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A recipe for an unpredictable random number generator
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In this work we present a model for computing the random processes in digital computers which solves the
problem of periodic sequences and hidden errors produced by correlations. We show that systems with non-
invertible non-linearities can produce unpredictable sequences of independent random numbers. We illustrate
our results with some numerical calculations related to random walks simulations.
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Many challenging problems in computational physics are associated with reliable realizations
of randomness (e.g. Monte Carlo simulations). In a typical 32-bit format a maximum of 232 floating
point numbers can be represented. Therefore, a recursive function Xn+1 =f(Xn, Xn−1, . . . , Xn−r+1)
acting on these numbers generates a sequence X0, X1, X2, . . . , XN−1 which should repeat itself. It
is known that for any recursive function, a digital computer can only generate periodic sequences
of numbers [1–7]. These generators are not unpredictable.

Definition of truly unpredictable process: The next values are not determined by the pre-
vious values. A process Xn = P (θTZn) is said to be unpredictable if for any string of values
X0, X1, X2, . . . , Xm of length m + 1, generated using some θ = θ1, there are other values of θ for
which function Xn = P (θTZn) generates exactly the same string of numbers X0, X1, X2, . . . , Xm,
but the next value Xm+1 is different, where m is any integer. Note that this kind of process cannot
be expressed as a map of type Xn+1 = f(Xn, Xn−1, . . . , Xn−r+1) [8–10].

All the known generators (in some specific physical calculations) give rise to incorrect results
because they deviate from randomness [2,4,5,7]. It is trivial that any periodic process is not unpre-
dictable. Suppose that mT is the period of the sequence generated. Given any string of mT values:
Xs, Xs+1, . . . , XmT−1; the next value XmT

is always known because the process is periodic. On
the other hand, for any generator of type Xn+1 = f(Xn, Xn−1, . . . , Xn−r+1), given any string of r
values: Xs, Xs+1, . . . , Xs+r−1; the next value Xs+r is always determined by the previous r values.
Thus it is not unpredictable. So the subsequences must be correlated.

An example of this can be found in [5], where the authors have shown that using common
pseudo random number generators, the produced random walks present symmetries, meaning that
the generated numbers are not independent. On the other hand, the logarithmic plot of the mean
distance 〈d〉 versus the number of steps N is not a straight line (as expected theoretically, 〈d〉 ∼
N1/2) after N > 105 (in fact, it is a rapidly decaying function). Here d is defined as the end to end
mean-square distance from the origin of the random walk as a function of the number of steps.
Other papers on the effect of the pseudorandom number generator on random walk simulations
are as follows [11–13].

In the following, we shall show that using non-invertible nonlinear functions, we can create an
unpredictable random number generator which does not contain visible correlations while simu-
lating a random walk with the length 109.

Let us investigate the following function[8–10]:

Xn = P (θ TZn), (1)
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where P (t) is a periodic function, θ is a real number, T is the period of the function P (t), and Z
is a noninteger real number.

Let Z be a rational number expressed as Z = p/q, where p and q are relative prime numbers.
Now let us define the following family of sequences

X(k,m,s)
n = P

[

T (θ0 + qmk)

(

q

p

)s (

p

q

)n]

, (2)

where k, m and s are non-negative integers. Parameter k distinguishes different sequences. For all
sequences parametrized by k, the strings of m + 1 values Xs, Xs+1, Xs+2, . . . , Xs+m are the same.
This is because

X(k,m,s)
n = P

[

Tθ0

(

q

p

)s (

p

q

)n

+ Tkpn−sq(m−n+s)

]

= P

[

Tθ0

(

q

p

)s (

p

q

)n]

for all s 6 n 6 m + s. Note that the number k p(n−s)q(m−n+s) is an integer for s 6 n 6 m + s. So
we can have an infinite number of sequences that share the same string of m + 1 values.

Nevertheless, the next value

X
(k,m,s)
s+1 = P

[

T θ0

(

q

p

)s (

p

q

)(s+1)

+
T kp(m+1)

q

]

is uncertain. In general X
(k,m,s)
s+1 can take q different values. In addition, the value X

(k,m,s)
s−1 ,

X
(k,m,s)
s−1 = P

[

T θ0

(

q

p

)s (

p

q

)(s−1)

+
T kq(m+1)

p

]

,

is also undetermined from the values of the string Xs, Xs+1, Xs+2, . . . , Xs+m. There can be p
different possible values. In the case of a generic irrational Z, there are infinite possibilities for the
future and for the past. From the observation of the string Xs, Xs+1, Xs+2, . . . , Xs+m, there is no
method for determining the next and the previous values of the sequence.

But this is not the only feature of these functions. It can be shown that there are no statistical
correlations between Xm and Xn if m 6= n, and that they are also independent in the sense that
their probability densities satisfy the relationship P (Xn, Xm) = P (Xn)P (Xm) [14,15].

Moreover, we shall show that, given the function (1), any string of sequences Xs, Xs+1, . . . , Xs+r

constitutes a set of statistically independent random variables.
Without loss of generality, we assume that P (t) has zero mean and can be expressed using the

following Fourier representation P (t) =
∑

∞

k=−∞
akeiπkt.

We can calculate the r-order correlation functions [14,15]:

E(Xn1
· · ·Xnr

) =

∫

X

dθP (TθZn1) · · ·P (TθZnr)

=

∞
∑

k1=−∞

· · ·
∞
∑

kr=−∞

ak1
· · · akr

∫ 1

0

dθ exp {iπ(k1Z
n1 + · · · + krZ

nr)Tθ}

=
∞
∑

k1=−∞

· · ·
∞
∑

kr=−∞

ak1
· · · akr

δ(k1Z
n1 + · · · + krZ

nr , 0), (3)

where the coefficients ki can be different integers, and δ(n, m) = 1 if n = m or δ(n, m) = 0 if
n 6= m.

When all ni are even, the following equation is satisfied

E(Xn1

s Xn2

s+1 · · ·Xnr

s+r) = E(Xn1

s )E(Xn2

s+1) · · ·E(Xnr

s+r). (4)

The main problem in this equation is when one of the numbers ni is odd. In this case, the
correlations E(Xn1

s Xn2

s+1 · · ·Xnr

s+r) should be zero. A nonzero correlation in equation (4) exists
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only for the sets (n1, n2, . . . , nr) that satisfy the equation k1Z
n1 + · · · + krZ

nr = 0. For a typical
real number Z, this equation is never satisfied.

If we use non-invertible nonlinear functions, type of (1), we can implement a Truly Random
Number Generator (TRNG). In this case, we propose the following function

Xn = [θsZ
n] mod 1. (5)

Function (5) is an example of the general case Xn = P [θTZn] studied in this paper. We have
shown that the subsequences Xs, Xs+1, . . . , Xs+r constitute a set of statistically independent ran-
dom variables. The particular case of function (5) is well-known to produce uniformly distributed
numbers [8–10].

Now we shall formulate a central limit theorem. Using theorems proved in previous studies
[14–19] and the results obtained from this paper, we obtain the following formula: If Z is a generic
real number and Xn = 2(Yn − 1/2), Yn = [θZn] mod 1, then

lim
r→∞

P

{

α <
X1 + X2 + · · ·Xr√

r
< β

}

=
1√
π

∫ β

α

e−ξ2

dξ. (6)

The Gaussian distribution of the sums is correct even for other functions Xn = P [θZn], where
P (t) is periodic. This has been shown in numerical simulations [14].

The numbers Xn = [θZn] mod 1 are uniformly distributed[8–10]. We can simulate different
stochastic processes (with different distributions) using different functions Xn = P [θTZn]. As
ρ(Xn) = 1, ρ(Xn+1) = 1, ρ(Xn, Xn+1) = 1, it is trivial that they are independent.

It is interesting to check the theoretical predictions using numerical simulations of the behavior
of different stochastic processes.

For instance, let us study the function

Un = cos[2πθZn]. (7)

All the moments and higher-order correlations can be exactly calculated [14,15]:
For odd m:

E(Um
n ) = 0. (8)

If any ni is odd, then

E(Un0

s Un1

s+1 · · ·Unr

s+r) = 0. (9)

Suppose now that all ni are even:

E(Un0

s Un1

s+1 · · ·Unr

s+r) = 2−(n0+n1+···+nr)

(

n0
n0

2

) (

n1
n1

2

)

· · ·
(

nr
nr

2

)

, (10)

E(Un0

s ) = 2−n0

(

n0
n0

2

)

, (11)

E(Un1

s+1) = 2−n1

(

n1
n1

2

)

, . . . , (12)

E(Unr

s+r) = 2−nr

(

nr
nr

2

)

. (13)

Note that the condition for independence is satisfied

E(Un0

s Un1

s+1 · · ·Unr

s+r) = E(Un0

s )E(Un1

s+1) · · ·E(Unr

s+r), (14)

for all integers n0, n1, . . . nr.
We have performed extensive numerical simulations that confirm the values of these moments

and the independent conditions.
An additional checking is as follows.
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Figure 1. Probability densities for random variables Un = cos[2πθZn] and Vn = Un+1.

(a) ρ(U) = (π
√

1 − U2)
−1

; (b) ρ(V ) = (π
√

1 − V 2)
−1

.

Figure 2. Probability density ρ(Un, Un+1), when Un = cos[2πθZn]. Here ρ(U, V ) =

(π2
�

(1 − U2)(1 − V 2))
−1

.

The probability density of Un is ρ(U) = (π
√

1 − U2)
−1

. Define Vn = Un+1. The probability

density of Vn is ρ(V ) = (π
√

1 − V 2)
−1

. We have checked both theoretically and numerically that

ρ(U, V ) = (π2
√

(1 − U2)(1 − V 2))
−1

, that is ρ(U, V ) = ρ(U)ρ(V ). This can be observed in figure 1
and figure 2. In order to avoid computation problems, we have used the following procedure. We
change parameter θ after each set of M values of Xn, where M is the maximum number for which
there are no overflow problems, such that the next value of Xn+1 is obtained with the new θ. Let
us define

θs = A(Cs + Xs) + 0.1, (15)

where Cs is a sequence obtained using the digits of the Champernowne’s number [20]
(i.e., 0.1234567891011 . . .): C0 = 0.123456 , C1 = 0.234567, C2 = 0.345678, C3 = 0.456789,
C4 = 0.567891, and so on. This sequence is nonperiodic. Index s is the order number of θ, such
that s = 0 corresponds to the θ used for the first set of M sequence values X1, X2, . . . , XM ; s = 1
for the second set XM+1, XM+2, . . . , X2M , and so on. X0 represents the TRNG’s seed.

Using this method we have generated a very long sequence of random numbers without com-
putational problems.

To test function (5) as a truly random number generator, we have implemented a random walk
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simulation program in C++. We have made a sampling test of a random walk with N = 109 steps
with 100 realizations with different initial seeds. The mean distance 〈d〉 was being calculated every
1000 steps of the random walk.

The Champernowne sequence of numbers used in the generator was produced previously by a
short C++ program, who created a sequence of a maximum of 40000 Champernowne’s numbers.
If a larger amount of values to Cs is necessary, it can be obtained using a segment code that has 40
thousand values already stored in Cs and mixing them, e.g. the algorithm takes the first value of
the series C1, the third C3 and so on, and adds them at the end of the series, obtaining Cs+1 = C1,
Cs+2 = C3,. . . ; if more values are necessary, this procedure or cycle is repeated but now skipping
two values C1, C3, C5,. . . three values C1, C4, C7 and so on. In this way, we can make the Cs

sequence as large as we wish.
We present a logarithmic plot of the mean distance 〈d〉 versus the number of steps N with

N = 109 steps with A = 6.9109366 and Z = π/2 (See figure 3). We can verify that there is no
deviation from the theoretical straight line, even for N � 105 steps, which is a very good test of
the reliability of the Random Number Generator used in the random walk simulations.
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Figure 3. Logarithmic plot of the mean distance 〈d〉 versus the number of steps N = 109 steps.
(a) for generator (5); (b) the same simulation for a generator of type Xn+1 = aXn mod T .

We have presented a random number generator based on the properties of non-invertible trans-
formations of truncated exponential functions. The obtained random process is unpredictable in
the sense that the next values are not determined by the previous values. We have applied this gen-
erator to the numerical simulation of statistically independent random variables. In the simulation
of a random walk with the length 109, the random process does not contain visible correlations.
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