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In the framework of a field theoretical approach we study Maier-Saupe nematogenic fluid in contact with a hard

wall. The pair interaction potential of the considered model consists of an isotropic and an anisotropic Yukawa

terms. In the mean field approximation the contact theorem is proved. For the case of the nematic director

being oriented perpendicular to the wall, analytical expressions for the density and order parameter profiles

are obtained. It is shown that in a certain thermodynamic region the nematic fluid near the interface can be

more diluted and less orientationally ordered than in the bulk region.
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Due to orientational ordering, nematic fluids near a surface show richer behavior than in the case of

simple fluids. Among them are the anchoring phenomena, whereby the surface induces a specific orien-

tation of the nematic director with respect to the surface [1]. In order to understand this phenomenon,

during the past decade the Henderson-Abraham-Barker (HAB) approach [2, 3], previously developed in

the theory of isotropic fluids in contact with solid surfaces [4], has been employed. In this approach, the

description of the fluid density profile reduces to the solution of the Ornstein-Zernike (OZ) integral equa-

tion for the fluid particle-wall distribution function calculated from the known fluid particle distribution

function in the bulk. In the framework of the HAB approach, the application to the bulk of the nematic

model, analytically solvable at the level of the mean spherical approximation (MSA) [5], makes it possible

to investigate the role of orientational-dependent molecular interactions with the surface in anchoring

phenomena [2, 3]. However, in the MSA, this approach does not take into account the contribution from

long-range molecular interactions and, as a result, does not satisfy the exact relation known as the con-

tact theorem [6, 7]. According to this theorem, the contact value of the particle density near a hard wall

for a neutral fluid is determined by the pressure of the fluid in the bulk volume.

Recently, the density field theory, previously developed for ionic fluids near a hard wall [8–10], has

been applied to the description of simple fluids with Yukawa-type interactions near a hard wall [11].

In both cases, the developed approach yielded correct results. In this theory, the contributions from the

mean field and from the fluctuations are separated. In [11], it was shown that the mean field treatment

of a Yukawa fluid near a wall reduces to solving a non-linear differential equation for the density profile

while the treatment of fluctuations reduces to the OZ equation with the Riemann boundary condition.

In this paper, the density field theory, developed in [11] for simple fluids at a hard wall, will be gen-

eralized to nematic fluids at a hard wall. To this end, we consider Maier-Saupe nematogenic fluid model

[12, 13] as one of the simplest models that account for the isotropic-nematic phase transition. For simpli-
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fication we consider a fluid of point uniaxial nematogens interacting through the pair potential

ν(r12,Ω1Ω2) = ν0(r12)+ν2(r12)P2(cosθ12), (1)

where the first term ν0(r12) = (A0/r12)exp(−α0r12) describes the isotropic repulsion and the second term

with ν2(r12) = (A2/r12) exp(−α2r12) describes the anisotropic attraction between particles (A0 > 0, A2 <
0), r12 denotes the distance between particles 1 and 2,Ω=

(

θ,φ
)

are orientations of particles, P2(cosθ12) =
(3cos2θ12 −1)/2 is the second order Legendre polynomial of the relative orientation θ12.

The application of the density field theory to the description of bulk properties of such nematic

fluids was considered in [14, 15]. It was shown that beyond the mean field approximation, the repul-

sive isotropic term in (1) is very important for the description of the nematic phase. Within the field-

theoretical formalism, the Hamiltonian is a functional of the density field and can be written as the sum

of entropic and interaction terms

βH [ρ(r,Ω)] =
∫

ρ(r,Ω)
[

ln(ρ(r,Ω)ΛRΛ
3
T

)−1
]

drdΩ (2)

+
β

2

∫

ν(r12,Ω1Ω2)ρ(r1,Ω1)ρ(r2,Ω2)dr1dr2dΩ1dΩ2 ,

where β = 1/kBT is the inverse temperature, dΩ = (1/4π)sinθdθdφ is the normalized angle element,

ρ(r,Ω) is particle density per angle, so that
∫

ρ(r,Ω)dΩ = ρ(r), ΛT is the thermal de Broglie wavelength

of the molecules, the quantity Λ−1
R
is the rotational partition function for a single molecule [16].

In this paper, we will restrict our consideration to the mean field approximation (MFA) which is the

lowest order approximation for the partition function. In the canonical formalism it corresponds to fixing

the Lagrange parameter λ, so that the following relation is true for the singlet distribution function

δβH [ρ(r,Ω)]

δρ(r,Ω)

∣

∣

∣

∣

ρMFA

=λ. (3)

As a result,

ρ(r1,Ω1) = ρbulk(Ω1)exp

{

−β
∫

ν(r12,Ω1Ω2)
[

ρ(r2,Ω2)−ρbulk(Ω2)
]

dr2dΩ2

}

, (4)

where

ρbulk(Ω) = ρbexp
[

−
(

κ
2
2Sb/α2

2

)

P2(cosθ)
]

/

1
∫

0

dcosθexp
[

−
(

κ
2
2Sb/α2

2

)

P2(cosθ)
]

(5)

is the singlet distribution function for the bulk nematic in the MFA defined in the framework of

the Maier-Saupe theory [14, 15], κ2
2 = 4πρbβA2, ρb is the bulk value of the fluid density, Sb =

(1/ρb)
∫1

0 P2(cosθ)ρbulk(Ω)dcosθ is the bulk value of the orientational order parameter.

In order to integrate with respect to the angle in (4), we should separate the angle Ωin between the

particles and the director and the angle Ωnw between the nematic director and the surface. To this end,

we express the Legendre polynomial in the potential ν(r12,Ω1Ω2) in terms of spherical harmonics Y2m(Ω)

as P2(cosΩ12) = (1/5)
∑

m

Y
∗

2m
(Ω1n)Y2m(Ω2n). As a result,

ρ(r1,Ω1n ,Ωwn )

ρbulk(Ω1n )
= exp

{

−
[

V0(r1,Ωwn )−V
b

0

]

−
1
p

5

∑

m

Y2m(Ω1n )
[

V2m(r1,Ωwn)−V
b

2m

]

}

, (6)

where the mean field potentials

V0(r1,Ωwn) =β

∫

ν0(r12)ρ(r2,Ωwn)dr2 , (7)

V2m(r1,Ωwn) =β

∫

ν2(r12)S2m(r2,Ωwn )dr2 . (8)
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The bulk values of these quantities are V
b

0 = κ2
0/α2

0, V
b

20 = κ2
2Sb/α2

2, V
b

2m
= 0 for m , 0, where κ2

0 =
4πρbβA0,

ρ(r,Ωwn) =
∫

ρ(r,Ω1n ,Ωwn)dΩ1n (9)

is the density profile. The property

S2m(r,Ωwn) =
1
p

5

∫

ρ(r,Ω1n ,Ωwn )Y2m(Ω1n)dΩ1n = ρ(r,Ωwn )S
∗
2m

(r,Ωwn), (10)

where S
∗
2m

(r,Ωwn) are the order parameter profiles. Far from the wall S
∗
20(r,Ωwn) → Sb, S

∗
2m

(r,Ωwn) → 0

form , 0.

Taking the gradient of equation (6) we have

1

ρ(r,Ω1n ,Ωwn )
∇∇∇ρ(r,Ω1n ,Ωwn) = E0(r,Ωwn)+

1
p

5

∑

m

Y2m(Ω1n)E2m(r,Ωwn), (11)

where we define an equivalent of the electric field by

E0(r,Ωwn) ≡−∇∇∇V0(r,Ωwn), E2m(r,Ωwn) ≡−∇∇∇V2m(r,Ωwn). (12)

Due to the properties of the Yukawa potential

(

∆−α2
0

)

V0(r,Ωwn )=−4πβA0ρ(r,Ωwn), (13)
(

∆−α2
2

)

V2m(r,Ωwn )=−4πβA2S2m(r,Ωwn). (14)

Due to the translational invariance parallel to the wall, the functions considered depend only on the

distance z to the wall, and replacing (13) and (14) into (11), we obtain

d

dz

[

ρ(z,Ωwn)

ρb

+
α2

0

2κ2
0

V
2

0 (z,Ωwn)−
1

2κ2
0

E
2
0 (z,Ωwn)

+
∑

m

(

α2
2

2κ2
2

V
2

2m
(z,Ωwn)−

1

2κ2
2

E
2
2m

(z,Ωwn)

)]

= 0. (15)

In the bulk, when z → ∞, we have ρ(z,Ωwn ) → ρb, E0(z,Ωwn) → 0, E2m(z,Ωwn) → 0, V0(z,Ωwn) →
V

b
0 , V20(z,Ωwn ) → V

b
20 and V2m(z,Ωwn ) → 0 for m , 0. From Equation (15) we see that the quantity in

brackets is constant regardless of the angle Ωwn between the director and the wall, and, therefore, it can

be evaluated, for instance, in the bulk as the reduced pressure βP/ρb within MFA [15]:

βP

ρb

= 1+
κ

2
0

2α2
0

+
κ

2
2

2α2
2

S
2
b . (16)

Outside the system, where there are no particles, we have another invariant which is simply

α2
0

2κ2
0

V
2

0 (z,Ωwn)−
1

2κ2
0

E
2
0(z,Ωwn)+

∑

m

[

α2
2

2κ2
2

V
2

2m
(z,Ωwn)−

1

2κ2
2

E
2
2m

(z,Ωwn )

]

, (17)

its value is zero far from the interface and, therefore, it is zero at the interface as well. From the continuity

of the potential and its derivative due to equation (13) and (14), we see that this is also true at the wall

just inside the system z = 0+. Thus,

ρ(0+,Ωwn )

ρb

+
α2

0

2κ2
0

V
2

0 (0+,Ωwn )−
1

2κ2
0

E
2
0 (0+,Ωwn )

+
∑

m

[

α2
2

2κ2
2

V
2

2m
(0+,Ωwn)−

1

2κ2
2

E
2
2m

(0+,Ωwn)

]

=
ρ(0+,Ωwn)

ρb

. (18)
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Since this quantity is constant, we obtain the so-called contact theorem

βP = ρ(0+,Ωwn ). (19)

We should note that the contact theorem was usually proved for isotropic fluids near a hard wall [6, 7].

The result obtained here is probably the first verification of the contact theorem for anisotropic fluids at

a hard wall.

From equations (10)-(14) we have a set of six differential equations for unknown functions

ρ(r,Ω1n ,Ωwn ), S2m(r,Ωwn), E0(r,Ωwn), E2m(r,Ωwn), V0(r,Ωwn), V2m(r,Ωwn). We note that in the case

when the director is oriented perpendicular to the wall, Ωwn = 0, the singlet distribution function is axi-

ally symmetric. Consequently, in the equations considered only the terms withm = 0 will be present. In

this paper, we will restrict our further consideration to this special case and consider the solution of the

obtained differential equations in the linear approximation. Far from the wall ρ(r,Ω) → ρbulk(Ω). After

linearization of expression (6)

ρ′(z,Ω) = [E0(z)+E20(z)P2(cosθ)]ρbulk(Ω) (20)

and we have the following system of equations

ρ′(z) = [E0(z)+SbE20(z)]ρb , (21)

S
′
20(z) =

[

E0(z)Sb +E20(z)
1

5
〈Y 2

20〉Ω
]

ρb , (22)

V
′

0(z) =−E0(z), V
′

20(z)=−E20(z) , (23)

E
′
0(z) =−α2

0V0(z)+ (κ2
0/ρb)ρ(z) , (24)

E
′
20(z) =−α2

2V20(z)+ (κ2
2/ρb)S20(z) , (25)

where the prime denotes a derivative by z and 〈Y k

20〉Ω = (1/ρb)
1
∫

0

Y
k

20(Ω)ρbulk(Ω)dcosθ (k = 1,2). This

system reduces to two second order differential equations for E0(z) and E20(z)

E
′′
0 (z) = E0(z)

(

κ
2
0 +α2

0

)

+E20(z)κ2
0 Sb , (26)

E
′′
20(z) = E0(z)κ2

2 Sb +E20(z)
[

α2
2 + (κ2

2/5)〈Y 2
20〉Ω

]

, (27)

which can be solved with the boundary condition that should include the contact theorem (19). Thus,

ρ(z)

ρb

= 1−
λ2

0 −α2
2 −

1
5κ

2
2

(

〈Y 2
20〉Ω− 〈Y20〉2

Ω

)

κ
2
2 Sb

B1 e−λ0z

−
λ2

2 −α2
2 −

1
5
κ

2
2

(

〈Y 2
20〉Ω− 〈Y20〉2

Ω

)

κ
2
2 Sb

B2 e−λ2z , (28)

S20(z)

ρb Sb

= 1−
(

λ2
0 −α2

2

)

κ
2
2 Sb

B1 e−λ0z −
(

λ2
2 −α2

2

)

κ
2
2 Sb

B2 e−λ2z , (29)

where

λ2
0,2 =

1

2






κ

2
0 +α2

0 +
κ

2
2

5
〈Y 2

20〉Ω+α2
2 ±

√

√

√

√

(

κ
2
0 +α2

0 −
κ

2
2

5
〈Y 2

20〉Ω−α2
2

)2

+4κ2
0κ

2
2 S

2
b






, (30)

B1 =
κ

2
2 Sb

2
[

λ2
0 −λ2

2

)

[

−
κ

2
0

α2
0

+
λ2

2 −α2
2 − (κ2

2/5)〈Y 2
20〉Ω

α2
2

]

, B2 =−
κ

2
2 Sb

2α2
2

−B1 . (31)

The values of parameters λ0 and λ2 coincide with similar parameters obtained in the bulk case after
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Figure 1. (Color online) The density and the order parameter profiles in the linearized approximation

for ρb/α3
0 = 0.5, A0/A2 = 2.2, α0/α2 = 1.25. Different lines correspond to different values of Sb [i.e., the

reduced temperature T
∗ = 1/(βA2α2)].

including the Gaussian fluctuations [15]. Similarly to the bulk case, parametersλ0 and λ2 characterize the

screening of the repulsive isotropic and the attractive anisotropic interactions, respectively. The density

profile ρ(z) and the order parameter profile S
∗
20(z) = S20(z)/ρ(z) calculated from equations (28)–(29) are

presented in figure 1. As we can see, both profiles have layer-like forms. At the surface, the fluid is more

dense and orientationally ordered than in the bulk. But at higher distances there is a large region where

the fluid is more diluted and less orientationally ordered than in the bulk. This result is obtained in the

MFA. For isotropic fluids, as was shown in [11], the inclusion of fluctuation terms leads to the depletion

effect. We can suppose that a similar effect will take place for the considered anisotropic fluid. It means

that the inclusion of fluctuation terms does not change our conclusion drawn from figure 1 concerning

the existence of a more diluted and less ordered region of the fluid near the surface compared to the bulk

region.

Other interesting phenomena that can be observed within the framework of the formulated MFA

approach are connected with the possibility that the angle between the nematic director and the surface

can change near the surface. Consequently, phases with the order parameters S
∗
2m

(z) = S2m(z)/ρ(z) (m ,

0) can appear near the surface. These phenomena will be investigated in a separate paper.

In conclusion, using the field theoretical approach we have formulated the mean field approximation

as the first starting point for the description of a nematic fluid at a hard wall. For the first time, an exact

derivation of the contact theorem for anisotropic fluids has been presented within the MFA. It has been

shown that the contact value of the density profile is determined by the pressure of the fluid in the bulk

volume and does not depend on the angle between the nematic director and the surface. For the case of

the director being oriented perpendicular to the wall, in the linear approximation for the MFA, we have

obtained analytical expressions for the density and order parameter profiles. It has been shown that at

some values of the parameters of the model considered, the fluid near the surface can be more diluted

and less orientationally ordered than in the bulk.
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Нематичний плин бiля твердої поверхнi у наближеннi

середнього поля

М. Головко1, I. Кравцiв1, Д. дi Капрiо2

1 Iнститут фiзики конденсованих систем НАН України, вул. I. Свєнцiцького, 1, 79011 Львiв, Україна

2 Лабораторiя електрохiмiї, хiмiї поверхонь i енергетичного моделювання, вiддiлення хiмiї вищої

нацiональної школи ПарiТех, аб. скринька 39, пл. Жуссю, 4, 75005 Париж, Францiя

В рамках теоретико-польового пiдходу вивчається нематогенний плин Майєра-Заупе бiля твердої по-

верхнi. У розглядуванiй моделi парний потенцiал взаємодiї складається з iзотропного та анiзотропного

Юкавiвських доданкiв. У наближеннi середнього поля доведено контактно теорему. Для випадку, коли

директор направлений перпендикулярно до стiнки, отримано аналiтичнi вирази для профiлiв густини та

параметра порядку. Показано, що у певнiй термодинамiчнiй областi нематичний плин поблизу поверхнi

може бути бiльш розрiдженим i менш орiєнтацiйно впорядкованим, нiж в об’ємнiй областi.

Ключовi слова: нематичний плин Майєра-Заупе, теоретико-польовий пiдхiд, поверхня роздiлу,

контактна теорема
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