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Abstract. Self-conjugation of singular (vortex) beams by a static nonlinearly recorded 
hologram is reported. Diagnostics of phase-conjugated vortices is implemented using an 
original technique based on Young’s model of diffraction phenomena. It has been shown 
that the phase-conjugated vortex is characterized by the same topological charge as the 
vortex reversed through four-wave degenerate mixing being different in sign from the 
vortex reflected by a common mirror. 
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1. Introduction 
 
Until very recently, a phase conjugation (PC) of optical 
beams supporting isolated vortices [1] was implemented 
by the four-wave degenerate mixing (FWDM) technique 
alone using photorefractive crystals [2]. A few papers 
have been devoted to this problem [3, 4]. Meanwhile, 
PC of optical vortices may be applied for solving widely 
known scientific and practical problems such as a study 
of topological reactions, mutual transformations of 
singular beams of various kinds, PC-interferometry, 
optical traps and tweezers with multiply-charged optical 
vortices, laser gyro, etc. In pioneer papers [3, 4], optical 
vortices were produced by the computer-generated 
hologram (CGH) technique [5], and the direction of 
twirling of a phase helicoids was determined 
interferentionally [6, 7], namely, by the direction of 
typical bifurcation of an interference fringe observed in 
case of a coherent superposition of an off-axis reference 
wave and the tested singular beam. The important result 
of the studies [3, 4] consists in the direct experimental 
confirmation of the difference of the phase-conjugated 
optical vortex and one resulting from a common mirror 
reflection in their signs of topological charges. 

In the context of our study, it is noteworthy that the 
interest to phase singularities in optical fields was 
initially stimulated just by the investigations of optical 
PC through stimulated Brillouin scattering (SBS) [6], 
being closely related with the searching for the factors 
limiting the quality of self-conjugation of a wave front. 
The study [6] dealt with the developed speckle fields 
obeying the Gaussian statistics and supporting a lot of 
vortices (namely, one vortex per one speckle). At the 
same time, for isolated optical vortices with relatively 
simple wave front (kind of doughnut Laguerre-Gaussian 

modes [1]) SBS-PC is impracticable due to violating the 
Gaussian statistics of the field or, in other words, due to 
insufficient spatial inhomogeneity of a wave being the 
subject of PC. 

In this paper, we report a PC of vortex optical beams 
using a static hologram nonlinearly recorded with a 
standing reference wave [8-10]. Initially, this technique 
was developed to implement a holographic associative 
memory with a true brightness tone rendering using the 
signal beams with a developed speckle structure. 
However, in contrast to SBS-PC (and like to FWDM-
PC), wave front self-conjugation using a static 
nonlinearly recorded hologram proves to be applied to 
the fields of arbitrary complexity, including plane, 
spherical, diffraction waves, etc. [11]. It was this 
circumstance that became the main prerequisite for 
applying this technique to PC of optical beams 
supporting isolated vortices. 

2. The principle of a quadric hologram-based wave 
front self-conjugation 

The linear theory of holography is based on a 
supposition of proportionality of an amplitude response 
of the hologram, ( )raT , at each point with the position 
vector , to the exposure , where t  is an 
exposure time, and 

r ( ) ( )rr tIE =
( )rI  is an intensity distribution 

resulting from interference between the signal and 
reference waves. In general, however, holographic 
recording is not linear in the known sense, and the 
hologram amplitude response can be expanded into the 
power series expansion 

( ) ( )[ ]∑
=

=
n

l

l
la ITT

0

rr , (1) 
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Fig. 1. Vector diagram illustrating a QH-based PC. The total 
grating with the grating vector  provides re-scattering ( )+F

kk −→ .  
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Fig. 2. Notations for analysis of the Young strip interference 
experiment or testing the vortex beams: d – a halfwidth of the 
strip, ρ = (ρ, φ) and ρ΄ = (ρ΄, φ΄) – the position vectors of the 
edge retransmitters involved into formation of an interference 
pattern at the height r. 
 

where , and l
ll tcT = ( ) ( ) ( )[ ]rr l

a
l

l ETlc ∂∂= −1! . Practical 
conditions of validity of the representation (1) are 
sufficiently common. There is the possibility to choose 
the signal-to-reference amplitude ratio approaching to 
unity as well as exposure and development duration 
considerably exceeding those for providing “linear 
holographic recording”. Besides, a phase holographic 
recording is non-linear by definition. Nonlinearity of 
holographic recording manifests itself, first of all, in 
appearance of the higher diffraction orders. Keeping the 
term of the representation (1) with  constitutes the 
quadric hologram (QH) approximation [9, 10] (or, in 
terms of [12], “a second-order hologram, i.e., a 
hologram between two holograms”). 

2=l

Let us consider a hologram of the signal 
beam, ( ) ( )[

( ) ( ) ( ) ([ ]
( )[ ].exp

ωexp

2

121

ϕ++ω+
+ϕ+−=Ω+Ω=Ω

rk
rkrrr

0

0

tib
tia

]ϕ+−ω= krr tiAG exp , nonlinearly recorded 
with a standing reference wave, constituting of two 
oppositely directed beams,  

)
 

The complex amplitude of the signal Laguerre-
Gaussian beam is determined by the well-known 
representation [1]; the explicit form of this 
representation is inessential for the purpose of this study. 
An amplitude response of such QH has the form 

( ) ( ) ( ) ( )[ ]∑
=

Ω+Ω+=
2

0

2
21

l

l
la GTT rrrr . (2) 

The quadratic component of the representation (2) 
includes, among others, the term 

( ) ( ) ( )( )
⎭⎬
⎫

⎩⎨
⎧ ΩΩ ∗ 2

2122 rrr GT . It is this term that is 

responsible for PC of the signal wave into the self-
conjugation regime. Namely, affecting the signal wave 
( )rG  by this partial operator of a QH results in 

reconstruction of its PC-replica 

( ) ( ) ( )( ) ( )

( )[ ] ,ωexpα
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GGT
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within the complex factor ( )[ ]×ϕ+ϕ=α 212 exp2 iabT  

( ) 2rG× . 
Physically, a QH (2) is read out only with the signal 

wave, in absence of both components of a standing 
reference wave involved into the recording process. 
Thus, a static QH recorded into FWDM arrangement is 
read out into the self-conjugation mode similarly to 
SBS-PC. This statement can be re-formulated in terms of 
spatial-frequency heterodyning (non-linear mixing) of 
two sets of cross-gratings resulting from the interference 
of the signal wave with each of two components of the 
standing reference wave (within the frame of the second-
order hologram concept [12]), see Fig. 1. kkK 01 −=  
and kkK 0 −−=2  are the vectors of interferentionally 
produced cross-gratings. The quadratic term of Eq. (2) 
describes the result of spatial-frequency heterodyning of 
such gratings, which partly results in appearance of the 
differential and total “pseudo-gratings” [13]. As a rule, 
the pseudo-gratings do not satisfy the Bragg rule. Just 
owing to this circumstance, volume nonlinearly recorded 
(in particularly, phase) holograms reconstruct the images 
that are free of nonlinear noise [13]. In our case, 
however, the remarkable exception to this general rule 
takes place. Namely, the total gratings with the grating 
vectors ( ) kKKF 1 22 −≡+=+  occur to be the Bragg 
ones for the read out signal wave with the wavevector k: 

( ) kkF −=++ . (4) 
Eq. (4) (the vector equivalent of Eq. (3)) is illustrated by 
the vector diagram Fig. 1. 
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 a) b) c) 
Fig. 3. Simulated interferential patterns behind an opaque strip illuminated by the vortexless mode  (а) as well as doughnut 

vortex modes  (b) and  (c). 
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Fig. 4. Experimental arrangement for PC of optical vortices by a QH and their diffraction test: L – laser, BS – beam-splitter, M – 
mirror, IT – inverse telescopic system, CGH – computer-generated hologram, D – diaphragm selecting the operating diffraction 
order, QH – quadric hologram – PC-mirror, OS – opaque strip, OP – observation plane. 
 
 

 
 a) b) c) 

1Fig. 5. Laguerre-Gaussian mode  (a), diffraction test of using an opaque strip (b), diffraction test of the self-conjugated (and 
mirrored) vortex (c). 
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3. Young’s diagnostics of optical phase singularities 
 
Diagnostics of phase-conjugated vortices was performed 
by applying the technique based on the Young-
Rubinowicz model of diffraction phenomena (the edge 
diffraction wave model) [14-16]. This technique were 
recently introduced in works [17-19] and successfully 
used for testing the phase singularities into quasi-
monochromatic spatially partially coherent vortex beams 
[20, 21] and into spatially coherent polychromatic 
(“rainbow”) optical vortices [22], as well as for 
diagnostics of polarization singularities into combined 
vortex beams [23]. 

The essence of diffraction diagnostics of optical 
vortices consists in the following. In accord with the 
Young-Rubinowicz model of diffraction phenomena, a 
diffraction pattern within the directly illuminated area 
behind an opaque screen is determined as the sum of the 
geometrical-optical wave from the primary source and 
the wavelets from the edges of the screen, while the  
pattern within the geometrical shadow is determined as 
the result of interference of the only edge wavelets. 

Interferential patterns within a shadow of an opaque 
strip positioned in vortexless and vortex beams are 
noteworthy different. In accord with the stationary phase 
principle [15, 16], a pattern at any height r  from an 
“equator” of the beam is determined by the so-called 
critical points of the second kind positioned at the strip 
edges at the same height r  (see Fig. 2). When an opaque 
strip is illuminated by a vortexless beam, the 
corresponding retransmitters from the right and left 
edges are in-phase. As a consequence, one observes 
straight Young’s interference fringes with peaks along 
the mean line of the shadow. On the contrary, when the 
tested beam is the m-charged vortex, one observes 
bended interference fringes with the maximum (for even 
m ) or with the minimum (for odd m ) at the equator. 

Generally, the phase of the Young interference fringes in 
the case of interest obeys the rule: 

( ) ( )[ ]d
rmdr arctan, +π=ϕΔ , (5) 

where  is a halfwidth of an opaque strip. It follows 
from Eq. (5) that the value of interference fringe 
bending is determined by the modulus of the vortex 
topological charge, and the direction of bending is 
determined by the sign of the topological charge (or the 
direction of phase twirling). Fig. 3 illustrates the result 
of simulation of interferential patterns behind the opaque 
strip illuminated by the vortexless Laguerre-Gaussian 
mode and the doughnut Laguerre-Gaussian modes with 
topological charges 

d

1−=m  and 2−=m , for 
4.0=zwd  (  is a halfwidth of the beam at a distance zw

z  from the caustic neck estimated by the level  from 
the maximal intensity). Dashed lines of fragments b and 
c in Fig. 3 show the shift of the interference fringes at 

the “poles” of the beam for one and two periods, 
respectively. 

2−e

 
4. Experiment 
 
The experimental arrangement for PC of vortex beams 
by a QH and for a diffraction diagnostics of the self-
conjugated optical vortices is shown in Fig. 4. The beam 
of a He-Ne laser (λ = 0.63 μm, the power P = 40 mW) is 
splitted into a signal and reference beams. Along the 
reference leg, the inverse telescopic system serves as the 
beam expander, and the mirror just behind a registration 
medium is used to form a plane standing reference wave. 
The reference leg is adjusted with the autocollimation 
accuracy. The singular beam is produced using an off-
axis CGH [1, 5] computed for reconstructing the m-
charged vortex into the m-th diffraction order. The 
operating diffraction order is selected by a diaphragm. In 
our experiments, we use the first and third orders of a 
phase CGH. Using a neutral attenuators (not shown in 
Fig. 3), we provide the amplitude ratio of the exposing 
beams 1:1:1:: ≈baA . Nonlinear holograms are 
recorded on holographic photoplates PFG-03 with 
processing in the developer GP-2. So, we obtain phase 
holograms with the high-diffraction efficiency both in 
the first and higher diffraction orders. A distance from a 
CGH (the plane of the optical vortex formation) to the 
beam splitter decoupling the self-conjugated beam is 
135 mm. The distance from the decoupling beam splitter 
to the opaque screen (the plane of analysis of the self-
conjugated vortex) is changed from 100 to 185 mm. A 
metallic 1-mm diameter needle is used as an opaque 
screen. The distance from the needle to the plane of 
observation of the Young interference fringes is 
330 mm; for that 77.0≈zwd . (Let us note that the 
latter appointed distance is not critical being chosen 
from the considerations of experimental convenience.) 
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The experimental results are represented in Figs 5 
and 6. Fig. 5 shows the Laguerre-Gaussian mode  
and the result of diffraction testing both this mode and 
its self-conjugated replica. Bending the Young 
interference fringes in Fig. 5b indicates the clockwise 
twirling of a phase helicoid of the forward-propagating 
vortex, in agreement with the results [18, 19] and 
discussion of Eq. (5). On the contrary of common 
mirroring, which changes the direction of twirling of a 
phase helicoid, PC of a vortex preserves the sign of its 
topological charge. This difference is the noteworthy 
confirmation of PC properties inherent to the hologram. 
Note, the previous investigation of a QH-based 
associative memory [9-11] dealt mainly with the spatial 
intensity distribution in the self-conjugated associative 
response (to provide a true brightness tone rendering 
over the reconstructed image), rather than with a fine 
phase structure of the self-conjugated field. Here, we 
represent the first direct  
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Fig. 6. Laguerre-Gaussian mode  (a) and the diffraction 
test of its self-conjugated (and mirrored) replica near the PC 
plane (b). 
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confirmation of the PC properties of a static hologram 
nonlinearly recorded with a standing reference wave. 
Namely, the self-conjugated vortex must produce the 
Young interferential fringes (observed into the inverted 
coordinates!) behind an opaque strip with identical 
bending as that observed in the forward-propagating 
beam observed in initial coordinates, while the spatial 
(three-dimensional) configuration of a phase helicoids  
is preserved under alternating the direction of the beam 
propagation. Nevertheless, in Fig. 5c, one observes 
bending the interference fringes that is opposite to that 
shown in Fig. 5b. Moreover, the experiment shows that 
the common mirroring of an optical vortex results in the 
same change of the topological charge. This 
circumstance has the following explanation [4]. 
Inversion of a phase twirling observed in our PC 
experiment is caused by the mirroring from the 
decoupling beam splitter guided the self-conjugated 
vortex into the observation plane. It means that the self-
conjugated optical vortex between a QH and a beam 
splitter possesses the twirling of the phase helicoid 
intrinsic to the true PC. The result shown in Fig. 5c is 
observed both in the plane of PC and at arbitrary 
distances from this plane. Thus, the singly charged self-
conjugated optical vortex is topologically stable. 

At last, Fig. 6 shows PC of the multiply charged 
(with |m| > 1) optical vortex. Fig. 6a demonstrates the 
Laguerre-Gaussian mode  reconstructed into the 
third diffraction order of the same CGH, which was used 

for obtaining the results shown in Fig. 5. Self-
conjugated replica of this beam undergone diffraction 
testing (for the distance from the decoupling beam-
splitter to the opaque strip 135 mm) is shown in Fig. 6b. 
The dashed line indicates increased bending on 
interference fringes in accord with Eq. (5). 

3
0
+LG

a) 

b) 

In contrast to singly charged optical vortices, the 
beams with |m| > 1 generate the self-conjugated replicas 
through diffraction of the initial beam at a QH only in 
the limited region near the PC plane. As a matter of fact, 
the multiply charged vortices are topologically instable 
[1]. The propagating multiply charged vortex decays 
into elementary (singly charged) vortices of the same 
sign, which are repulsed similarly to electrical charges 
[4]. That is why, observation of the multiply charged 
vortices into random fields, such as developed speckle 
fields, is hampered. In the case studied in this paper, we 
operate with optical vortices artificially reconstructed 
from a CGH, which provides self-conjugation of the 
multiply charged phase helicoids, though in the limited 
region. The diffraction technique for diagnostics of 
singular beams used here provides a possibility to 
observe decaying the multiply charged vortices into the 
elementary ones under their propagation. So, when an 
opaque strip moves from the PC plane, the single set of 
Young’s interferential fringes with m-fold increased 
bending decays into the set of m sets corresponding to 
the singly charged vortices with the same direction on 
fringe bending. 
 
5. Conclusions 
 
Thus, in this paper, we represent a PC of vortex optical 
beams using a hologram nonlinearly recorded with a 
standing reference wave. PC is provided by the 
combination (summation) gratings associated with the 
quadratic component of an amplitude response of such a 
hologram. The main practical pre-request of holographic 
recording nonlinearity, namely, signal-to-reference 
amplitude ratio close to unity, providing high visibility 
of the resulting interferential pattern (deep spatial 
inhomogeneity of the exposure field) ensures the 
possibility for high-efficient PC of a vortex beam into 
self-conjugation mode using a static QH recorded with a 
standing reference wave. 

To test phase singularities into phase-conjugated 
optical vortices, for the first time, we have applied the 
diffraction technique by which the PC properties of a 
QH have been confirmed experimentally. It has been 
shown that the spatial configuration of a phase helocoid 
of the self-conjugated vortex differs from such 
configuration resulting from a common vortex 
mirroring. 

At last, the possibility of self-reconstruction of the 
multiply charged vortices at the PC plane has been 
demonstrated, for example, the Laguerre-Gaussian mode 
with 3=m . Such reconstruction has been confirmed 
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using the diffraction diagnostic technique on the 
correspondingly increased bending the Young 
interference fringes inside the shadow of an opaque 
strip. 
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In some specified sense, the represented here effect 
of PC of optical vortices corresponds to the earlier 
studied vector PC of circularly polarized vortexless 
beams using a static hologram recorded nonlinearly with 
two oppositely directed orthogonally linearly polarized 
reference waves [8]. In the case considered here, 
transformation of the spatial structure of a phase 
helicoids is associated with that of the orbital angular 
momentum of a vortex beam, while in the case of vector 
PC one considers the transformation of the spin moment 
intrinsic to a circularly polarized signal beam. 
Nevertheless, general regularities of transformation of 
such beams following from the PC properties of a QH 
are identical. So, in both cases the result of observation 
depends on the choice of coordinates (on direction of 
beam propagation), and the interpretation of the 
observed results presumes accounting the additional 
transformation of the beam structure due to the 
reflection of the self-conjugated beam at the beam 
splitter decoupling this beam in the observation plane. 
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