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Abstract. Using the method of the retarded Green function the polarization operator of phonons
has been calculated with the simultaneous account for the linear and quadratic terms in the
Hamilton operator of exciton-phonon interaction. It is shown that at high temperatures and
concentrations of excitons the quadratic term may play as important role as linear one.
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1. Introduction

The influence of phonons on various processes in solids
[1]in particular on the excitonic ones is studied for a long
time [2]. Theoretically it will be carried out more often
using Green functions (GFs) as a mathematical tool.
Though the various calculation methods of GFs for
quasiparticles interacting with phonons are well devel-
oped and widely presented in the literature, study of con-
crete systems frequently requires additional researches.
Such necessity arises, in particular, when the Hamilto-
nian of system is complex, and GF it is necessary to be
found in higher than in a first-order approximation, or
sometimes in any order of a perturbation theory (PT).

Except for a usual broadening [3], the phonons be-
come apparent to such phenomena as splitting of exciton
lines in some materials [4], hierarchy of electronic den-
sity [5], coupling with another phonons in superconduc-
tors [6, 7], electron correlation [8], etc. The interpreta-
tion of these effects is more often impossible within the
framework of linear approach on the operators of exciton-
phonon interaction.

The importance of the account of square-law interac-
tion was specified earlier in the works [9-14]. In [9, 10]
basing on bilinear interaction with phonons the most com-
mon estimations of the spectral characteristics were only
made. Tkach [13] was the first who accentuated that in
the case of weak coupling, when calculating GF, it is
impossible to be restricted to the first order of PT, be-
cause the contributions from the linear and bilinear terms
may differ by signs and be comparable with the contribu-
tions of the higher orders, instead of exceeding them. In

[14] the quadratic term was accounted for the estimation
of temperature shift of exciton bands of absorption in the
frame of momenta method.

However absence of reliable models, in which such
interaction strictly appeared in a Hamiltonian found from
the first principles, resulted in the fact that in the theory of
excitons for a long time it was not paid necessary atten-
tion. There is no reason to neglect this contribution ad hoc.

The purpose of this work was to conduct a careful
study about the contribution of bilinear term of exciton-
phonon interaction in the polarization operator of
phonons.

2. Basic equations

Let’s consider an ideal crystal, as system of the periodi-
cally placed quantum oscillators, in which during irra-
diation by light the excitons can be created. Owing to
scattering on a phonon subsystem the time of their life is
limited. Let’s count, that the movement of an exciton in
the phonon bath remains coherent and can be described
by a Bloch wave. Thus, the exited states of a crystal one
can consider as the system of excitons and phonons inter-
acting among themselves. In case, when this interaction
is possible to regard as weak, the most important role
will be played by few-phonon processes, and the Hamil-
tonian of such system in the notation of second quanti-
zation can be written as follows:

H:Hex+th+Hint 1)

where
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is operator of excitons energy in an ideal lattice;

- v 1
th - qszs (q) |élmqsbqs +EE (3)

is operator of phonons energy;
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refers the operator of interaction excitons with phonons,
accounting for the first two terms of expanding of their
energy interaction into a series in deviation of atoms from
an equilibrium state. The prime in the last sum means,
that the summation is taken over all sets s #s;, and q #q;.
In Eq. (4) we adopt the next notations as well: £, (k)is
the energy of an exciton of u-th zone with a quasi-mo-
mentum k; ¢ (q) denotes the linear and @ — quadratic
functions of exciton-phonon coupling; Qs(q) is the en-
ergy of phonons of s-th branch with a quasi-momentum q;
a*,a and b*,b are, respectively, the operators of crea-
tion and annihilation of both the excitons and phonons
which obey Bose commutation relations.

The mean value of occupation numbers of phonon
states due to their interaction with excitons are changed.
The magnitude of this change is possible to be calculated
by various methods [15]. At final temperatures it is con-
venient to take an advantage of retarded Green functions
technique, which permits analytical continuation in com-
plex plane. As it has been shown by Bogoljubov and
Tjablikov [16], such functions satisfy to an infinite chain
of the coupled equations, which should be solved self-
consistently. The search for the solution of such set of
equations is usually reduced to search for the conditions
for which it is possible to break a chain, and thus to get
the finite set of equations.

The technique of deriving GF on an example of cal-
culation of phonon Green function for systems Hamilto-
nian of which contains simultaneously the linear and
square-law terms on the operators of exciton-phonon in-
teraction we shall demonstrate below.

Let’s wnte down the equation of movement for opera-
tors au k +Bgs, b_

In accordance w1th the Heisenberg representation,
the change in time of the any operator F is determined
by the equation:

zh —= [ %)
where H is the Hamilton operator of the system.

SQO0, 3(3), 2000

Proceeding from this and using the Hamiltonian (1)
it is easy to obtain

nd. . .
Ijh_tau,k =Epxay it

D+ z,ul 5q¢llll1 (Sq)au k—q(b +b* )
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where the functions ¢ and @ satisfy next conditions
—a+ (_
¢uu1 (qs) ¢Hﬂ1( qs),

CDIJ,UI (qs’qlsl):q);u (n

Casmas).

which follow from a hermicity of the operator of exciton-
phonon interaction.

The equation of movement for the operators b b* look
like:

D _ ~ A+ ~
g = Qs(q)bqs + ZNH k¢““1 (_ Sq)au’k—qaul,k +
D ~t A
O Slk
%Q)_qlsl +qu ®
O
Ly =0 Wy - ()it . -
- S(q) qs ZNU k¢u}11 Sq au,k+qau1,k
I+
D_ Ebuul(sq, qul)aﬂ k+q+q; aI»ll (bqlsl b—qm)
Slk
where
Q,(a)=2,(-4q). ©

The retarded Green function of phonons is given by

D, (5q,1) = =inO(r) <<[by (1), s (0)] >>. (10)
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The angular brackets symbolize an average over the
phonon distribution in energy. Let’s derive the equation
of movement for 2).. Making use of Eq. (8), as well as
relationship

9 oy =50) (1)
ot

we find

-, (20,0 = 30 + Q@) 74 (2,0 +

i

+2 Ek'cp
1A E
S01

+Gg(k —q—0g,k,~g151;a8t)]-

sy (050150 [Go(k —q-ay. ks gs|t) +

(12)

The right-hand part of Eq. (12) includes Green functions
of the higher order than that of the initial function, namely

é‘sl( )= =ihO() << [al—q ()i (1), g O] >>
62(-) = OG-, (i (b, (0).bgs O)]>>,
55 () = ~ihO() <t o, (Vi (z)b-qm (1), b 0] >>.

(13)

Regarding the overlap of separate zones as weak, further
we shall omit the summation over symbols ¢ and p; For
the sake of brevity we shall eliminate also argument ¢ in
the operators located more to the left of a point. Let us
differentiate the expression (13) with respect to time, ac-
counting for the Egs. (6), (8). Because some cumbersome,
we bring below only the equation of movement for one of
functions (13), namely for G, function.

i &:5(1);, <<

>>+\E, - F
o1 [“ k

A~ T4
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k a-a1 7k qs) qS(
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The terms within the angular brackets are Green func-
tions of the higher order for which, in turn, it is necessary
to write the equations of movement, etc. There are no ba-
sic difficulties in this sense, but in connection with fast
growth of number of the operators and their mixing the
record of the equation already at the third stage of differ-
entiation becomes difficult for intelligent perception.
However, using the commutation relations, it is always
possible to reduce the GF with the mixed phonon opera-
tors to the function, in which all operators with «+» like
b; will be placed more to the left hand side of the allo-
cated operators b, and on the contrary. According to the
terminology offered in [18], first function is named as left-
hand side ordered, and the second one — as right-hand
side ordered GFs. Thus, it is possible to express the de-
rivative of the function of any order (certain type) with
respect to time, through the appropriate functions of the
lower orders (the same, or that and another types). For
functions of the higher order, it results in the infinite chain
(or set of the equation), accurate solution of which cannot
be done analytically. For its approximate solution, it is
necessary somehow to get the restricted set of the equa-
tions. It is achieved just by decoupling a GF of the high
or-der on a GFs of the lower orders. The correctness of
such procedure realization which, clearly, to the certain
extent is arbitrary [19-21], may be attained by meeting
the demands of the Wick theorem for correlation func-
tions in the limit of vanishing coupling when interactions
in system (¢ P - 0) tend to zero. To such demands just
satisfies a method of decoupling symmetric over all op-
erators proposed by Lubchenko, Nitsovich and Tkach
[18].

To get the equation for determination of 2, (sq, t) we
execute procedure of pairing of the operators under the
average sign,basing on the Wick theorem for the quan-
tum averages and making use the mentioned «symmetri-
cal» method. Let’s show it on an example of the function
included in the equation for G,

Qg ((h)]Gz‘

—q2s2 6" qisy gy (0)] >> —

~ ~ I+
“x-q- makakﬁ‘hakl +bas (0)] >z

+h* )[;qs (0)] >>§

—4q252 E

(14)
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where

D])sw

Vs =<<besbys >>=-n I 0w (16)

kBT

is the mean number of phonons in the sq state. Proceed-
ing from the proof executed in [17], according to which a
statistical average for product of odd number of the
phonon operators is infinitesimal quantity, we have ne-
glected contributions from terms containing the follow-
ing averages:

b >>

>> <<b sz >

<< qu >> <<b b

q151 74252
[;+ T+ L+ (17)
q151 4252 4353

Upon performing the similar decoupling with respect
to all averages included in Eq.(14), we have obtained the
following equation of movement for G, Green function:

oG
Zh% = (Ek —Ek_q_ql _Qsl ((h))Gz (slql) +

+oy, ((11)[(‘7qls1 )G (k-q-q.k—q;;95) -
- +‘7q131 + ﬁk—q—ql )G1(k—q.k;gs) -
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The equation for functions G and G3 can be found
similarly.

Replacing now in Eq. (18) the difference of quasi-
momenta k —q —q; by k—q as well as k in equations for
both the G and G5 by — k+q; we can easily find the
equation of movement for the rest Green functions
Gy (k—q,k+qp,q;51;9s) and Gy (k—q,k+q;,~q51;95) .
Hence, we get the closed set of five linear differential
equations.

If one take into account that the Fourier transforma-
tion for Green functions and for the delta-function has a
form:

1 00 _:
D, 0.0)=- [ 2, (sa.q0)e ™ dgo (19)
1 [ _:
Gi(sqvl):EJ-_wGi(quQO)e ' dyg (20)
D Y
()= [ ™" day. 1)

than one can be passed to the set of equations for determi-
nation of Fourier-images. Owing to dependence on quasi-
momenta this set still remains rather difficult and cannot
be exactly solved. But, after procedure of decoupling,
which itself is the certain approximation, there is no ne-
cessity in it. To solve this set of equations, it is more mean-
ingful to keep only that accuracy, which does not exceed
accuracy of the decoupling procedure.

Natural way for the solution is the iterative method,
and the criterion of reasonable number of iterations (at

the chosen order of the splitted GFs) can be provided with
exact equality [18]: G (S} [1] SZ)Gz([lsﬁ 1) = G(k)5s1.—s2 )

which follows from commutation relations for the phonon
operators. In the case of excess of justified number of
iterations this relation is carried out not so strictly, but
accurate within the terms of higher orders in a coupling
function. For the solution of the mentioned set of five
equations there are enough of two iterations.

We arrange Green function £, (sq) in expressions for
G5 , Gy and in the first iteration we shall neglect by the
terms with summation over s,q, . Then the Fourier-com-
ponent for it can be obtained from the equation:

902, (59) =1+ Qg 7, (sq) + ) § ()G (k~q ki gs) +
k

23 0 (4G (kg K aisiias) +
s1q1.k
+G3(k—q—q;,k,—q;51;99)].

(22)

Thus, the closed set of equations finally takes the form:
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where the symbol g in the right-hand part of functions G,
for shortness, is omitted; NV = kﬁk there is a complete
number of excitons in a zone. The last set of four equa-
tions (23) allow us easily to find expressions for functions
G,,G,,G5 and Gj. So, substituting them into the first
equation of the set (23) and neglecting the terms of the
order of |¢ (( ] we obtain the following equation for
function Gy (k q,k,qs)

) - ¢s (q) Z)r (qS)(ﬁk_q - I’_lk)
qo ~Ex —Ex—q

In the second iteration we shall express Green func-

tions G,,Gy,G3,Gy through the function (24). Substi-

tuting the equations for functions G, and G5 already ob-

tained in this approach, and Eq.(24) in Eq. (22), we can
express the £, in a Dyson form:

G (k—q,k;qs

@24

1
q0 -9, (a)-N(sq.5040) °

where Il (sq, soqo) is polarization operator of phonons,

2, (sq,5040) = (25)

which is determined by

I’_lk_q —nk

M(sq,s0q0) = ¢,q2—+2]VCD,,q,—
( 00) Z' 5(] qo_Ek+Ek—q A,A(
Mk-q-q; ~k-q,

1.
ﬁg Ek+q1 YE o ﬁ*(”k-q-(h 5]‘11)

k-q—q

Analyzing the polarization operator we established,
that at @ = 0 it, as well as was expected, coincides with
the appropriate expression obtained by Davydov [22]in
the linear on phonon operators approximation.

Conclusions

The additional terms containing square-law on the
phonon operators function ® ¢ (-q,~q;) , bringin the
change, which can be rather essentlal at high tempera-
tures. The important feature of the PO is also that cir-
cumstance, that as testifies the deeper analysis, in any
order on ¢ and/or ®, each term is proportional else to a
number of particles in system, or to the mean occupation
numbers of appropriate states. Hence, at very small den-
sity of quasiparticles, the magnitude of I'1 becomes small,
and look on these reasons the change of a phonon spec-
trum in the problems touching upon the renormalization
of a phonon spectrum can be neglected.

However, at high concentration of excitons, the quad-
ratic coupling function @ can play comparative with the
linear function role in a renormalization of a phonon

q)+22
H k-q — 7k %_2

EﬂO E +Ex- -q % siqr .k QO‘Ek +Ek—q—q1 +Qsl(q1)

Mk—q-q;

L b5 (@, (@Ps, (~a-q;)
i 40 ~E, tEx—q-q ~Qy (ql

NN
S41

9@, @Py (Caa)

g, %

Hio — Ex +Ek
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spectrum, because it is proportional to the number of all
excitons in system N, whereas the function ¢ is propor-
tional only to the difference of 7k—q =71k .

The found above polarization operator of phonons is
suited only for weak coupling of excitons with phonons.
Having deal with any systems, without restrictions on the
coupling force of excitons with phonons, by GF calcula-
tion it is worthwhile to use the Matsubara’s diagram tech-
nique.
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