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The pseudospin-electron model with tunneling splitting of levels is considered. Generalization of dynamic
mean-field method for systems with correlated hopping was applied to the investigation of the model. Elec-
tron spectra, electron concentrations, average values of pseudospins and grand canonical potential were
calculated within the alloy-analogy approximation. Electron spectrum and dependencies of the electron con-
centrations on chemical potential were obtained. It was shown that in the alloy-analogy approximation, the
model possesses the first order phase transition to ferromagnetic state with the change of chemical potential
and the second order phase transition with the change of temperature.
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1. Introduction

One of the main models for describing strongly correlated electron systems is the Hubbard
model and its extensions and modifications. It was first proposed as the model describing ferro-
magnetism in metals. The model is often generalized by introducing additional degrees of freedom.
In particular, it is supposed that interaction of electrons with lattice vibrations is important in
describing high-temperature superconductors [1] and proton-electron interaction in molecular and
crystalline systems with hydrogen bonds [2]. Since anharmonicity in such systems is principal-
ly local, it can be considered by using pseudospin formalism. Local potential with two minima,
which corresponds to absolute pseudospin value 1/2, appears to be an important particular case
of anharmonic vibrations.

The pseudospin-electron model (PEM) [1] turns out to be generalization of the Hubbard model
which includes pseudospins with absolute value 1/2. The Hamiltonian of the model has the following
form:

H =
∑

i

Hi + Ht + Hss, (1.1)

Ht =
∑

i,j,σ

tija
+
iσajσ, (1.2)

Hss = −
1

2

∑

i,j

JijS
z
i Sz

j , (1.3)

Hi = Uni↑ni↓ + gniS
z
i − hSz

i − ΩSx
i − µni, (1.4)

where Hi is the single-site Hamiltonian, Ht is electron transfer and Hss is direct pseudospin-
pseudospin interaction. niσ = a+

iσajσ is the σ-spin electron number operator, gniS
z
i represents

interaction with the anharmonic mode (pseudospin). U is Coulomb repulsion of the electrons at
one site. ΩSx

i describes the tunneling splitting of vibration mode and hSz
i is asymmetry of the

anharmonic potential.
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PEM was investigated in many special cases. Among them are: a model with the inclusion of
the direct pseudospin-pseudospin interaction (but without electron transfer (tij = 0)) [3,4]; PEM
without the direct pseudospin-pseudospin interaction (Jij = 0), when pseudospins interact through
the electron subsystem [5].

Special attention was paid to electron spectra [6], the pseudospin and collective dynamics [7],
effective electron-electron interaction [8], correlation functions (〈SzSz〉, 〈Szn〉, 〈nn〉), and possi-
bility of phase separation and charge-ordered phases [5]. Phase transitions between states with
different electron concentrations and with different pseudospin orientations were also studied.

In the case of direct pseudospin-pseudospin interaction, PEM is investigated mainly within the
mean field approximation (MFA) [3] and the transfer matrixes formalism [4]. PEM without direct
pseudospin-pseudospin is investigated using generalized random phase approximation (GRPA) [9]
and dynamic mean-field theory (DMFT) [10]. Many special cases of such modification of PEM were
studied: simplified PEM with U = 0 and Ω = 0 or Ω 6= 0 [7,11]; a model with the infinitely large
Coloumb interaction U → ∞ [12,13]; PEM with Ω 6= 0 but with symmetric anharmonic potential
h = 0 [6]; two-sublattice PEM [14].

The simplified PEM (U = 0 and Ω = 0) corresponds to the Falicov-Kimball (FK) model but
differ in thermodynamic equilibrium conditions (Sz = const for the FK model and h = const for
the PEM) [10].

This paper presents investigation of the PEM with tunneling splitting of the levels without
direct pseudospin-pseudospin interaction. Generalization of the dynamic mean-field method for
the systems with correlated hopping [15] was applied to the investigation of the model. Within the
alloy-analogy approximation, the numerical investigations were conducted. Electron spectrum and
dependencies of the electron concentrations on chemical potential were obtained.

Special attention was paid to the phase transition to the ferromagnetic state with the change of
chemical potential and temperature. Different aspects of a possible ferromagnetism in PEM model
were analyzed.

2. Analysis of the Hamiltonian

In the case of narrow bands (t � U) and the absence of the direct pseudospin-pseudospin
interaction, the single-site Hamiltonian (1.4) plays a role of an initial approximation, so it is useful
to introduce the Hubbard operators XRS

i ≡ |i, R〉〈i, S| acting in the space spanned by the state
vectors, defined as: |i, p〉 = |ni↑, ni↓, S

z
i 〉. Then, single-site Hamiltonian Hi can be expressed as [16]:

Hi =
4

∑

p=1

λ̄pX
pp
i −

Ω

2

4
∑

p=1

(

Xpp̃
i + X p̃p

i

)

, (2.1)

where λ̄1,1̃ = ∓h/2, λ̄2,2̃ = −2µ + U ± (g − h/2), λ̄3,3̃ = λ̄4,4̃ = −µ ± (g − h).
This Hamiltonian is diagonal for Ω = 0 (no tunneling splitting of the vibrational modes). For

Ω 6= 0 we can diagonalize it using the following unitary transformation [16]:

(

|R〉

|R̃〉

)

=

(

cosφr sin φr

− sinφr cosφr

) (

|r〉
|r̃〉

)

, cos(2φr) =
nrg − h

√

(nrg − h)2 + Ω2
. (2.2)

Then we have:

Hi =
∑

p

λpX
pp
i , λr,r̃ = Uδr,2 − µnr ±

1

2

√

(nrg − h)2 + Ω2. (2.3)

Here nr denotes the number of electrons for the state r : n1 = 0, n2 = 2, n3 = 1, n4 = 1; nr = nr̃.
In a new basis total Hamiltonian can be written as:

H =
∑

i

∑

r

λrX
rr
i +

∑

ij

∑

σ

tijσa+
iσajσ , aiσ =

∑

mn

Aσ
mnXnm

i , (2.4)
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where
A↑

41 =A↑
4̃1̃

=cosφ41, A↑
4̃1

=−A↑
41̃

=sinφ41,

A↑
23 =A↑

2̃3̃
=cosφ23, A↑

2̃3
=−A↑

23̃
=sinφ23,

A↓
31 =A↓

3̃1̃
=cosφ31, A↓

3̃1
=−A↓

31̃
=sinφ31,

A↓
24 =A↓

2̃4̃
=− cosφ24, A↓

2̃4
=−A↓

24̃
=− sinφ24,

(2.5)

and all the others are equal to zero. Here the designation φpq = φp − φq is used.
One can see that for diagonalized Hamiltonian, the hopping integral value depends on the

states of neighboring lattice sites. Hopping of that kind is called correlated hopping and can be
dealt with by the use of matrix representations for all quantities [15]. In our case, hopping term
can be rewritten in the following way:

tijσa+
iσajσ =

(

(Y 1
iτ(σ))

+,(Y 2
iτ(σ))

+,(Y 3
iτ(σ))

+,(Y 4
iτ(σ))

+
)

t̂ijσ











Y 1
iτ(σ)

Y 2
iτ(σ)

Y 3
iτ(σ)

Y 4
iτ(σ)











, (2.6)

where:

Y 1
iτ(↑) = X14

iτ + X 1̃4̃
iτ , Y 2

iτ(↑) = X14̃
iτ − X 1̃4

iτ , Y 3
iτ(↑) = X32

iτ + X 3̃2̃
iτ , Y 4

iτ(↑) = X32̃
iτ − X 3̃2

iτ ,

Y 1
iτ(↓) = X13

iτ + X 1̃3̃
iτ , Y 2

iτ(↓) = X13̃
iτ − X 1̃3

iτ , Y 3
iτ(↓) = X42

iτ + X 4̃2̃
iτ , Y 4

iτ(↓) = X42̃
iτ − X 4̃2

iτ .

Here the designation Xpq
iτ ≡ Xpq

i (τ) was used. Correlated hopping matrix is:

t̂ijσ = tij
(

γT
σ ⊗ γσ

)

, (2.7)

γ↑ = (cosφ41, sinφ41, cosφ23, sinφ23), γ↓ = (cos φ31, sin φ31,− cosφ24,− sinφ24).

3. Temperature Green functions. Perturbation theory in ter ms of electronic
hopping

Investigation of the model is performed using temperature Green functions. Single-site Hamil-
tonian (1.4) was selected as a zero-order Hamiltonian. Statistical operator can be written as:

ρ̂ = e−βĤ0 σ̂(β), (3.1)

where

σ̂(β) = T exp







−

∫ β

0

dτ

∫ β

0

dτ ′
∑

ijσ

tijσ(τ − τ ′)a+
iσ(τ)ajσ(τ ′)







, H0 =
∑

i

Hi. (3.2)

For the grand canonical potential functional we have:

Ω = −
1

β
ln Sp ρ̂ = Ω0 −

1

β
ln〈σ̂(β)〉0, Ω0 = −

1

β
ln Sp e−βH0 . (3.3)

So we can define single-electron Green’s function as:

Gijσ(τ − τ ′) = −〈Taiσ(τ)a+
jσ(τ ′)〉 =

δΩ

δtjiσ(τ ′ − τ)
. (3.4)

Let us introduce the corresponding matrix Green functions and other quantities related to the
correlated hopping [15]. According to (2.6) and (2.7) matrix form of Green’s function Ĝij,σ(τ − τ ′)
is defined as:

Gµν
ij,σ(τ − τ ′) = β

δΩ

δtνµ
ij,σ(τ − τ ′)

, (3.5)
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where µ, ν are matrix indices. Then, the total Green’s function (3.4) is equal to:

Gσ = Sp

(

dt̂σ
dtσ

Ĝσ

)

= Sp
(

(

γT
σ ⊗ γσ

)

Ĝσ

)

= γσĜσγT
σ . (3.6)

According to (2.6) and using (3.5) we can write the elements of the 4× 4 matrix Green’s function:

Gµν
ij,σ(τ − τ ′) = −

〈

TτY µ

iτ(σ)

(

Y ν
jτ ′(σ)

)+
〉

. (3.7)

It is obvious that for each matrix element of Green’s function we shall have the sum of T–
products of Hubbard operators like 〈TτXpq

i (τ)Xp′q′

i′ (τ ′)Xp1q1

i1
(τ1)X

p′

1q′

1

i′1
(τ ′

1) . . .〉0. We can calculate

them by consecutive pairing according to the corresponding Wick’s theorem [17].

4. Dynamic mean field theory of correlated hopping

Since only limited number of lattice models can be solved exactly, one must use some approx-
imations to describe the model behavior. Dynamic Mean-Field Theory (DMFT), which is exact
in the limit of infinite spatial dimensions d → ∞, is one of the most popular approaches [18].
The DMFT is based on the local (single-site) nature of the self-energy in the limit d → ∞. But,
for systems with correlated hopping, self-energy becomes unlocal [19], so it is necessary to modify
the standard DMFT approach. Let us recall that self-energy appears in the Dyson equation for
the one-electron Green’s function, and represents many-electron interactions, which are taken into
account as perturbations. There is another natural approach — perturbation theory over electron
hopping tijσ . In this case, fundamental equation for the one-electron Green’s function is the Larkin
equation [15]:

Ĝkσ(ω) = Ξ̂kσ(ω) + Ξ̂kσ(ω)t̂kσĜkσ(ω), (4.1)

where Ξij(ω) is an irreducible part of the Green’s function that cannot be divided into parts by
cutting one hopping line. It was shown in [20] that Ξij(ω) is local in the d → ∞ when the hopping

integral is scaled tij →
t∗ij√

d
in order to obtain finite density of states: Ξσ(ωn,k) = Ξσ(ωn), and this

statement is more general than the one concerning the local nature of the self-energy [15].

Such a matrix representation makes it possible to reformulate the DMFT for the systems with
correlated hopping in terms of local quantities. Equivalence of the irreducible part Ξ̂σ (ω) for the
lattice problem and for the single-impurity problem leads to the following equation for coherent
potential Jσ(ω) [15]:

1

N

∑

k

[

Ξ̂−1
σ (ω) − t̂kσ

]−1

=
[

Ξ̂−1
σ (ω) − Ĵσ(ω)

]−1

= Ĝimp,σ(ω), (4.2)

which is the matrix generalization of the Brandt-Mielsch equation [21] for the auxiliary Kadanoff-
Baym field. The right-hand side of (4.2) is the Larkin representation of the single-site Green’s
function Ĝimp,σ(ω) for the single-impurity problem with statistical operator:

ρ̂ = e−βĤoT exp







−

∫ β

0

dτ

∫ β

0

dτ ′
∑

ijσ

Jσ(τ − τ ′)a+
σ (τ)aσ(τ ′)







. (4.3)

The grand canonical potential of the lattice in terms of the quantities for the impurity model
[15]:

Ωlat

N
= Ωimp −

1

β

∑

ν

{

1

N

∑

k,σ

ln det
[

1 − Ξ̂σ(iων)t̂kσ

]

− ln det
[

1 − Ξ̂σ(iων)Ĵσ(iων)
]

}

, (4.4)
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where Ωimp is grand canonical potential for the impurity model. Ωimp can be calculated by applying
Wick’s theorem, but now we have averages of the products of diagonal Hubbard operators at the
same site, so we can reduce their product to a single Hubbard operator. Finally we get [17]:

Ωimp = −
1

β
ln

∑

p

e−βΩ(p) , (4.5)

where Ω(p) is grand canonical potential for subspace |p〉. Now we can find single-electron Green’s
function for impurity model by

Ĝimp,σ(ωn) =
δΩimp

δĴσ(ωn)
=

∑

p

wpĜσ(p)(ωn), Gµν

σ(p)(ωn) =
δΩ(p)

δJνµ
σ (ωn)

, (4.6)

where Gµν

σ(p)(ωn) are single-electron Green’s functions for subspaces characterized by the statistical

weights

wp =
e−βΩ(p)

∑

q e−βΩ(q)
. (4.7)

As a result, single-site (impurity) problem naturally splits into eight subspaces |p〉 = |1〉, . . . , |4̃〉 (see
also [17]). We can also introduce irreducible parts of Green’s functions in subspaces Ξ̂σ(p) (ωn) by

Ĝσ(p)(ωn) =
[

Ξ̂−1
σ(p)(ωn) − Ĵσ(ωn)

]−1

. (4.8)

Since the matrix of electron hopping is a direct product (2.7), one can prove that equality (4.2)
conserves after transforming it into a scalar form by the relations:

t̂σ = γT
σ tγσ =⇒ Ĵσ = Jσ · (γT

σ ⊗ γσ) ⇔ Jσ = γT
σ Ĵσγσ. (4.9)

The same transformations are also applied to all other matrix quantities, such as Green functions
and irreducible parts. As a result we can easily switch to a scalar form and back for all equations.
For example, equation (4.2) can be transformed in the following way:

1

N

∑

k

γ
[

Ξ̂−1
σ (ω) − t̂kσ

]−1

γT =
∑

p

wpγ
[

Ξ̂−1
σ(p)(ω) − Ĵσ(ω)

]−1

γT .

Then, for left and right part after using the obvious relation:

Â(γT ⊗ γ)B̂ = ÂγT · γB̂,

we have:

γ
[

Ξ̂−1
σ − t̂kσ

]−1

γT =γ
(

Ξ̂σ + Ξ̂σ

[

tkσ(γT ⊗ γ)
]

Ξ̂σ + · · ·
)

γT

=
(

γΞσγT
)

+
(

γΞσγT
)

tkσ

(

γΞσγT
)

+ · · · =
[

γΞ̂−1
σ γT − tkσ

]−1

and

γ
[

Ξ̂−1
σ(p) − Ĵσ

]−1

γT =
[

γΞ̂−1
σ(p)γ

T − Jσ

]−1

.

Thus, the scalar form of equation (4.2) can be written as:

1

N

∑

k

[

γΞ̂−1
σ γT − tkσ

]−1

=
[

γΞ̂−1
σ γT − Jσ

]−1

=
∑

p

wp

[

γΞ̂−1
σ(p)γ

T − Jσ

]−1

. (4.10)

This equivalence of representations allows us to use whatever form is more convenient in each case.
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5. Alloy-analogy approximation. Numerical calculations

For the pseudospin-electron model with tunneling splitting perturbation theory expansion turns
out to be too cumbersome and inconvenient – for example, third order contribution has near 30000
terms. In order to proceed, we used simple alloy-analogy approximation:

Ξ̂σ(p)(ωn) = ĝσ(p)(ωn). (5.1)

Here ĝσ(p)(ωn) are zero-order matrix Green functions for subspaces. For example, ĝ↑(1)(ωn) is
equal to

ĝ↑(1) (ωn)=









(iωn − λ41)
−1 0 00

0 (iωn − λ4̃1)
−1 00

0 0 00
0 0 00









. (5.2)

Then, for the grand canonical potentials for subspaces one can obtain [17]:

Ω(p) = λp −
1

β

∑

nσ

ln det
(

1 − Ξ̂σ(p)(ωn)Ĵσ(ωn)
)

. (5.3)

A scalar form of equations is more convenient for numerical calculations. Starting from (5.3) and
using (4.9), one can obtain grand canonical potential for subspaces, which is expressed in scalar
quantities:

Ω(p) = λp −
1

β

∑

nσ

ln
(

1 − Ξσ(p)(ωn)Jσ(ωn)
)

, Ξσ(p) = γσΞ̂σ(p)γ
T
σ . (5.4)

The first step of the numerical analysis is to solve the equation (4.2) for coherent potential,
when irreducible part is defined by (5.1). This equation may have more than one solution, but it
is rather complex and contains integrations. It is more convenient to introduce an equation for
statistical weights wp, treating them as self-consistency parameters and then use its solutions to
calculate Green functions and coherent potential (see also [22]).

Equation for wp has the following form:

wp =
exp(−βΩ(p)({wl}))

∑

q exp(−βΩ(q)({wl′}))
. (5.5)

Ω(p)({wl}) is calculated according to (5.4) using coherent potential Jσ(ω) which is obtained by a
corresponding iterative algorithm. Green functions can be obtained from the same iterative process.

Figure 1. Electron spectrum. Numerical parameters: h = −2.0, g = 1.85, Ω = 1.01, U = 4.0,
µ = −0.33, T = 0.01, t∗ = 1.0, (a),(b) and (c) corresponds to the different solutions, described
in table 1.

Initial examination of the solution space of (5.5) was carried out using Multi-Niche Crowding
(MNC) variant of the genetic algorithms (GA) [23]. This allowed us to find all possible potential
solutions. Then, the candidates were checked and refined using the modified Newton method.
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Table 1. Description of solutions for figure 1. All wp, not indicated in the table, are equal to
zero.

a b c
w3̃ 0.160 0.840 0.5
w4̃ 0.840 0.160 0.5
n 0.833 0.833 0.881

n↑ − n↓ 0.518 −0.518 0
Sz −0.48 −0.48 −0.48
Ωlat −1.95 −1.95 −1.93

Ordering Ferromagnetic Ferromagnetic Paramagnetic

It has been shown that for rather large U , the transition to the ferromagnetic state took
place. A typical case is the existence of the three solution sets for self-consistency parameters wp

(figure 1). One of them corresponds to the paramagnetic ordering and two others correspond to
the ferromagnetic one. Figure 1 shows only the imaginary part of G↑. For solution (c), ImG↑ and
ImG↓ are the same, and ImG↓ for solution (a) is identical to ImG↑ for (b) and vise versa. So, in
figure 1 ferromagnetism emerges as a result of redistribution of electron density between bands
which corresponds to the λ4̃1̃ and λ3̃1̃ initial single-electron transitions.

The average value of electron concentrations can be obtained in two different ways. One of
them is differentiation of the grand canonical potential with respect to the chemical potential
µ. The other way is based on using the density of states: nσ = β−1

∑

n Gσ(ωn). For the AA
approach, thermodynamically obtained concentrations can get unphysical values for some values
of the chemical potential, and thus the second method was used.

2

3

4

5

6

7

8

9

10

11

12

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

U

n

F F

P P

P PC

Figure 2. µ − n diagram. h = −2.0, g = 1.85,
Ω = 1.01, U = 4.0, T = 0.01, t∗ = 1.0. Con-
tinuous line corresponds to the paramagnetic
ordering and dotted line corresponds to the
ferromagnetic ordering.

Figure 3. Magnetic phase diagram. F denotes
ferromagnetic and P denotes paramagnetic or-
dering. Grey color indicates the regions where
AA approximation fails. h = −2.0, g = 1.85,
Ω = 1.01, T = 0.01, t∗ = 1.0.

Figure 2 presents a typical behavior of the electron concentration depending on chemical po-
tential. One can see that ferromagnetism exists for electron concentrations near the half-filling,
both for n < 1 and n > 1. Gaps on the µ−n diagram correspond to the unperturbed levels, where
the present iterative algorithm of calculations fails for the AA approximation. It is important that
ferromagnetism disappears when chemical potential µ escapes from the bands responsible for it.
(They are λ4̃1̃ and λ3̃1̃ in figure 1). Indeed, ferromagnetism is caused by redistribution of electron
density between those bands. However, their contribution vanishes rapidly with the change of µ
effectively removing the effect. As a result it is absent for electron concentrations, which substan-
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Figure 4. Dependence of magnetization on temperature. h = −2.0, g = 1.85, Ω = 1.01, µ = 1.62,
U = 8.0, t∗ = 1.0

tially differs from 1 (see also figure 3). Thus, critical Coulomb repulsion Uc should quickly grow
somewhere in the greyed area of the phase diagram presented in figure 3. In our case, the critical
Coulomb repulsion Uc is much lower than for ordinary Hubbard model [24,25]. Indeed, numerous
studies [26–28] revealed that different forms of correlated hopping favour ferromagnetism including
the lowering of the critical Uc and the stabilization of ferromagnetic ordering. With the change
of the temperature, the spectral density is changed, leading to the temperature dependence of
magnetization, shown in figure 4.

6. Conclusions

The pseudospin-electron model with tunneling splitting of the vibration mode is investigated. It
is shown that correlated hopping formalism is useful in investigating the systems with transverse
field. Strongly correlated approach for temperature Green functions was applied to the model.
Generalization of DMFT for systems with correlated hopping, based on locality of irreducible
parts of Green functions in the limit of infinite spatial dimension, was used. It is demonstrated
that tunneling-induced correlated hopping can be factorized (2.7), which makes it possible to
transform the equations for the single-electron Green functions and grand canonical potential
from the matrix to scalar form and vise versa. Alloy-analogy approximation was used in further
numerical calculations. Solutions for the symmetry broken phases were distinguished by the weights
of subspaces, introduced for the single-side problem, which were considered as a self-consistency
parameters. The possibility of ferromagnetism within the alloy-analogy approximation has been
shown in contrast to the generally accepted belief that the ferromagnetic phase cannot develop in
the AA approximation. The reason for such statements is the fact that AA approximation lacks
the mechanism for the spin-dependent shift of the center of gravity of the Hubbard bands [22,29].
However, in recent years other mechanisms of ferromagnetic ordering, where there is no shift in
the relative position of the Hubbard bands, were considered [30]. One of them is connected with
redistribution of the electron densities between spin-up and spin-down electrons. Our scheme of
solving the equations for the coherent potential Green functions leads to the ferromagnetism of
this kind.
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I%&'(')' *i+(,( ,-%./%&-01%(2 &(&'/3,0)4. 506%7i78,-9- 1, 79011 :80i0, ;,<1=%1

>?@ABCDE 27 FG@GHDI 2005 @., F EH?C?EJDEBK FALMINi – 27 MO?ELE 2006 @.
P-+94Q%)'- R&/0.-&Ri%-/4/,'<-%%) 3-./48 + ')%/48%(3 <-+S/R4/%%Q3 <i0%i0. T4Q == .-&4i.U/%%Q0(,-<(&'1%- )+19148%/%%Q 3/'-.) .(%13iV%-9- &/</.%8-9- R-4Q %1 &(&'/3( + ,-</48-01%(3 R/</-
%-&-3.

P-+<12)%-, /4/,'<-%%-= 9)&'(%( &'1%i0, ,-%7/%'<17i= /4/,'<-%i0, &/</.%8-9- +%1V/%%Q R&/0-.-&Ri%i0 '1 0/4(,-9- '/<3-.(%13iV%-9- R-'/%7i14) R<-0-.(0&Q 0 %1W4(U/%%i '(R) &R410). T-&4i.U/-
%- +14/U%i&'8 /4/,'<-%%-9- &R/,'<1 '1 &/</.%8-= ,-%7/%'<17i= /4/,'<-%i0 0i. 2i3iV%-9- R-'/%7i14).X-,1+1%- S- 0 %1W4(U/%%i '(R) &R410) 3-./48 ./3-%&'<)6 *1+-0(Y R/</2i. R/<Z-9- <-.) ) */<--319%i'%(Y &'1% R<( +3i%i 2i3iV%-9- R-'/%7i14) '1 *1+-0(Y R/</2i. .<)9-9- <-.) R<( +3i%i '/3R/<1')-<(.
[\]^_ ì a\_`b: cdefghdcii-ejeklmhiin ohgejp, khmejphfniqr cemeihd, DMFT, semhontielquo
PACS: 71.10.Fd
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