a rigorous way
using multitime temperature Green functions: representation of the Green functions in terms of
the spectral densities and solution of the reverse problem, i.e., finding the spectral densities from
the known Green functions are given for the case of the three-time bosonic correlation functions.

Generalization for the case of the higher-order multitime correlation functions and for the
functions constructed from the fermionic operators can be done in the same way, but this was not
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considered here. Here we can only note that for the higher-order functions, besides non-ergodic
terms, which appear at zero value of one frequency and are connected with the conserving of
one operator, the one connected with the conserving of products of operators, which appear at
zero value of the sum of corresponding frequencies, always exist and they will be the only “non-
ergodic” contributions for the pure fermionic correlation functions resulting from the presence
of the matrix elements like (f|ct|l)(l|c|f). Moreover, for some models, the fermionic correlation
and Green functions will contain only such “non-ergodic” contributions, e.g. local four-time two-
electron Green’s function for the Falicov-Kimball model [32] for which only contributions with zero
sum of two frequencies exist.

This publication is based on work supported by Award No. UKP2-2697-LV—-06 of the U.S.
Civilian Research & Development Foundation (CRDF). I am grateful to Professor I.V. Stasyuk for
useful and stimulating discussions.
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Mpo cnekTpanbHi CNiBBIAHOLWEHHA ANg 6araTto4yacoBux
KopenauinHux GyHKLin

A.M.lLIBanka

IHCTUTYT di3nkm KoHaeHcoBaHMx cucteM HAH Ykpainum, Byn. CeeHuiupkoro, 1, 79011 JlbBis

OTtpumaHo 17 kBiTHSA 2006 p.

3anponoHOoBaHO 3aranbHUiA Niaxia, 4O OTPUMAaHHS CNeKTPasbHUX ChiBBiAHOLWEHb AN 6araTto4acoBmx KO-
pensauinHmux eyHkuin. Ocobnmea yBara 3BepTaeTbCs Ha PO3MNSAL HeeprognyHux (36epexHnx) BHECKIB i
nokasaHo, L0 Taki BHECKM MOXHa MOC/iA0BHO OTPMMAaTK BUKOPUCTOBYIOHM BaratoyacoBi TemmnepaTypHi
dyHkuji ['pita. [ns BUNaaKy TPMHACOBMX KOPENALIMHNX dYHKLIN 3HANAEHO NpeacTasneHHs 6arato4aco-
BUX dYHKLIN TpiHa Yepes cnekTpanbHi FyCTVUHM | PO3B’a3aHO 06epHEHY 3aaady — BUPAXEHHS CrekTpasb-
HUX F'YCTVH Yyepes Bigomi pyHkuii MpiHa.

Knioyosi cnosa: 6araroyacosi KopensuiviHi yHKuUii, pyHKUii [piHa, criekTpaibHi criBBigHOLEHHS,
HeeproanyHiCcTb

PACS: 05.30.-d
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