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Sd-exchange model (Kondo lattice model) is formulated for strong sd-coupling within the framework of the X -
operators technique and the generating functional approach. The X-operators are constructed based on the
exact eigen functions of a single-site sd-exchange Hamiltonian. Such representation enables us to develop a
perturbation theory near the atomic level. A locator-type representation was derived for the electron Green’s
function. The electron self-energy includes interaction of electrons and spin fluctuations. An integral equation
for the self-energy was obtained in the limit of infinite localized spins. A solution of this equation in the static
approximation for spin fluctuations leads to a structure of electron Green'’s function showing a metal-insulator
phase transition. This transition is similar to that in the Hubbard model at half filling.
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1. Introduction

The sd-exchange model is one of the fundamental models in the theory of strongly correlated
systems. This model is frequently referred to as the Kondo lattice model in the West. Its Hamil-
tonian takes into account the hopping of conduction electrons over a lattice and the exchange
interaction of them with the localized atomic moments (value spin S) placed at the lattice sites.
The Hamiltonian is written as

H= Ztijc;cw — gZ(S’zaZ) . (1.1)

ijo i
Here ¢, (CIU) is a Fermi-operator of annihilation (creation) of an electron on a site 4 with spin
projection o.

For the case of strong sd-exchange coupling S|J| > W (W is width of the electron band)
the sd-model was applied for description of a metal-insulator phase transition [1,2] and physics
of magnetic semiconductors [3]. Exact solution of eigenvalue problem for a single site exchange
Hamiltonian was applied [1-3]. Two energy levels E; and E_ for the states with the total spin on
asite j. = S+1/2and j; =S —1/2 are spread into two bands by hopping term, that determines
the physics of the model in the strong coupling limit.

In recent works [4,5] we applied the generating functional approach (GFA) to this problem
which, in a most general form, permits to construct a perturbation theory “near the atomic limit”.
Equations for electron Green’s functions (GF) were derived in terms of functional derivatives over
fluctuating fields introduced in GFA, and the simplest approximations for their solution were
tested. In the present paper we return to the problem on a most general basis. Particularly, we
introduced four-component electron operator instead of two-component one used in works [4,5].
Such generalization of mathematical structure makes it possible to construct more correctly the
perturbation theory near the atomic limit and to consider the states with more complicated order
parameters such as magnetic ordering or superconductivity.
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In the case of strong sd-exchange coupling one has to use the exact solution of the problem on
one site. Wave functions of the Hamiltonian J/2(So) are known [1,2]:

IMO) = [M)[0), (1.2)
IM2) = [M)|2), (1.3)
M%) =) 07*(M*)|M* — $)cb0), a=+, —, (1.4)

where

|S+ oM+ 3 /S + oM+ L
o+ __ 2 o— _ 2
e - B LA R TSN B (15)

A wave function |MO) describes the state of a site without an electron when the atom is in |M)
state with projection of spin M; |M2) is a state with two electrons on a site, and |M®«) with only
one electron with projection of total spin j, and

—(S+9) < <M< <(S+9),  ja=S+%. (1.6)

In [M*a) state the wave function is a superposition with both projections of an electron spin with
mixing coefficients being Klebs-Gordan coefficients. Selfenergy of one site exchange Hamiltonian is
as follows:

1
E+:f§JS, j=5+1

(1.7)
_ 1 )
E”=3J(S+1), j=S-1%

Because the self-energy is known it is possible to develop a perturbation theory over small
parameter W/JS. The best way to do it is GFA combined with the formalism of X-operators.

2. Formalism of X-operators

Any one-site operator A\i can be expanded over the system of X-operators
X7 = Ip)al, (2.1)
determined on the base of functions |p). This explanation is written as
Ai=2<p|A|q>qu~ (2:2)
pq

The calculation of a matrix element of an annihilation operator c¢;, leads to its representation in
terms of X-operators [2,4-7]:
o =3 [O7e M+ §) X} 4 e (v -
Ma

M-%Z)a; M2:|

) x(t

7

(2.3)

SR

Let us introduce four-component construction of Fermi-like X-operators

MO ; (M+9)+
Xy

(
cX
I&IO;(M-«-%)— ) (2.4)

Xl
O_Xl(M—i)—;MQ

M—%)+;M2

as well as a line WJU (I) including the conjugated X-operators. Operator ¥y, (I) describes the creation
of an electron on site ¢ at time 7 (1 = ir) with spin ¢ when the atom has an angular momentum
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projection M, with two possible combinations of these momenta labeled by indexes a = +, —.
Components of spinor are numbered by index v = 1,2, 3,4. Its combined index I = (Mv).
In such representation the Hamiltonian of sd-model is written as

H = Haa — pN = H1 + Hs

_ *ZZ,U,XMz M2+ Z XMaa M« 7 (25)
iaM>

Ztm Z 10—1 (I)T (o111 ; 0212)¥je, (I2) . (2.6)

o1lio2]s
where
T(o111 5 02la) = 05, 0,97 (11) T2 (I2) (2.7)
97 (I) = diag {07 T M+ Z),0°t*(M—-%),07 (M+%),07 (M- %)}, (2.8)

and T is a 4 x 4 matrix with all elements being equal to 1.
Let us introduce a supermatrix GF

om0 (T, (WF (1)) (T, (1), (1)
fis (I“I”“<<TWL<I Wi @) (Tl (L)) (29)

each of its elements is a matrix 4 x 4.
Here (T'--- )y is a statistical average of some chronological product of operators of the system
in fluctuating fields depending on both sites and times

(T )y = Tr(e_BHT-~-e_V), (2.10)

Z[V]

where
Z[V] =Tr(e "Te V) (2.11)

is the partition sum which is a functional of the fluctuating fields. V' is the operator of interaction
of the fields with our system. According to general concept GFA operator V' is a linear combination
of bose-like X-operators and the mixing coeflicients are just the fluctuating fields. In our case V'
is taken in a form:

M’o M0 ~-M}j0;M|0 M{2; M) 2 M|2; M2 M;0; M) 2 ~M|2;M]0 M}2;M,0 ~M]0; M2
V=u X v, X + vy X 4y X
M)+ 72 + )0 (ML +T)al s (M) +22)a
oM F)ehs (M5l )i ( )y (2.12)

Herein below a sum over the repeated primed indexes is implied. The rest of the definition corre-
sponds to the standard technique of the temperature GFs [8].

The introduction of the fluctuating fields makes it possible to derive an equation of motion for
electron GF in terms of functional derivatives with respect to these fields. This is a principle of
GFA.

We have to write an equation of motion for each matrix element of GF (2.9). For example for
an element “11” a general form of the equation is:

A (1110, (12)) = 07 = 72) (T [P (1) 7, ()] )

+ (T, (W)W, (12))), = (T[¥10, (1), V] _¥,,(12))),,, (2.13)

where we introduced a short notation

(T...), =Tr(e PMT .. .e7V). (2.14)
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Equation of motion for operator ¥, (M;) can be written in a form:
(1) = —E)P(1) — t Fu( ) TG 1) P (1) + Qi ) T(y 1) (1)t (2.15)

Here we use a combined index 1(cM) and introduce quantities /7 and Q; appearing from anticom-
mutators of electron operators ¥y (1,) and ¥ (1,) (here spin index o is included in 1):

[Wl(h) ’ Wg(12>]+ = 512-7:1(11 12) }
(W1 (1), P2(12)], = 012Qi (1 1)

JF1 and Qp are 4 x 4 matrices which we denote as supermatrices
]:11 f12 Qll 0
F= (]:'21 F22 ) Q= 0 Qll s (2'17)

M;0;
on X 103 M20
2

(2.16)

with matrix elements:

6M1+U71 s Ma+

0
11 +0M, M M2+ 5)+3 M+ )+
.7:1 = 1, M2 ) XM22;M12 R (218)
0102 1\/117%71\,127% 1
0
01000, X M) (M=)
g1y . oL
]:12 _ (51\,11 :MQXfMﬁ_ ) — 5 (Ma+3)+ . .
1= Mi—Z)+; (M —F)— | - (2.19)
0 01090M; , M» X

Matrix elements 2! and F?22 can be obtained from F1? and Fi! replacing a by & and replacing
XMOSMO o M2 M2,

Matrix Q is a block-diagonal one and nonzero matrix block is

M;0;Mz2

11 O 025M1+071 7M2_a—22X1 (2 20)

1 — 5 XMgO;M12 0 . .
R

As one can see, diagonal elements of matrix F conserve the states with total momentum j, but
off diagonal ones mix them up. Matrix Q deals with transitions between empty sites and double
occupied sites.

Matrices .7:{[(11 I,) and Q;(Illz) are obtained from matrices F1(1,1.) and Q;(1,1,) by taking
hermitian conjugation of X-operator and changing indexes I; < I5.

Let us now explain the rest of notations in equation (2.15).

(L) = 601025M1‘M2diag{E+ -y, —FE+—pu, E_ —p, —E_ — M} = 0p,000M; , M€ (2.21)
And finally, we have to present a commutator of operator ¥; with fluctuating fields:
[Wi(u), V] = Wi ) ) + @ @) (W) (),

where W and W9 are 4 x 4-matrices:

L[/l(ll Ig) == (222)
72 91
M3 05 Mp0 (Mg + =) =5 (Mp+5-)+
_5Ml+%1 Mot 2211 + 0 My, Mg ¥y 0
g o v§1\12+072)+;(1\’[1+07])+
M1, My
I — %1yt (My— 22
Mg2;Mp2 B (M=)t (M =55 ) -
0 ”1"2[61\/11—”71 Myt %21 0 oMy, My Y1
7 I
My =T+ (M- F2)+
_ =My, Mg ¥q ]
- T2y (M4 2Ly
s U(Mz+7)+~(1\11+ 3-) 0 s . o pM105M20 0
My, M1 My+5- Mg+ 2271
(Mg +%2)— 5 (My +%5)—
oMy, My Uq
1 %1y_. 92
0 5 (Mg —5-) =5 (Mg — =)+ 0 5 M2 M2
oMy, Mp U1 1ol o1 Myt %21 -

2
(M= )= (M- )~
=My, My V1 ]
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02
W) (L) = (2.23)
JM10:My2
0 MQ—— M+ 0 0
Ma0; M; 2
_ Mﬁgg Myl 0 0 0
= ,M10; M2
0 0 0 LV SV
0 0 —oy6 Ul vll\/IQO;M12 0

Mo+, My —

with symmetry relation
WH2(11n) =W2(L7L).

Now we are ready to write down an explicit form of equation for

Gr2(1i12) = —(TW,, (11)7,, (I2)),, - (2.24)

3. Equation for matrix electron Green’s function

Equation of motion for matrix GF (2.9) in terms of functional derivatives can be obtained in
GFA similar to the Hubbard model [9]. It has a standard form [5]:

[(Lov)[ﬁ,a‘ (M M) — (AQY) 717 (M M) — (Ay)‘l’;,"l (MM | L7857 (M{My) = (A®)7,7* (M My)

(3.1)

Here all quantities are 8 x 8-matrices. Loy is GF of zeroth approximation in the fluctuating
fields. We present it in the form

b

Gy 0010000, My — W72 (M M) (W02)7192 (M; M)
(LOV)Jlaz (Mle) _ N 012 .
—(W20)7192 (M M) Gy 001000, My + W72 (M M)

(3.2)

Matrix Y determines the effective hopping of an electron on the lattice

Toro2 (M My) 0
}/102102 (1\’[11\12) == t12 5 (33)
0 —T172(M; M,)

and matrix A includes functional derivatives over the fields. It is convinient to write it as follows:
~ F7or(MiMp) Q77 (M My) ~
AT} (MiMp) = d12 | ~ = 51, A7 72 (M M,) . (3.4)
O™ (MiMy)  F{77 (M) M)

Quantities Fy, Oy, ff and QJ{ are determined in equations (2.17)—(2.20) in which X-operators
should be replaced by functional derivatives according to a receipe:

)
X — —5qu (3.5)
At last we have to add definitions for GF's of zero approximation Gy and Go
d ~ d
Gil=——-¢ Gil=——+¢, 3.6
0 dTl ’ 0 dTl + ( )

where diagonal matrix £ is given by equation (2.21).

Notice that equation (3.1) coincides in this form with equations for electron GF's for all basic
models of strongly correlated systems [5]. Iterations in this equation generate a perturbation theory
near the atomic limit.
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Having matrix elements for GF constructed on X-operators we are able to write down the
electron GF determined on Fermi operators. To this end, keeping in mind formula (2.3) we must
sum up over indexes M; and My giving the states of atoms. It is reasonable to do this summation
directly in equation (3.1). Then one can obtain the equation for “averaged” GF if we define it by
relation:

L7 = > 071 (M) L£757 (M1 M3)672 (My) , (3.7)
M; M,
where .
QU(M) = (19 (()M) 190?1\/[)) (38)

with diagonal matrix 7 (M) (2.8). Multiplicative character of matrix (2.7), for the electron hopping
on the lattice makes it possible to derive an equation for averaged GF £. We can write this equation
as follows:

~010) ~0102

(o) — (A @ﬂﬁy—ﬁflTuiﬁng&ﬂAl o). (3.9)

11/

Here all overlined quantities are determined by the relations of type (3.7). For example operator

A; and effective hopping 712 are given by matrices:

%0102 aalag
=~0102
1 = QT10'10'2 g"’10'10'2 9 (310)
1 '7:1
T 0
T2 =tio (0 —T) ) (3.11)

(matrix T was defined following the equation (2.8)). In equation (3.10) quantity F is defined by
relation:

Fioo= > 07 (M) F7 7 (M My)97 (My) (3.12)

M; Mo

and so on. PR
An explicit form of matrix elements F, Q and their conjugated ones can be easily written if

necessary. Notice only that for 4 x 4 matrix F

23 ~32 ~34 ~41 ~43
—F =F =F =F =0, (3.13)

)

~12 ~14 ~21

and in matrix Q only elements
~12 ~21 ~34 ~23

Q .9 ,Q ,Q . (3.14)

do not vanish (spin indexes o7 and oy are dropped).
Zero order GF Lyy in the fluctuating fields is given by a relation

(f—l)o'la'z B 6 G0_150-1(72 *WUIUZSil (WO2)01121871
ov)ig T 012 _(W20)amz§—1 G160 _WUWQSf ’

S = diag{S + 1,5 + 1, S, S}.

4. Solution of equation for the electron Green’s function

Equation (3.9) has a standard form of equation for basic models of strongly correlated systems.
As usual we look for its solution in the multiplicative form:

=11, (4.1)
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where a propagator L obeys the Dyson equation

I '=I,-%, T=%+1Y. (4.2)

Here in the expression for the self-energy part ¥ we extracted a term I1Y, which can be cut over

“the interaction line” Y. From the basic equation (3.9) one obtains a coupled equation for the
terminal part II and uncutable self-energy part 5 of the GF L. We write them down in a form,
where

~

II(12)

(A®)(12) + (Y L) (4’3’)%(14/)ﬁ(3’2) , (4.3)

Y(2) = —(VI)(3)A() Loy (32) — ¥ (312)] (4.4)
If we are interested only in the normal GF (first matrix element in (2.9)) which we denote by G,

corresponding to G propagator part of GF is G, and its zero order approximation is Gy, terminal
part is A and self-energy part is %, then from general equation (4.1)—(4.4) it follows

! ’
—0102 —~010173 0,02
G2 = Gy 1/\1/12 )
——1\ o102 ——1\o102 0102 0102 /0102 — - \/0102
(G )12 = (GOV)12 -, Y = Yy _(AT)12 : (4.5)

Here all quantities G, G, Gov, A, 3, & and T are 4 x 4-matrices.
First iteration in equation (4.3) leads to an expression for self-energy in the first and second
order, over hopping respectively. Let us calculate the self-energy part

00 o oo
Yy = (AT)12 . (4.6)
Taking the iteration expression of the terminal part II one can write an expression for X:

’ ’ ’ ’
~o0 PEN X ~o00 —= 1 1~tfo'o

Sty = (ATt + [F1 T(G) Sy Fo tan— 0y T(tG) Oy tan]®.  (47)

Each matrix here is a 4 x 4-matrix. After substituting expressions for F and Q one can write a
result for X715 in a form:

A AL AL A
= 1A A A X
e SV VS VS W I (4.8)
.V VIR VI V]
where
(M) = (B 4 T s+ (T(FY + 1) AD Yars — (T(Q17)77 BI? Yt
(M) = (B 4 N tas + (DT + T2 AD Yars — (T(D5) 7 BI7 Yt
oo —33 —31\ 00 —33 —31\ oo’ oo —34, o0’ oo
(A3)12 - <]:1 +]:1 > t12 + <T(f1 +f1 ) Al ’ >t2/2 - <T(Q1 ) Bl ’ >t2/27
()50 = (FL 4 T tas + (T(FL +F)) 77 AL Yarn — (T(Q1) 7 B Yt
Here we introduce a notation:
o= (G0 F T (00 (A F)
+ (G (T + F)” " + (1G9 (Fol +F) 7 (4.9)
o= (G Q)T+ (6 (@)
+ (tG@) 7T (@NNTT 4 (1G9 (T (4.10)
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We see that the first order terms in A; (1 = 1,2, 3,4) are expressed by averages of X-operators and
the second order terms by T-products of two X-operators, being bose-type GFs.
In equations (4.9) and (4.10) some combinations of electron GFs were introduced, namely

(G = Y6 ). (a.11)

%

We shall look for a solution of Dyson equation for propagator @U(k), when the self-energy &
is determined by equation 4.7) and equation (4.8). Due to a specific matrix (4.8), the solution can
be written as

—o 1
G (k)=|14 ——
=1+

G Gg(k)A"Tsk} GS(k), (4.12)

where

(4.13)

ds(k):1_< Mk) L delk) o Aa(k) L Aa(k) )

zan—FEy oz +Ey oz, —E_ oz, +E_

Zp = iw, + pu. Explicit expressions for matrices G and G are complicated and we do not write them
down.

One can see that in expressions for \; determining the electron GF, some linear combinationb of
X-operators may appear which determine the components of the total spin on a site S{°" = S, + o
[1,2]:

S+g
Stzot _ Z M XMO MO XM2 M2 +Z Z 1\/[04AX'M‘10¢;M”0¢7 (414)
M==5 o Me=—(5+%)
s S+g
Sgot — Z l/g(M) (X(M—HT)O;MO +X(M+U)2;M2) + Z Z Vg+%(Ma)X(M°‘+U)a;M‘1a’ (415)
M=-5 o Mo=—(5+%)
where )
V(M) = —=+/(S —oM)(S + oM + 1), (4.16)
V2
as well as the components for the pseudospin [5]
s
pz — Z (XMZ;MQ _XMO;MO) , (417)
M=-§
s
ph= Y XMEMO T = (ph)T (4.18)
M=-S§

Along with these combinations in expressions for \; there are terms containing operators of the
type
XM M (4.19)

which describe the transfers on a site with change of the total spin S+ § on S — . At large values

of sd-exchange integral such transfers give a small contribution to statistical averages. We shall

neglect such terms. Therefore, all off diagonal matrix elements F" can be omitted. In the rest of
the expressions for )\;, the following combinations of matrix elements appear:

—11 —4d4\ 0,0 1 201 V2 5
(Fy +F, )77 =612 (1+ 25+151mt 51 ) +5amm5ﬁom (4.20)
22 33,0100 1 204 1 V2

—6o=(1= COpppp—;x ) N S , 4.21
(}—1 +F ) 125 ( 25+151tot 25+1p1) 1 225+151t0t ( )
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—12  —43\010 — 921  —34\010 1 _
(O +9,)""=—(9] +97)"" = —55102mp1 , (4.22)

(@’{12 n 6143)0102 _ _(@’{21 n 6134)0102 _ 5510-2 230'1 ,OIr ) (423)
+1
We see that in expressions for );, in fact, there appear components of total spin and pseudospin.
However, some combinations of X-operators of the type (4.19) still remain. Their role, however,
decreases with parameter J increasing. Further proceedings with an analytical study can be done
in a limit of large atomic spin S.

5. Limit § = oo

In this limit both eigenvalues of the single site sd-exchange Hamiltonian coincide, so that
|E_| = |B4+| = % and a condition d,(k) = 0 for poles of the electron GF reduce to an equation of
second order but not fourth order as in general case. In this situation, matrix (4.13) and electron
GF constructed on Fermi operators can be easily written explicitly. Using the identity

ga(k) = — <TClgC£g> — Zga(k)] iJ ’ (51)

we can write the result of the calculation in the following form

9° (k) = m> (5.2)
where ) )
Fa(k_) — Zp (1/2) (53)

20 A AT+ A+ A]) —I/200 + ] — XS —)A3)

and all quantities Ay = A7 (k) depend on spin and 4-momentum. We introduced notation I = J.S,
which should be finite in the limit S = co.
Linear combination of \; in formula (5.3) in the site representation is equal to:

AT +A3+A3 +ADT5 = die, (5:4)

j —g] —(2)700
(727 =2 = XD = o(SDha+ 5 [1G — 1G] 77 (TS5.57) o

n [t@(l) N @(2)] (15557 ) s (5.5)

where we introduced normalized spin operators ST = %Sftot.
In momentum representation, the expressions (5.4) and (5.5) are given

A (k) + Ao () + As(k) + \a(k) = 1, (5.6)
AL(E) + Aa(k) — Aa(k) — A3(k) = ek Z5k+qG(k +q)D(q) = &(k)ek (5.7)

q

where D(q) is a Fourier-component of GF for spin fluctuations

Dy = —(TS,S5). (5.8)

In paramagnetic phase, electron GF g(k) and a function G(k), involved in (5.7) can be written in
o = )2

) T - €T o

Gk) = ! (5.10)

zp = (1/2)% = [zn — &) /2ler
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where k = {k,iw,}. G(k) denotes a Fourier transform of the quantity [té(l) — té(z) involved in

expression (5.5).
Using the spectral representation for Fermi-like GFs g(k) and G(k) and Bose-like GF D(k) we
present the expression (5.7) for (k) in a form

1 ' TG (K, ) DK — k, Q) . ,
(k) = N %:%’/i/ﬂ iwu:L—w’—&—Q’ (flw'] +n[Q7]) , (5.11)

where f[w’] and n[Q)'] are functions of Fermi and Bose, respectively. After analytical continuation
iw, — w 4+ i0 we obtain an equation for &g (w), which is an integral one over frequency and
momentum. It should be solved together with the equation for chemical potential

n= 2;;5” /w’ {—iImg(k:’,w’)} flw']. (5.12)

Now we do an estimation of quantity £(k) under the following approximation: consider limit of
static fluctuations
ImD(q, Q) = magd(£2) (5.13)

and neglect g-dependence of the spectral density aq =~ a. Then for temperature T = 0 from (5.11)
it follows

al f € 1
—_—— de 3 2 — )
w 2 4+1% w+ E() — Er(e)
w

§(w) = (5.14)

2

where we use a rectangular form of the bare band and mean field approximation for electron GF
g(k), equation (5.9) with £(k) = 0.

1 £, 1 1 € 1
9(a.w) =3 ( - Qk> A (”m) prprrmy xS RER R

with Qr = Eg(k) — FE4 (ki), and

Ei (k) = % (sk_ F /€2 +12) , (5.16)

determine two branches of quasiparticle spectrum.

When electron density n < 1 chemical potential u lies in the lower band, and € means energy
eq corresponding to fixed p; € obeys equaion E4(Z) = p. One can see that £(w) has logarithmic
singularity at w = 0 for account of electrons near Fermi-level.

In conclusion, we notice that, contrary to paper [4], here we developed an approximation for
the sd-model with strong sd-exchange coupling beyond the mean-field theory to take into account
fluctuations in the system. Electron GF (5.9) contains contribution of magnetic fluctuations via
&(k)-quantity. Further analysis of the problem reduces now to the calculation £(k) as a function of
momentum and frequency.

Preliminary analysis of equations (5.9)—(5.12) shows that at half filling a gap between two
branches of quasiparticle spectrum vanishes at large enough exchange parameter I, and an insulator-
metal phase transition occurs. A detailed numerical analysis of equations (5.9)—(5.12) at half filling
and beyond it will be done elsewhere.

This work was supported by Russian Foundation for Support of Scientific School, grant NS—
4640.2006.2.
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Sd-mopenb 3 CUNbHOKO OOMIHHOIO B3aEMOAI €0 Ta Pa30BUM
nepexoaom mMeTas-AienekTpuk

10.0.13tomos, H.l.4auwiH, [.C.Anekcees

IHCTUTYT disnku meTanis, Byn. C. KoBanescbkoi, 18, EkatepuHbypr, Pocis

OTpumaHo 18 TpaBHa 2006 p.6 B ocTtatoyHOMY BUmaai — 14 yepsHsa 2006 p.

Sd-06miHHa mogens (Moaenb Konao rpaTkun) copMysiboBaHa Ansl CUNbHOI Sd-B3aeEMofii B paMkax TeXHI-
Kn X -onepaTopis Ta niaxoay TBipHOro dyHKLUioHany. X -onepatopu nobyaoBaHi Ha 6a3nci TOYHUX BAACHUX
bYHKLIN 0aHOBY3/10BOro sd-06MIHHOIO raminbToHiaHy. Take NpeaCcTaBNeHHS AO3BONSE PO3BUHYTY TEOPIO
36ypeHb Noban3y aToMHOro piBHSA. MNpeacTaBneHHs IOKaTOPHOro TUNy 6yno oTpuMaHe Ansi enekTPOoH-
HOi dyHKUii MpiHa. BnacHa eHepria enekTpoHIB BKIIIOYAE B3aEMOLI0 €NEKTPOHIB Ta CNiHOBUX (nykTya-
uiri. OTpMMaHo IHTerpanbHe PIiBHAHHS A5 BNACHOI eHeprii B rpaHuLi 6e3MexXHUX NnokKani3oBaHX CriHiB.
P03B’130K LIbOr0 PIBHAHHSA B CTATUYHOMY HAONVXKEHHI Ans criHOBUX dykTyalin Beae A0 CTPYKTypu ene-
KTPOHHOI ®YHKUji [piHa, Wo BusBnse $as3oBuin nepexin metan-gienekTpuk. Llel nepexig € cxoxum go
nepexony B Mogesi Xabbapaa npv NOIOBUHHOMY 3aMOBHEHHI.

KniouoBi cnoBa: mozgess KoH[o rpatku, CniibHOCKOPEIbOBaHI e/IeKTPOHHI cuctemu, ¢pa3osi nepexoamn
MeTan-[ienekTpuK

PACS: 71.10.-w, 71.10.Fd, 71.27.+a
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