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Self-gravitational system. New approach
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The field theory approach to statistical description of the system of gravitational interacting particles is pro-
posed in order to describe spatially inhomogeneous structures. A nonperturbutive calculation of the partition
function is demonstrated for such a system. Spatially inhomogeneous system’s state – cluster is considered.
The spatial distribution function, cluster’s size and the conditions of phase transition to the collapsed phase
are determined exactly in this approach.
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The statistical description of the of interacting particles has attracted a permanent attention.
A few model systems of interacting particles are known, as far as the partition function can be
exactly evaluated, at least, in the thermodynamic limit. The gravitation system does not have
an exact solution so far. The problem of mean-field thermodynamics of self-gravitational system
lies in the possible collapse in this system. An important point, which emerges from these studies
and which is quite obvious is the non-extensiveness of the usual thermodynamic function in the
thermodynamic limit, when the number of particle N → ∞. But the example of scaling consid-
eration suggests an extensive homogeneous mean field in thermodynamic limit when the N → ∞
[1]. The formation of the spatial inhomogeneous distribution of the particle and field distribution
which accompanies the gravitational interaction requires another approach which can describe the
cluster formation which is related as collapsing states. In this paper the developed approach [3–5]
suggests a statistical description of gravitational interacting particles of the system with regard
to cluster formation. Systems with spatially inhomogeneous particle distributions are described
in terms of various approaches. Within this approach, special methods [3–5] have been proposed
concerning the selection of states with thermodynamically stable spatially inhomogeneous particle
distributions. When describing a wide range of systems of interacting particles with regard to the
type of statistics but neglecting the quantum correlations, so that the interaction is treated in the
classical manner, we can write the Hamiltonian of the system as given by [2,3,10,12]

H(n) =
∑

s

εsns −
1

2

∑

s,s′

Wss′nsns′ , (1)

where εs is the additive part of the particle energy in the state s which is equal to the kinetic energy
in most cases, Wss′ are attraction energies for the particles in the states s and s′. The macroscopic
states of the system are described by a set of occupation numbers ns. Index s labels an individual
particle state; it can also correspond to a fixed site of the Ising lattice [10], whose explicit form is
irrelevant in the continuum approximation. This expression for the Hamiltonian also holds for the
model of substitution and interstitial solid solutions with two atom species present [2]. It is clear
that to calculate the partition function is a rather involved problem even in the case of the Ising
model with Hamiltonian equation (1). Let us select the states that bring the dominant contribution
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to it and take into account the probable spatial inhomogeneity of the particle distribution in the
system.

The partition function for the grand canonical ensemble of a system of interacting particles
with Hamiltonian equation (1) is given by

ZN =
∑

{n}
exp (−βH(n)) =

∑

{n}
exp



−β




∑

s

εsns −
1

2

∑

s,s′

Wss′nsns′







 , (2)

where
∑

{n} implies the summation over all probable distributions {ns} and β ≡ (kT )−1 ≡ θ−1 is

the inverse temperature. In order to perform formal summation in equation (2) we introduce addi-
tional field variables making use of the known results of the theory of Gaussian integrals [6,11], i.e.,

exp





1

2θ
ν2

∑

s,s′

ωss′nsns′



 =

∞∫

−∞

Dϕ exp



ν

∑

s

nsϕs −
θ

2

∑

s,s′

ω−1

ss′ϕsϕs′



 ,

whereDϕ =
∏

s dϕs(
√

det 2πβωss′ )
−1

and ω−1

ss′ is the inverse of the interaction matrix that satisfies
the condition ω−1

ss′′ωs′′s′ = δss′ ; we have ν2 = ±1 depending on the character of interaction and
the sign of the potential energy. Within the context of (3), the partition function of a system of
interacting particles may be rewritten as

Z =

∞∫

−∞

Dϕ
∑

{ns}
exp





∑

s

(ϕs − βεs)ns −
1

2β

∑

s,s′

(
W−1

ss′ ϕsϕs′

)


 . (3)

We fix the total number of particles N =
∑
s
ns (this is equivalent to the consideration of the

canonical ensemble). The procedure can be carried out in several ways [10], we use the well known

formula (2πi)
−1

∮
dξξ

�
s

ns−N−1

= 1.
Then the partition function of a system with a fixed number of particles may be written as

given by [11]

ZN =
1

2π

∮
dξ

∞∫

−∞

Dϕ exp




−
∑

s,s′

(
W−1

ss′ ϕsϕs′

)
− (N + 1) ln ξ





∏

s

∑

{ns}
[ξ exp (ϕs − βεs)]

ns . (4)

Now we can carry out the summation over the occupation numbers ns, then the partition
function reduces to

ZN =
1

2π

∮
dξ

∞∫

−∞

Dϕ exp(−S (ϕ, ξ)), (5)

where

S (ϕ, ξ) =
1

2β

∑

s,s′

(
W−1

ss′ ϕsϕs′

)
+ δ

∑

s

ln
(
1 − δξeϕ−βεs

)
+ (N + 1) ln ξ (6)

and δ = ±1 for various statistics (the upper and lower signs correspond to Bose and Fermi statis-
tics, respectively). Presentation of the partition function in terms of a functional integral over the
additional fields corresponds to the construction of an equilibrium sequence of alternative probable
states treated with regard to their weights. This presentation of the partition function enables us
to make use of the efficient methods developed in the quantum field theory and to formulate the
principle of state selection without imposing additional restrictions and fixing the order of the per-
turbation theory. Thus we can take into account the states associated with spatially inhomogeneous
particle distributions. To do this, it is sufficient to treat S (ϕ, ξ) as a variable functional depending
on the distribution of the fields ϕ and ψ and the chemical potential analog ξ. We employ the saddle
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point method to find the asymptotic value of the partition function ZN for N → ∞; the dominant
contribution is given by the states which satisfy the extremum condition for the functional. The
solutions which correspond to the finite action S (ϕ, ξ) as the volume of the system tends to infinity,
may be interpreted as a thermodynamically stable particle distribution. It depends on the saddle
point solutions of δS/δξ = δS/δϕ = 0, whether this distribution is spatially inhomogeneous or
not. The above set of equations in principle solves the many-particle problem of selection of states
with the dominant contribution in the partition function of the system of interacting particles.
The normalization condition provides a possibility to regard the ρs = (ξse

ϕs)/(1 − δξse
ϕs) as the

generalized one-particle distribution function with regard to the interaction in terms of additional
fields. It is clear that for zero fields, the partition function reduces to the standard Bose or Fermi
distributions. The inhomogeneous behavior of the fields provides inhomogeneity of the particle
distribution which, in this approach, is associated with the nature and intensity of interaction. It is
easy to show that the character of the distribution function behaviour also depends on the interac-
tion. The representation thus proposed makes it possible to extend the Bose-condensation concept
to the coordinate space treatment. The cluster formation is associated with the accumulation of
particles within a finite spatial region and is reflected in the behavior of the fields and the chemical
potential. In order to specialize the results to be obtained, we use the continuum approximation in
what follows. In the continuum limiting case, δ takes a continuous set of values within the volume
occupied by the system. Integration over the momenta and coordinates should be performed with
regard to the cell volume (2πh)

3
in the space of individual states. The inverse matrix ω−1

ss′ for the
interaction, ωss′ = ω (|rs − rs′ |), in the continuum case should be treated in the operator sense
[3,11], i.e.,

ω−1

rr′ = δrr′L̂r′ , (7)

where L̂r′ is the operator for which the Green function is given by the interaction potential. For
the interactions associated with Coulomb or Newton potentials, the inverse operator is given by

L̂r′ = − 1

4πg2
4r′ , (8)

where g2 is the interaction constant. The inverse operator can be found for a restricted number of
realistic interactions.

Let us consider a system of particles whose interactions consist of gravitational attraction and
hard sphere repulsion. For the Newtonian attraction the inverse operator (8) has no screening. In
the case of hard sphere interaction, the inverse operator can be described by expression U−1

r,r′ =
U0δrr′.

Using the results of the hard sphere model we get an expression for action, for Boltzman
statistics, that [4,5]:

S =

∫

V0

dV

{{
1

2rm
(∇ϕ)2 − ξ

λ3
eϕ

}
+

ξ

λ3
V0 + (N + 1) ln ξ

}
, (9)

where the constants λ =
[
(βh2)/(2πm)

]1/2
, rm = 2πGm2β, V0 ≈ 2v0N is the volume which will

be occupied by the particles if they are collected close to each other, v0 is the volume of one
particle and the integration is carried out over the whole space except for the volume occupied by
particles. An expression analogous to this one was obtained in [7]. However,the authors did not
fix the number of particles and disregarded the particle repulsion. The result of this article can
be supplemented with the solution that allows for inhomogeneous particle distributions. Let us
introduce a dimensionless quality r = R/rm and denote r3m/λ

3 = α2, then rewrite equation (9) in
terms of the new variable σ = exp 0.5ϕ to obtain

S =

∫
dṼ

{(
1

σ

dσ

dr

)2

− ξα2σ2

}
+

ξ

λ3
V0 + (N + 1) ln ξ. (10)
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An extremum of the effective action is realized by the solution of the equation which represents
the saddle-point relation:

d2σ

dr2
− 1

σ

(
dσ

dr

)2

+ ξα2σ2 = 0 (11)

with the first integral of motion

(
1

σ

dσ

dr

)2

+ ξα2σ2 = ∆2. (12)

Thus the extremum is given by

σ̃ =
∆√
ξα

1

cosh∆ (r − r′)
, (13)

where r′ is the soliton center coordinate. This solution describes a spatially inhomogeneous di-
stribution of the field ϕ and hence, within the context of the distribution function definition,
ρ = mξλ−1eϕ = mξλ−1σ2, the particle distribution and thus may be interpreted as a finite-size
cluster. Thus the introduction of ansaz ϕ = lnσ2 enabled us to find the solution of the nonlinear
equation 0.5(d2ϕ)/(dr2) + ξα2 expϕ = 0 which satisfies the extremum of action

∫
r2dr

{
(2rm)−1 (∇ϕ)2 − ξλ−3eϕ

}
.

Within the context of the first integral (14), the action can be rewritten in the form

S = 4π

∫ d

r0

r2dr
{
∆2 − 2ξα2σ2

}
+

ξ

λ3
V0 + (N + 1) ln ξ . (14)

In our interpretation, any soliton solution corresponds to spatial inhomogeneous particle dis-
tribution as finite-size cluster. It depends on the interaction parameter, chemical potential ξ and
temperature at which the solution is realized. This corresponds to the solution with asymptotic
σ = 1, ϕ = 0 for r = d and σ = 0 as r → ∞. In our model under consideration, the soliton solution
is associated with the case when the particles in the inhomogeneous formation of the size d are
present and the particles at infinity are absent. It is not difficult to notice in the case ∆d > 1, that
the action equation (10) has no minima. It follows that

∫ d

r0

−
(
2ξα2σ2

)
r2dr =

∫ d

r0

−
(
2ξα2 exp(−∆r)r2

)
dr → 0 for ∆ → ∞,

and action

S =
∆2

r3m
(V − V0) + ξα2

V0

r3m
+ (N + 1) ln ξ

has no minima.
When the 4d 6 1 we can decompose 1/ coshx ≈ 1 − x2/2 in power series of x ≡ ∆d� 1 and

find ∆2 from the asymptotics 1 = ∆2/(ξα2)
[
1 − ∆2d2

]
=⇒ ∆2 ≈ ξα2 + ξ2d2α4. Thus, assuming

that V � V0, we have the result:

S = −V − 2V0

λ3
ξ + (N + 1) ln ξ − V − V0

λ3
ξ2d2α2. (15)

Then the free energy can be expressed through this action F = kTS(ξ̃) where ξ̃ ≈ λ3N(V − V0)
−1

has been found from the “saddle point” equation ∂S/∂ξ = 0. Minimizing equation (15) by the size
of cluster d = D/rm we obtain the optimum radius of the cluster [5]:

d2

0 =
V

4Nr3m

(
1 − V0

V

)
. (16)

84



Self-gravitational system. New approach

The decrease of the cluster’s size with the increase of the number of particles in the system
N is connected with a closer packing of the particles in the cluster due to the increase of the
gravitational energy. The rising of the cluster’s size with temperature is connected with less close
packing of the particles due to the resistance of thermal motion energy to gravitational energy.
Such a situation is realized due to the long-range attraction (1/R) of gravitational interaction.

It is easy to see from equation (11) that this equation has soliton solution equation (13) whenever
any thermodynamical conditions ξα2 ≡ Nr3mV

−1 take place. This means that gravitating gas is
always in the collapsed state. Such a situation takes place in the limits N → ∞ and V → ∞, but V

N
is fixed. Let us suppose that our system has a terminated volume and consists of sufficiently large
but terminal number of particles neglecting its own volume V0. The termination of the number of
particles means that the function equation (13) is normalized as

r3m

∫
ρ(r)d3r = mN or

∫
σ2d3r =

V

r3m
. (17)

Then, the Lagrangian in the action equation (10) should be replaced by the
Lagrangian: (

1

σ

dσ

dr

)2

− (ξα2 − χ)σ2, (18)

where χ is Lagrange indefinite multiplier which appears due to the normalization equation (17).
The corresponding action has a minimum in relation to the solution of the equation:

d2σ

dr2
− 1

σ

(
dσ

dr

)2

+ (ξα2 − χ)σ2 = 0. (19)

The multiplier χ is a function of N such that limN→∞ χ = 0 because equation (19) should be
turned into equation (11) in the limit N → ∞ (or V → ∞).

If ξα2−χ > 0, then solution (13) is realized. If this condition is not satisfied, then other spatial
distributions (homogeneous) take place. The temperature or concentration at which the equality
is reached

r3mN(V χ)
−1

= 1 (20)

is the point of transition between homogeneous and inhomogeneous distributions – i.e., collapse.
Let us assume two actions on the saddle point. One of them is the action of a collapsed gas

equation (14) and the other one is the action corresponding to a spatially homogeneous distribution.
In the case of collapses the action equation (14) is smaller than the action of spatially homogeneous
distribution [5] (absolute minimum) and they are equal in the point of the collapse:

∆2
V

r3m
− 2ξα2

V

r3m
+N ln ξ = − V

λ3
+N ln ξ , (21)

whence it follows r3mNV
−1 = ∆2. Comparing this equality with equation (20) we can find χ = ∆2.

Let us integrate equation (13) over all space and use the normalization equation (17). We find that
∆ = π3/(3N). Then, at temperatures or concentrations at which inequality

r3mN
3

V
>

(
π3

3

)2

(22)

is executed, the gravitating gas is in a collapsed state. This process is connected with the increase
of the gravitation energy at the concentration increasing and with the decrease of the thermal
energy at the temperature decreasing.

If r3mN
3/V χ < 1, then we have spatial distribution σ = ∆√

ξα
/ sinh(∆r). In this case the

inequality is executed:

∆2
V

r3m
+ 2ξα2

V

r3m
+N ln ξ = ∆2

V

r3m
+ 2N +N ln ξ > − V

λ3
+N ln ξ = −N +N ln ξ. (23)
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Thus, the homogeneous spatial distribution is realized at this condition.
The equality equation (22) determines such a volume, starting with which a further compression

is accompanied by the collapse:

Vm =
36

π3

(
Nm2G

kT

)3

. (24)

If we assume that Vm = V0, then we can determine the critical temperature as the highest tem-
perature at which the gas cannot collapse at any volume:

kTc ∼ Nm2GV
−1/3

0
. (25)

Thus, the limitation of the number of particles or the volume of the system brings about the
transition from spatial homogeneous distribution to spatial inhomogeneous distribution – i.e., a
collapse. In case of N → ∞, the gravitating gas is always in a collapsed state. The calculation of
the own volume of the particles gives a critical point on the P–V diagram.

The proposed statistical approach is based on the self-consistent field approximation for the case
of a spatially inhomogeneous particle distribution. This makes the essence of selecting the states
that bring the dominant contribution to the thermodynamic potential of the system. The procedure
reduces to the calculation of the free energy in terms of the slowest variable accompanied by the
averaging over all probable fluctuations. The averaged effect of fluctuations forms the effective
potential for a slow variable whereas the nonlinearity thus obtained provides spatial inhomogeneity
of the particle distribution.
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