Condensed Matter Physics 2006, Vol. 9, No 2(46), pp. 351-358 CONDENSED
IVIANTRERS
RPHVSICS]

Adaptive kernel methods to simulate quantum phase
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A technique for simulating quantum dynamics in phase space is discussed. It makes use of ensembles of
classical trajectories to approximate the distribution functions and their derivatives by implementing Adaptive
Kernel Density Estimation. It is found to improve the accuracy and stability of the simulations compared to
more conventional particle methods. Formulation of the method in higher dimensions is straightforward.
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1. Introduction

Complete analytical description of physical systems exist only for the most simple ideal cases.
The vast majority of physical problems require the solution of approximate equations most fre-
quently by using numerical calculations. To this end, much effort has been devoted to the devel-
opment of suitable techniques to be used in computer simulations. The increasing computational
power makes possible the description of more complicated, that is, less ideal systems allowing for
more precise predictions of their properties as well as for a better understanding of the underlying
phenomena. Among the wealth of numerical approaches to solve dynamical equations by means
of discretization, particle methods have gained attention in the last few decades as a conceptu-
ally appealing alternative. Conventional numerical solvers rely on a regular discretization of the
independent variables to facilitate the evaluation of derivatives to a given order of accuracy. As
a consequence, a mesh needs to be defined as the base of the simulations, parts of which remain
empty at any given simulation time even with the most sophisticated mesh schemes. The cen-
tral idea of particle methods consists of representing functions by sets of particles conveniently
located and weighted such that the function is appropriately sampled by the particles. Evolution
of the functions is then accomplished by an equivalent evolution of the particles. This meshless or
Lagrangian type of discretization has some intrinsic computational efficiency advantages because
there is no wasted space. The advantage, however, comes at the expense of having to evaluate
derivatives of functions on unstructured arrays of sampling points. The issues about convergence
and stability of the resulting algorithms have been the subject of active and fruitfull research.
Currently there are some well established techniques to solve dynamical equations with particle
methods. Our interest is to provide an alternative ingredient to further improve the performance of
numerical solutions of dynamical problems of physical relevance. In the present work we discuss, in
the context of particle methods, the implementation of a technique for representing functions and
derivatives with adaptive parameters. Adaptiveness require the parameters to be automatically ad-
justed to optimal values according to the location of the particles. As shown below, the proposed
scheme is conceptually simple and has been tested in a number of different situations. In some
simple test models the present work focuses on quantum dynamics, previously treated with more
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conventional particle methods. Dynamical equations correspond to a phase space representation of
quantum mechanics, in terms of distribution functions in phase space. Derivation of the equations
and a more detailed description of the test models can be found in the references.

We first give a brief review of the implementation of particle methods and present the adaptive
kernel approach. Applications to the simulation of quantum phase space dynamics are presented
hereinbelow. Finally, as part of the conclusions, we briefly discuss further applications of the method
in a different context, where it has been used to simulate compressible and viscous fluid dynamics.

2. Adaptive particle methods

Given an equation of motion for a distribution function, a conceptually appealing approach to
perform numerical calculations is what has become known as particle methods. The idea is quite
simple and intuitive. Distribution functions are represented by the density of a set of points (tra-
jectories) in phase space. Then, the time evolution of the system is accomplished by propagating
the ensemble of points under their corresponding equations of motion. To evaluate the density,
each point contributes as an extended particle by means of a kernel function centered at its lo-
cation with an appropriate radius of influence. Rigorous proof of convergence and stability can
be found, for instance, in reference [1]. This idea is the basis of a variety of methods, such as
Dissipative Particle Dynamics (DPD)[2] and Smoothed Particle Hydrodynamics (SPH) [3], which
have found fruitfull applications in many fields. A crucial step to the implementation of particle
methods is the evaluation of the densities and their derivatives. In general, particle methods tend
to become unstable in regions of low density (for instance, the tails) due to the lack of particles to
approximate the required functions. This is especially important for higher derivatives of density
where the numerical errors become amplified. Conventional approaches make use of a fixed radius
of influence for all kernels. Instabilities are prevented by using an increasing number of particles,
at the expense of raising the computational burden. We have recently implemented an alternative
technique that significantly improves the performance of particle methods. It makes use of an idea
from mathematical statistics called Adaptive Kernel Density Estimation [4,5] originally proposed
for the nonparametric estimation of probability distributions given a set of samples of random
variables. Substantial improvement on the approximation of functions and derivatives are obtained
by allowing the kernel parameters to dynamically adapt, both globally and locally, to the given
data set. Of course, the idea of adaptiveness on particle methods is not new, since there have been
attempts for most of them. The scheme we discuss here has the advantages of being quite sim-
ple to implement, generalizations to higher dimensions are straightforward and does not increase
computational costs too much.

The estimation problem can be stated as follows. For simplicity we assume a two dimensional
space, although higher dimensions are treated without complications. Given a set of N points in
phase space with locations {q;, p;}, i = 1,..., N, we construct an approximate distribution function
using Adaptive Kernel Density Estimation [4,5], as

1 N
p(q,p) = NZKi(q—qi,p—pi), (1)

where K;(z,y) is a Gaussian kernel function capable of adapting both globally and locally. Globally,
the kernels are allowed to be stretched and oriented according to the general shape of the data.
Moreover, the kernel widths are locally adjusted, becoming uniformly wider in regions of low
density and narrower in regions of high density. The general shape of the data is described by
its sample covariance matrix S. In two dimensions it has the elements soq = N71 Y . (q; — pg)?,
Spp = N1 (pi — pp)?, and sgp = spg = N™1Y" (g5 — pg) (pi — i), where pu is the corresponding
sample average. The functional form of the kernels with fixed widths is

Ky = 2 e { o5 )L (2)
2w h 2h
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where D = det'S and h = N~/ is the optimal window width for two dimensions and Gaussian
functional kernels. We have found this form of the kernels to give good results in calculating the
densities and first derivatives. Second and higher derivatives, however, require extra effort, as in
most of the particle methods. The locally adaptive part of the estimation is accomplished in three
steps. First, a pilot density p is obtained by equation (1) using fixed width kernels, the same for
all particles, as given by equation (2). The second step is to calculate the local bandwidth factors
Xi = (pi/g)”“, where p; is the pilot density evaluated at the location of particle 4, g is the geometric
mean of the p;, satisfying logg = N~ log p;, and a = 0.1 is a sensitivity parameter, adjusted
by experimentation. The final step is then to include the local bandwidth factors in the kernels,
giving the final expression

1/2
Ki(z,y) = QDhg/\g {%QIAQ(JU y)'S7 =z ,y)}- (3)

Derivatives of the density function are obtained by directly differentiating the kernel. Thus, the
density function inherits the differentiability properties of the kernel. Although being slightly more
demanding computationally, having to evaluate the density twice, this refinement substantially
improves the quality of the approximation and is essential when derivatives higher than the first one
are present in the equations of motion. We found that the adaptive properties of the present scheme
lead to accurate representations of the distribution functions and numerically stable propagation
in time. There is also the possibility of speeding up the calculations by skipping the adaptive part
for a few time steps, depending on the particular problem.

Equations of motion for the points should now be derived. Let us assume that the trace of the
distribution function is preserved by time evolution. This is the case for quantum phase space flux
as well as for any process where mass is conserved, including compressible fluid flow. The case
where sources and sinks are present would require a slight modification of the present scheme.
Then the equation of motion for the distribution function can be written as a conservation law

) B)
pr + a—q(fl p) + a_q(f2 p) =0, (4)

where f; and fy are functionals of ¢, p, p(q,p) and its derivatives. Trace preservation implies the
existence of a continuity equation p; + V - (vp) = 0, where V is the gradient in phase space
coordinates and v = (¢, p) is a velocity field, which needs to be solved. One possible solution comes
from identifying the components of the velocity field with the functionals f; and f2, that is, ¢ = f1
and p = f2. The equations of motion for the points are then obtained by evaluating the velocity
field at the particle locations, resulting in a set of coupled ordinary differential equations. Here we
note that this approach reports two important advantages. Firstly, the original partial differential
equation has been reduced to a set of ordinary equations. Secondly, the differential equations have
been reduced one order, due to the use of the continuity equation.
As an example, let us consider the one dimensional diffusion equation,

pt(l', t) = mem(za t) (5)
with D a diffusion constant. It can be recast as a conservation law as p + (—Dpy). = 0. A
continuity equation for this case is p: + (vp), = 0, from which we can identify v = —Dp, /p as

the velocity field. If the density is constructed, as above, from an ensemble of points, then the
equations of motion for the points are given by

Z K’ (xz )
Y Ty )

with ¢ =1,..., N and where K’ is the derivative of the kernel. These N coupled equations contain
only first derivatives of the kernel, whereas the original partial differential equation is second order.
We have solved the diffusion equation in several cases including the phase space Fokker-Planck
equation in previous work [6]. We now present some applications of the present method.
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3. Quantum phase space flow

Phase space hydrodynamic formulation of quantum mechanics was presented shortly after the
early developments of the main theory by the pioneering work of Madelung [7], de Broglie [8] and
Wigner [9] as an attempt to rescue the classical perspective from its extravagant predictions. It is in
this context where quantum mechanics finds a more intuitive view, as a flow of a compressible fluid
in phase space. The celebrated Wigner distribution function has been extraordinarily successfull in
describing the similarities and differences between classical and quantum mechanics. It represents
the phase space analog of the density matrix, carrying all the physical information about the system.
It is used to find expectation values of observables by means of a trace over phase space variables,
although its interpretation as a probability distribution is compromised by its lack of positiveness
in general. Since the early works of Wigner, alternative phase space distribution functions have
been developed [10-12], each of them having a different equation of motion. The Husimi function,
for instance, has the advantage of being everywhere positive for all times and smoother than the
Wigner function, although its equation of motion becomes relatively more complicated.

In previous work [13] we have presented a trajectory-based method for simulating quantum
hydrodynamic flow in phase space for a particle escaping from a metastable potential well by
tunneling. This test system was selected for being the simplest nontrivial example manifestly
exhibiting quantum effects. Fzact calculations can be performed by propagating a wavefunction
using the Schrodinger equation. For this purpose, we used the Fast Fourier Transform method
of Kosloff [14]. The problem was formulated in the Wigner representation and a novel technique
was presented for evaluating the derivatives of the density. A local Gaussian anzatz was used to
fit the required functions to the data, giving qualitatively good results on capturing the tunnel
effect. Here we present new results on this system simulated with adaptive kernels. The problem
is formulated here in the Husimi representation to ensure positiveness of the distribution function.
Moreover, the smoother character of the Husimi function allows for a more accurate representation
of the density and its derivatives. This approach leads to a significant improvement of the results
compared to more conventional, non-adaptive methods, yielding a nearly quantitative agreement
with exact calculations.

We use atomic units (A = 1) throughout. The system [13] consists of a particle of mass m = 2000
(the unit of mass in this system of units is m., the electron mass) trapped in a metastable potential
well V(q) = (mw?/2)q® — Bg® with w = 0.01 and B = 0.2981. It has a local minimum at ¢ = 0
and a potential barrier at ¢t = 0.6709 of height V* = 0.015. Under these conditions the dynamics
is highly quantum mechanical. The equation of motion for the distribution function is given in the
Husimi representation by

2

p o B
p) Pap — BUZL Paap + E/’ppp . (7)

== V' — Bo? Vg2 - L
pr=—"—pg+( q)pp+< .
The initial state of the system corresponds to a Gaussian wavepacket centered near the bottom of
the well at g = —0.3 and has the form

polq,p) = L exp (8)

o [M z ] ’

2 - 2
4aq 4%

where 04 = /1/(2mw) and o, = /mw/2 satisfy the minimum uncertainty principle. The fraction
of particles with ¢ > ¢* is calculated as a function of time and compared with the quantum reaction
probability obtained from the square of the wavefunction [1(q)|? integrating from ¢* to infinity.
The results are shown in figure 1. For ¢ = 0 no particle has yet crossed the barrier. An abrupt
rise on the curves near ¢ = 500 signals the passage of the fraction of particles having energy higher
than the barrier. This is also observed classically. For later times, particles continue escaping by
tunneling making the reaction probability grow. More detailed inspections on the results of the
simulation show that some particles perform multiple recrossings. Energy is conserved on average
but is continuously redistributed among members of the ensemble. This is how some of the particles
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Figure 1. Reaction probability vs. time. Solid line represents exact results. Fine dotted line
shows classical results. Dashed line presents the results of this work performed in the Husimi
representation. Simulations correspond to the initial placement of the center of the wavepacket
at go = —0.3 (in atomic units).

gain enough energy to surmount the potential barrier. In some cases particles that have crossed
the barrier lose energy by transferring it back to the rest of the ensemble thus ending up with
the energy lower than the barrier. In this perspective, particles do not mysteriously cross through
the barrier. Instead, they act collectively to pass over the barrier by borrowing energy from the
ensemble. The energy of a given trajectory changes according to the quantity dH/dt evaluated at
the corresponding location. This quantity does not vanish in general for each of the trajectories,
as can be verified by substituting the expression for the velocity field on it. On the other hand, the
ensemble average (dH/dt) does vanish for all ¢ for bounded distribution functions. Thus, energy
is manifestly conserved only on average. It is also easy to verify that the present scheme obeys
Ehrenfest theorem as well, that is, the ensemble average relation (p) = —(V’(q)) is maintained for
all times. It means that, on average, the ensemble moves classically. This property is not shared by
other approaches proposed so far, such as the Wigner trajectories methods. The curves in figure 1
show the results of the method proposed here, using the Husimi representation and adaptive
estimation, compared to exact results as well as to simulations performed using purely classical
motion. The interacting trajectories correctly capture the quantum tunnel effect. Compared to
the method previously reported in reference [13] the present scheme yields more accurate results,
reducing the overall error by roughly a half (in the root mean square sense).

4. Conclusions

Phase space formulation of quantum dynamics provides an intuitive picture of the theory al-
lowing for a more direct comparison with classical perspectives. By means of ensembles of inter-
acting classical trajectories, quantum phenomena can be correctly captured in molecular dynamics-
like simulations. For this to be done in stable and reliable manner, a crucial ingredient is a faithfull
representation of the distribution functions (and derivatives) including regions of lower density.
Here we have presented an alternative scheme to perform such approximations. Adaptive kernel
density estimation methods provide a simple, yet accurate, means to construct distribution functi-
ons from a set of points in phase space giving reasonably well represented low density zones. The
formulation goes to higher dimensions unchanged. We are currently pursuing simulations in four
and six dimensional phase spaces (corresponding to two and three spatial dimensions) which will
be reported elsewhere.

The adaptive kernel density estimation technique is not limited to phase space dynamics. It
has also been incorporated into a standard Smoothed Particle Hydrodynamics (SPH) method
to simulate conventional fluid dynamics yielding a substantial improvement on the stability of
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the calculations. In recent work [15], we have reported a variant of SPH method that allows for
the simulation of compressible fluid with strong shocks and rarefaction waves in one and two
dimensions. The known instabilities of the conventional scheme (the wall heating phenomena)
virtually dissapear when adaptive kernels, as presented here, are implemented. The method was
found to outperform other approaches, such as Godunov-type methods and SPH formulations
based on Riemann solutions. Convergence tests have been performed and reported in reference
[16]. Another improvement on the SPH method is the elimination of the tensile instability suffered
by the regular formulation. Non-adaptive versions of SPH are known to produce such spurious
phenomenon on the interface of liquid drop simulations [17]. It appears as an artificial clustering of
the particles near the surface of the drop. The adaptive kernel method performs only a minimum
necessary smoothing to the data making the tensile instability disappear.

We are currently pursuing further refinements to the technique by prescribing kernel functions
that can freely adapt not to the general shape of the data but to the close surroundings of each
particle. This would allow for the simulation of more general problems such as multiphase fluids and
viscous drop oscillations with separation and coalescence. In the quantum phase space dynamics
area, we are interested in the simulation of quantum effects of systems in condensed phase. The
combined effects of tunneling and quantum dissipation are being simulated in low temperature
regimes by solving a Caldeira-Leggett type of equations with adaptive kernel particle methods.
The results will be reported elsewhere.
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Questions and answers

Q (Dragi Karevski): Is it a kind of Bohmian mechanics or a kind of approximation of it?

A The treatment of quantum dynamics as presented here is different from Bohmian mechanics.
There are, however, some similarities between them. Bohmian formalism (Bohm, Phys. Rev.,
1953, 89, 166) in terms of hidden variables, relies on the actual position of quantum particles
as the principal system property. The motion is influenced by an additional wave function-
dependent quantum potential, responsible for all quantum effects. The formulation requires
the time propagation of a wave function under Schrédinger equation plus an equation of
continuity. In our approach (Donoso and Martens, Phys. Rev. Lett., 2001, 87, 223202) the
formulation of the dynamics is done entirely in phase space. The motion of the system is
dictated by a phase space version of the quantum Liouville equation in terms of a probability
distribution function (equivalent to a density matrix). The resulting equation contains clas-
sical mechanics as a first order approximation (in powers of i) plus quantum corrections. It
is not in canonical, Hamiltonian form and we do not seek to find a quantum potential. In the
case of barrier crossing by tunneling, for instance, we find that particles pass over the barrier
by exchanging energy with the ensemble. In the Bohmian scenario, the barrier is lowered by
the quantum potential to let particles cross.

Q (Dragi Karevski): Is it related to Ehrenfest equation?

A Indeed, the formulation complies with Ehrenfest equations. Take for instance the equation
of motion for the distribution function in the Wigner representation

'Y / h? " 83p
=_2 Vv _ D ym =L

The present formulation gives the velocity field components ¢ = p/m and

12 10%
s ! - " -z F
p=-V'(qg) + il (Q)pap2

Taking the average, (p) = Tr[pp]. Now the trace is

[ee] h2 82/)
d d " ..
qdp 5,V (q)—ap2 +oo

Telpp] = (-V'(g)) + /

— 00

where all the terms on the right hand side, except for the first, vanish if p is bounded. The
surviving term gives then the required Ehrenfest equation.

357



H.Lopez, A.Donoso

MeToau apganTUBHOINO ssApa Ansg CUMynsLii NOTOKY B
KBaHTOBOMY (pa30BOMY NPOCTOPI

IJlonec, A.JoHocoO

NabopaTopisa cTaTUCTUYHOT Di3VKN HEBMOPSAAKOBAHMNX CUCTEM,
LleHTp di3vkn, BeHecyenbCbknii iIHCTUTYT HAYKOBUX JOCIAXEHD,
nowwT. cKpuHbka 21827, Kapakac 1020-A, BeHecyena

OTpumMaHo 6 6epesHsa 2006 p., B OCTaTO4HOMY BUMmAdi — 12 TpaBHsa 2006 p.

OO6roBopIOETHLCA TEXHIKA At CUMYJIALiT KBAHTOBOI AMHAMIKM y $a30BOMY NpocTopi. BoHa BMKOpUCTOBYE
aHcaMbi KNAaCMYHUX TPAEKTOPIN AN HABAMXEHHS PYHKLIiA po3noainy Ta ix NOXiAHUX OLIHKOIO INYCTUHWN
ajanTUBHOIO siapa. BuasneHo, WO BOHA MNOKPALLYE TOYHICTb i CTINKICTb CUMYNSLIN NOPIBHAHO 3 TPAAWULIN-
HUMW YaCTUHKOBUMW MeToaamun. MeTof nerko y3aranbHIOETbCS Ha BULLL BUMIPHOCTI.

Knio4oBi cnoBa: 4yaCTMHKOBI METOAN, ANHAMIKA Y KBAHTOBOMY (pa30BOMY NpOCTOPi, aAanTUBHA OLjiHKa
rycTuHu

PACS: 02.70.Ns, 34.10.+x, 03.65.Xp
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