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In the framework of a field theoretical approach we study Maier-Saupe nematogenic fluid in contact with a hard
wall. The pair interaction potential of the considered model consists of an isotropic and an anisotropic Yukawa
terms. In the mean field approximation the contact theorem is proved. For the case of the nematic director
being oriented perpendicular to the wall, analytical expressions for the density and order parameter profiles
are obtained. It is shown that in a certain thermodynamic region the nematic fluid near the interface can be
more diluted and less orientationally ordered than in the bulk region.
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Due to orientational ordering, nematic fluids near a surface show richer behavior than in the case of
simple fluids. Among them are the anchoring phenomena, whereby the surface induces a specific orien-
tation of the nematic director with respect to the surface [1]. In order to understand this phenomenon,
during the past decade the Henderson-Abraham-Barker (HAB) approach , B], previously developed in
the theory of isotropic fluids in contact with solid surfaces I@], has been employed. In this approach, the
description of the fluid density profile reduces to the solution of the Ornstein-Zernike (0OZ) integral equa-
tion for the fluid particle-wall distribution function calculated from the known fluid particle distribution
function in the bulk. In the framework of the HAB approach, the application to the bulk of the nematic
model, analytically solvable at the level of the mean spherical approximation (MSA) [B], makes it possible
to investigate the role of orientational-dependent molecular interactions with the surface in anchoring
phenomena , B]. However, in the MSA, this approach does not take into account the contribution from
long-range molecular interactions and, as a result, does not satisfy the exact relation known as the con-
tact theorem [Ia, B]. According to this theorem, the contact value of the particle density near a hard wall
for a neutral fluid is determined by the pressure of the fluid in the bulk volume.

Recently, the density field theory, previously developed for ionic fluids near a hard wall I@—@], has
been applied to the description of simple fluids with Yukawa-type interactions near a hard wall [|;L_1|].
In both cases, the developed approach yielded correct results. In this theory, the contributions from the
mean field and from the fluctuations are separated. In [|;L_1|], it was shown that the mean field treatment
of a Yukawa fluid near a wall reduces to solving a non-linear differential equation for the density profile
while the treatment of fluctuations reduces to the OZ equation with the Riemann boundary condition.

In this paper, the density field theory, developed in (11] for simple fluids at a hard wall, will be gen-
eralized to nematic fluids at a hard wall. To this end, we consider Maier-Saupe nematogenic fluid model
, |E] as one of the simplest models that account for the isotropic-nematic phase transition. For simpli-
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fication we consider a fluid of point uniaxial nematogens interacting through the pair potential
v(r12,Q21Q2) = vo(r12) +v2(r12) P2 (cos612), )]

where the first term v (r12) = (Ag/r12) €xp (—agr12) describes the isotropic repulsion and the second term
with v, (r12) = (A2/112) exp (—aar12) describes the anisotropic attraction between particles (Ag > 0, Ay <
0), r12 denotes the distance between particles 1 and 2, ) = (0, gb) are orientations of particles, P»(cosf2) =
(3cos?0;, —1)/2 is the second order Legendre polynomial of the relative orientation 61,.

The application of the density field theory to the description of bulk properties of such nematic
fluids was considered in [IJ._AI, |E]. It was shown that beyond the mean field approximation, the repul-
sive isotropic term in ([ is very important for the description of the nematic phase. Within the field-
theoretical formalism, the Hamiltonian is a functional of the density field and can be written as the sum
of entropic and interaction terms

BHIp(r,Q)] =fp(r,Q) [In(p(r, Q) ArA3) —1] drdQ (2)
+gfV(r12,Qle)P(l‘lyQﬂp(l‘z,Qz)drldr2d91d92,

where B = 1/kgT is the inverse temperature, dQ = (1/4r)sin6dfd¢ is the normalized angle element,
p(r, Q) is particle density per angle, so that f p(r,Q)dQ = p(r), At is the thermal de Broglie wavelength
of the molecules, the quantity Az_el is the rotational partition function for a single molecule [IE].

In this paper, we will restrict our consideration to the mean field approximation (MFA) which is the
lowest order approximation for the partition function. In the canonical formalism it corresponds to fixing
the Lagrange parameter A, so that the following relation is true for the singlet distribution function

6BH[p(r,Q)]
bl sl i) = (3)
op(r,Q) pMEA
As aresult,
p(r1, Q1) = p* (@) exp {—ﬁ [ (12,919 [p(e2,02) - p™ (00 drzdﬂz}, @
where
1
P (Q) = ppexp (- (%%Sb/ai) PZ(COSH)]/deOSQ exp |- (%%Sb/ag) P;(cos6)] (5)
0

is the singlet distribution function for the bulk nematic in the MFA defined in the framework of
the Maier-Saupe theory [|1_A|, |E], zg = 4nppPAz, pp is the bulk value of the fluid density, S, =
(1/pp) fol P> (cos0) pPk(Q)d cosB is the bulk value of the orientational order parameter.

In order to integrate with respect to the angle in @), we should separate the angle Q;, between the
particles and the director and the angle Q,,, between the nematic director and the surface. To this end,
we express the Legendre polynomial in the potential v(ry2,Q21Q2) in terms of spherical harmonics Y2, (Q)
as Py(cosQ12) =(1/5) Y Y;;n (Q11)Y2,,,(Q2,). As a result,

m

p(rlrQIVtran) _ b 1 b
pbulk(an) =€xXpy~ [VO(rI’QW")_VO ] _%;YZM(QIVJ VZm(rI;an)_ng] ) (6)
where the mean field potentials
Vo(r1, Qun) = ﬁva(rlz)p(rz,an)drz, @)
Vam(r1, Qun) = ﬁfvz(rlz)SZm(l‘z,an)dl‘z- ®)
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The bulk values of these quantities are V(}’ = xﬁlao, VZ% = MZSb/aZ, 2m = 0 for m # 0, where %0
47 pyp B Ao,

P, Qun) pr(r;QIn’an)dQIn 9)
is the density profile. The property
Som(t, Quon) = % [ 06910, 1) Ve 12401 = 18, ) 55, L), (10)
where S5, (r,Q,) are the order parameter profiles. Far from the wall SJ,(r,Q2,,,) — Sp, S, (X, Qyp) — 0
for m #0.

Taking the gradient of equation (€) we have

1
— Vo, Q1,,Q =Ey(r, +—
(5 iy Qo) 0, Q15,Qyn) 0, Qwnp) \/5

where we define an equivalent of the electric field by

Z Yo (Q1n)E2pm (t,Qun), (11)

Eo(r, Qun) = -V, Qun), Eop (1, Qup) = =V Vo (1, Qup). (12)
Due to the properties of the Yukawa potential

(A—aZ) Volr,Qun) = 47 Aop (X, Qun), (13)
(A—a3) Vam(t,Qun) = 47 B A2S2m (1, Q). (14)

Due to the translational invariance parallel to the wall, the functions considered depend only on the
distance z to the wall, and replacing (I3) and (I4) into {T1), we obtain

p(Z,an)
Pb

a? 1
—_— +—0V02(Z,an)—_Eg(erwn)
dz 223 2063

(15)

"%z

1
2 Vzm(z Qun) — 2E§m(z’QW"))
225

In the bulk, when z — oo, we have p(z,Qun) — pb, Eo(2,Qun) — 0, E2;n(2,Qun) — 0, Vo(z,Qun) —
V2, Vag(z, Qun) — Vi and Vay (2, Qup) — 0 for m # 0. From Equation we see that the quantity in
brackets is constant regardless of the angle Q,,, between the director and the wall, and, therefore, it can
be evaluated, for instance, in the bulk as the reduced pressure SP/pp within MFA [IE]:

BP _ Ko Ky o

=1+ —+—=057. (16)
2 2 b
Pb 2o 205

Outside the system, where there are no particles, we have another invariant which is simply

2
a? 1

Yo 12 2 2 2
2 2 Vo (2, Qun) — 2% E (2,Qun) + § %2 V m (% Quwn) — 2%2 —E5,,(2,Qun) |, (W)
its value is zero far from the interface and, therefore, it is zero at the interface as well. From the continuity

of the potential and its derivative due to equation (I3) and (I4), we see that this is also true at the wall
just inside the system z = 0. Thus,

04+,Qun) @3 1
’“7”’%—‘;V§(0+,an)——2E§(o+,an)
Pb 2%0 2%
04, Q)
+Z VZm(o+,an) 2 04, Qy) | = e (18)
27{2 Pb
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Since this quantity is constant, we obtain the so-called contact theorem
BP =p(04,Qun). (19)

We should note that the contact theorem was usually proved for isotropic fluids near a hard wall IB, B].
The result obtained here is probably the first verification of the contact theorem for anisotropic fluids at
a hard wall.

From equations (I0)-(I4) we have a set of six differential equations for unknown functions
o, Q11, Quwn)y Som @, Qun)s Eo(®, Quwn), Exm@®, Qun)s Vo, Quwn), Vam(r,Qyrn). We note that in the case
when the director is oriented perpendicular to the wall, Q,,, = 0, the singlet distribution function is axi-
ally symmetric. Consequently, in the equations considered only the terms with 7 = 0 will be present. In
this paper, we will restrict our further consideration to this special case and consider the solution of the
obtained differential equations in the linear approximation. Far from the wall p(r,Q) — pb““‘(Q). After
linearization of expression (&)

0'(2,Q) = [Eg(2) + Ea0(2) P2(cos )] pP ¥ () (20)

and we have the following system of equations

0 (2) = [Eo(2) + SpE20(2)] pp , 21
1

Sho(2) = | Eo(2)Sp + E2o(2) E<Y§0>Q Ob (22)

Vi(2)=-Ep(2),  Vyy(2)=—En(2), (23)

Ej(2) = —agVo(2) + (<51 pv) p(2), (24)

Eng(2) = —a3Vap(2) + (#5/ pp) S20(2), (25)

1
where the prime denotes a derivative by z and (YZIB)Q =1/py) [ YZ%(Q)prIk(Q)dcose (k =1,2). This
0

system reduces to two second order differential equations for Ey(z) and E»(z)

E{(2) = Eo(2) (5 + ad) + Ex0(2)x5 S, (26)
Ejo(2) = Eo(2)%5 Sp + Eo(2) [a5 + (¢515) (Yapdal 27)

which can be solved with the boundary condition that should include the contact theorem (@39). Thus,

pa_, Mmad=ba(a-ot) |
Pb %5 Spy
22— a2 - 12((Y2)a — (Yap)?
A A 2(2 207Q 20 Q) B, e—/lzz’ 28)
zZSb
S20(2) (Ag-a3) . _ N—ay)
s Lo 023 2 Bie Aoz_(zzissze Aoz, 9)
b Ob %5 Sb %5 5p
where
1 P 12 2
/lf,'zzg %3+a3+?2<Y220)Q+a§i (%%+a%—?2<Y;O)Q—a§) +4x3u3 S2 |, (30)
2 2 22 2 2 2
B - %5 Sp g A5 — a5 — (¢515)(Y;5) 0 B ——stb—B 31)
1= 212 2 2 ’ 2= 2 L
2[A5-23) | a3 as 2a3

The values of parameters Ay and A, coincide with similar parameters obtained in the bulk case after
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Figure 1. (Color online) The density and the order parameter profiles in the linearized approximation
for pb/ag =0.5, Ag/ Ap = 2.2, ag/ap = 1.25. Different lines correspond to different values of Sy, [i.e., the
reduced temperature T* = 1/(SAsa2)].

including the Gaussian fluctuations ]. Similarly to the bulk case, parameters Ay and A, characterize the
screening of the repulsive isotropic and the attractive anisotropic interactions, respectively. The density
profile p(z) and the order parameter profile S;O(z) = S20(2)/ p(z) calculated from equations @8)-29) are
presented in figure[Il As we can see, both profiles have layer-like forms. At the surface, the fluid is more
dense and orientationally ordered than in the bulk. But at higher distances there is a large region where
the fluid is more diluted and less orientationally ordered than in the bulk. This result is obtained in the
MFA. For isotropic fluids, as was shown in ], the inclusion of fluctuation terms leads to the depletion
effect. We can suppose that a similar effect will take place for the considered anisotropic fluid. It means
that the inclusion of fluctuation terms does not change our conclusion drawn from figure [Tl concerning
the existence of a more diluted and less ordered region of the fluid near the surface compared to the bulk
region.

Other interesting phenomena that can be observed within the framework of the formulated MFA
approach are connected with the possibility that the angle between the nematic director and the surface
can change near the surface. Consequently, phases with the order parameters S;m(z) =Som(2)/p(2) (m+
0) can appear near the surface. These phenomena will be investigated in a separate paper.

In conclusion, using the field theoretical approach we have formulated the mean field approximation
as the first starting point for the description of a nematic fluid at a hard wall. For the first time, an exact
derivation of the contact theorem for anisotropic fluids has been presented within the MFA. It has been
shown that the contact value of the density profile is determined by the pressure of the fluid in the bulk
volume and does not depend on the angle between the nematic director and the surface. For the case of
the director being oriented perpendicular to the wall, in the linear approximation for the MFA, we have
obtained analytical expressions for the density and order parameter profiles. It has been shown that at
some values of the parameters of the model considered, the fluid near the surface can be more diluted
and less orientationally ordered than in the bulk.
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HemaTnuyHuMiA NAH 6ina TBepAOi NOBEPXHi Y HAGMIKEHHI
cepeaHbOro nons

M. FonoaKom, L. KpaBLUBm, A. i Kanpiom

L IHCTUTYT $i3nkn KoHAeHcoBaHMX cnuctem HAH YkpaiHw, Byn. 1. CBeHuiubkoro, 1, 79011 JibBiB, YkpaiHa

2 JNlabopatopisi enekTpoxiMmii, XimMii NOBEPXOHb | HePreTYHOro MOAENIOBAHHS, BiAAINEHHS XiMil BULLIO
HaLujioHanbHoi Wwkonu MapiTex, ab. ckpuHbka 39, na. Xyccto, 4, 75005 Mapwx, PpaHuis

B pamkax TeopeTuko-nonboBOro NiAxo4y BMBYAETLCS HemaToreHHWn navH Maiiepa-3ayne 6ins TBepgoi no-
BepXHi. Y po3rnafyBaHili Mojeni napHWin NoTeHLian B3aEMOAII CKNaZaETbCs 3 i30TPONHOM0O Ta aHi30TPOMHOro
FOKaBiBCbKMX J0AaHKIB. Y HabAMXKEHHI cepeHbOro Mons A0BejeHO KOHTakTHO Teopemy. [ina BUMAAKY, KOAn
AVPEKTOp HampaBaeHUA NepneHANKYNSPHO A0 CTiHKW, OTPMMAHO aHaNiTUYHI BUPa3n A NpodiniB rycTmHM Ta
napametpa nopsAky. MokasaHo, Lo y NeBHil TepMOAMNHaMIYHIli 061aCTi HeMaTUYHWIA NAUH NO613y MOBEPXHi
MOXe 6yTu 6iNnbLU PO3PiAKEeHNM i MeHLL OpiEHTaL|iiHO BMOPSAKOBAaHUM, HiXX B 06'eMHili obnacTi.

KnrouoBi cnoBa: HematnyHuii navH Maiiepa-3aymne, TeopeTKo-MoiboBUI MigXi4, MOBEPXHS PO34iNy,
KOHTaKkTHa Teopema
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