Semiconductor Physics, Quantum Electronics & Optoelectronics. 2000. V. 3, N 4. P. 554-557.

PACS: 61.10.N, 68.65

Simulation of low angle X-ray diffraction
on multilayers subjected to diffusion

A.G. Fedorov

Institute for Single Crystals, Lenin Ave. 60, 61001 Kharkov, Ukraine

fedorov@xray.isc.kharkov.comd

Abstract. Calculative method based on the Riccatti type differential equation was tested for
simulation of low angle X-ray diffraction patterns from the one-dimensionally ordered
multilayer. Some peculiarities of diffraction were revealed connected with asymmetrical dis-
tortion of the multilayer profile due to different processes on the layer boundaries.
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1. Introduction

Thin film multilayers find application in different areas,
for example, as dispersive elements in X-ray optics, or
objects with inherent quantum dimensional features in a
case of single-crystalline multilayers (superlattices). X-
ray diffraction examination of the structure of multilayers
reveal the appearance of additional peaks (satellites) near
the Bragg reflections for the single-crystalline multilayers
and low angle diffraction reflections near the incident
beam for both amorphous (or fine grain) and single-crys-
talline multilayers. First type of diffraction is connected
with periodic deviations of the unit cell parameter and
electron density, and second type of diffraction is caused
only by periodic deviations of electron density of alter-
nating layers.

Multilayer efficiency in different applications depends
among others on the interface abruptness and flatness as
well as on stability of the structure. The diffusion inter-
mixing and formation of new phases on the boundaries
may occur at elevated temperature [1, 2]. Low angle X-
ray diffraction on multilayers with comparatively large
period is described commonly using the set of recurrent
relations based on the Fresnel equation solved on inter-
faces [3, 4]. This supposes the uniform dielectric con-
stant by layer and abrupt interface transitions. Real
multilayer may not offer such ideal rectangular profile.
Usually, the let-out is to approximate the smoothed pro-
file as a set of lamella. In this work another approach
based on solution of Maxwell equations for layered struc-
ture with arbitrary profile of the dielectric constant dis-
tribution is examined.
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2. Background

Assume the plane wave passing through the medium as
outlined in Fig. 1, where XY plane separates vacuum and
medium, H and £ lies in XZ plane and E is parallel to Y
axis. The simplified Maxwell equations for this case are

MM, M. o OH, OH.
0z ox ¢ 7 ox 0z 0
aEy :—ng, ai:igy aﬂ:o

dz c Y7 ox c oy

The plane wave expression E = Ejexpi(kr)=Eyx
xexpi(kry, +k,r, +k_r.) putin(1)yields the following
values for H, ,H. :

C
H,=-—k.E,,

4
. H, =—k.E,
[0 w

Now, conformably to [4], let us turn out the follow-
ing. Equations for incident wave propagating in medium

at the angle ¢ may be written as

Ef = P(z)expiq , Hf =-nP(z)cospexpiq ,

» (@)
H. =nP(z)singpexpiq
and equations for a reflected wave are
E)If = R(z)expiq , Hf =nR(z)cospexpiq , 3)

HZR =nR(z)sinpexpig
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Fig. 1. X-ray plane wave.

Here we take in account that ¢/ =1/k( in vacuum,
k =kon = ky4Je(z) , €(z) is the dielectric constant of me-

P(z)expiq

0
and so on. P(z) and R(z) are the amplitudes of initial
and reflected waves, correspondingly, ¢ denotes kxsing .
Then, applying (1) to (2) and (3), we obtain the system

dium, and hence Hf =_£sz}1j =_k<‘2)s<p
)

dR dP ’

£ . _
= (P=R)———+ikcosp(P - R) =0

2ecos” @ @)
dR

Z+fl—j—ikcosg0(P—R) =0

Here £’ = de/dz . Denoting reflectivity X = R/P, we
turn out from (4) after some transforms

D ikxcosp+ (- x2)—E - (5)
dz 4ecos” @

This Riccati type equation describes reflection from
the medium with arbitrary distribution of dielectric con-
stant and gives the diffraction pattern in appointed angu-
lar range. For X-ray wave range the following more con-
venient form is applicable. Meaning that the refraction

coefticient n(z) =sing, /sing , we get
SQO, 3(4), 2000

ax _ “2ik, X \e(z)-sin® ¢, +
dz

£'(2)
4e(z)—sin’ @, ]

(6)
+(1-X?)

In the X-ray waverange, €(z) is definedas € =1-8 +iy,

where
2 2 2 2
e A e” A
5: z_Na.fl’ y: Z_Naf29
me- T me- T

A is the wavelength, N, is the atomic density in the unit
cell, fiand f5 are real and imaginary parts of atomic scat-
tering factor, respectively, that may be taken from [5] or
downloaded from www.cxro.lbl.gov/optical_constants/
asf.html.

Considering € = const in (6), one can get obviously
the usual solution for the film with uniform dielectric con-

stant on the substrate dX / dz = —2iky X & - sin? ¢, and
X = X exp(=2ikohyle —sin? @y ) where / is the film

thickness and initial condition X, is the known Fresnel
eqution for reflection from the boundary of two media

‘/ef —sin? 0N —‘/ss —sin? 0N
Xo=

7
‘/ef—sinz 0 +‘/gs—sin2 oN @

These are just the set of equations that allow to calcu-
late the reflection from the rectangular profile multilayer
mentioned above.

Change of multilayer profile due to diffusion may be
described by applying the solution of diffusion equation

2.2
—n“n°Dt nnz
e(z,t)=¢ exp| ———— [cos| —
(z,0) oznanxr{ P J [H) ®8)

where g is the amplitude value of dielectric constant de-
viation, namely, the difference between constants of one
and another layers; H is the period of multilayer, D —
diffusion coefficient, t — duration of the process. In the
most simple case we suppose the rectangular initial profile

£(z0)=¢ 2 a, cos(%tz)
n

with expansion coefficients
2 .
ay=S, a, =—sin(nxnS)
nrw
that undergoing to identical diffusion smoothing on the

both boundaries of layers, which is supposed on Fourier
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expansion by cosines. S denotes a symmetry factor of the
period, or the relation of the layer thickness to the pe-
riod. If the layer thicknesses are equal, then S = 0.5.
Thus, the profile smoothing due to diffusion is defined by
the dependence of expansion coefficients on Dz:

a,(t) = a, (0)exp(—n*w> Dt/ H?)

3. Results

Described approach was tested by calculating the diffrac-
tion on the hypothetical Mo-Si multilayer consisting of
30 periods with period value 10 nm. Dielectric constant
profile was represented as the Fourier series according to
(8) and equation (6) solved numerically by the 4th order
Run-ge-Kutta method with initial conditions given by (7)
on the boundary of silicon substrate and first layer. Solu-
tion procedure was executed from the boundary to the
multi-layer surface where reflectivity was taken as a prod-
uct of complex conjugated amplitudes X. This was re-
peated in a sequence of angular points. The resulting curve
was convoluted with instrumental broadening function of
Gaus-sian shape and the diffraction pattern so was ob-
tained. In Fig. 2 there are presented the calculated dif-
fraction patterns of rectangular profile multilayer depend-
ing on variation of its symmetry factor. Here and below
shown are the reflections from the 2nd to 6th order.
Periodically arranged layers with alternating aver-
age electron densities represent the one-dimension lat-
tice for which the structure amplitude may be calculated
as a Fourier transform of electron density distribution.
Squares of structure amplitudes obtained in such manner
are presented in Table. These values are proportional to
the intensities of corresponding reflections and may be
compared with diffraction patterns in Fig. 2. In this par-
ticular case of rectangular multilayer profile, calcula-
tion with conventional method using the Fresnel equa-
tions gives completely the same patterns. More attrac-
tive task is to simulate diffraction pattern for multilayer
subjected to diffusion intermixing and thus the profile
smoothing. Moreover, the processes on the layer bounda-

Table. Squares of structure amplitudes for different symmetry
factors

Reflection Symmetry factor

order 0.34 0.45 0.5
1 100 100 100
2 23.21 2.45 0
3 0.06 9.04 11.11
4 6.66 2.21 0
5 3.41 2.05 4
6 0.06 1.86 0
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Fig. 2. Evolution of diffraction pattern depending on the symme-
try factor.

ries may not be obligely identical, so the asymmetrical
profile transformation may take place[1, 6]. A set of cal-
culated diffraction patterns for multilayer in a course of
symmetrical diffusion smoothing is shown in Fig. 3. Teen
the comprehensible exponential decrease of reflection
intensities is obvious, it is more fast for reflections with a
larger number. But diffusion with different coefficients
on the boundaries gives another development of diffrac-
tion picture. This is demonstrated in Fig. 4. A slight de-
crease of the layer symmetry leads to appearance and
growth of formerly forbidden reflections.

Fig. 3. The set of calculated diffraction patterns of the multilayer
subjected to symmetrical diffusion intermixing with diffusion
coefficient 2.5-10"1% cm?/s, symmetry factor 0.45. Final profile is
shown on the inset.

500, 3(4), 2000



A.G. Fedorov: Simulation of low angle X-ray diffraction on multilayers ...

Fig. 4. The set of calculated diffraction parrerns of the multilayer
after simulated asymmetric diffusion intermixing with diffusion
coefficients 2-1020 cm?/s and 5-107'” cm?/s on the sides of layer.
Symmetry factor is 0.5.

Conclusions

Some peculiarities of low angle diffraction patterns from
multilayers are caused by its profile asymmetrical dis-
tortion during processes of intermixing or phase forma-

500, 3(4), 2000

tion at the boundaries. Assumed mechanisms of multi-
layer profile transformations may be verified by simula-
tion of diffraction pattern solving numerically the equa-
tion (6). In general, any distribution of dielectric con-
stants of the layer or periodical multilayer may be intro-
duced in a suitable form and then the diffraction pattern
of this object may be simulated. If, especially, the inves-
tigation of asymmetrical diffusion is of interest, then the
preliminary calculation of diffraction pattern is useful
because it allows to find the relation of layer thicknesses
the most sensitive to expected effect.
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