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The collision smearing of the nucleon momenta about their initial values during relativistic nucleus-nucleus

collisions is investigated. To a certain degree, our model belongs to the transport type, and we investigate

the evolution of the nucleon system created at a nucleus-nucleus collision. However, we parameterize this

development by the number of collisions of every particle during evolution rather than by the time variable.

It is assumed that the group of nucleons which leave the system after the same number of collisions can be

joined in a particular statistical ensemble. The nucleon nonequilibrium distribution functions, which depend on

a certain number of collisions of a nucleon before freeze-out, are derived.
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1. Introduction

The problem of isotropization and thermalization in the course of collisions between heavy relativis-

tic ions attractsmuch attention, because the application of thermodynamic models is one of the basic phe-

nomenological approaches to the description of experimental data. Moreover, the assumption regarding

a local thermodynamic equilibrium, along with other factors, is successfully used in various domains of

high-energy physics. Meanwhile, many questions concerning this problem remain open for discussion.

The main goal in the investigations of the collisions of relativistic nuclei is to extract the pertinent

physical information on the nuclear matter and its constituents. In the present paper we propose a trans-

parent analytical model of the nucleon spectrum which occurs in the course of relativistic heavy-ion

collisions. Our model is aimed at extracting the physical information from the nucleon spectra which

concerns the nonequilibrium processes.

Let us look at the cross-section of a multiparticle production during the collision of two nuclei “A”

and “B” (see figure 1). In order to describe of the nucleon subsystem one can parameterize the final state

of the nucleon ensemble by 4-vector KN = (EN , K N ). In the center of mass of this N -nucleon ensemble,

where K N = 0, the total cross-section reads

[
dNσnucleon

d3p1 d3p2 . . . d3pN

N∏

n=1

ω(pn)

]

EN

= W (p1, p2, . . . , pN )δ

[
EN −

N∑

n=1

ω(pn )

]
, (1)

where ω(p) =
√

m2 +p2 (in the final state, the particles are regarded as free ones) and we adopt the

system of units where the speed of light c = 1. Due to the presence of the δ-function, which “fixes” the

energy of the nucleon system, the last expression (1) looks like a probability in themicrocanonical ensem-

ble. Then, it is reasonable to make the Laplace transform with respect to the energy EN of the nucleon
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ensemble
[

dNσnucleon

d3p1 d3p2 . . . d3pN

N∏

n=1

ω(pn )

]

β

= W (p1, p2, . . . , pN )
N∏

n=1

e−βω(pn ) . (2)

It turns out that now one can describe the final state of the nucleon subsystem through one of the two

parameters: the total energy EN or the parameter β.

All the above formulae were introduced for a brief discussion of the basics of the statistical model (for

details see [1, 2]). Actually, the statistical model neglects all the dynamics accumulated in the transition

probability W in favor of the features of the phase space. Formally this is expressed like approximation:

W (p1, p2, . . . , pN ) ≈ const. (3)

Then, from (2) one immediately obtains the multi-nucleon cross-section parameterized by β:
[

dNσnucleon

d3p1 d3p2 . . . d3pN

N∏

n=1

ω(pn )

]

β

=
N∏

n=1

Wn e−βω(pn ) , (4)

where Wn are some constants and
∏N

n=1 Wn = const.

On the other hand, the statistical description, which arises after freeze-out, is conceptually restricted

just to several conserved quantities: total energy of the system EN , number of particles N , and conserved

charges such as the baryon number. Of course, this dependence can be transferred to the descriptions

by means of conjugate quantities: parameter β and chemical potentials which are in correspondence

with N and the conserved charges. As we see from (4), this description provides a certain information on

the spectrum of the registrated particles. Meanwhile, any dynamical information on multiscattering pro-

cesses during collisions is lost. At the same time, it is well understood that a microscopic description can

be carried out just on some level of approximation. For instance, if it is possible to factorize the transition

probability W , i.e., to write it in the form W (p1, p2, . . . , pN ) ≈ ∏N
n=1 W (pn ) , we come to factorization of

the multi-nucleon cross-section for the particles of one species
[

d Nσnucleon

d3p1 d3p2 . . . d3pN

N∏

n=1

ω(pn)

]

β

=
N∏

n=1

[
W (pn)e−βω(pn )

]
. (5)

The approximation of the sequential rescatterings of a particle during collision of nuclei which is pro-

posed in the present paper is exactly in this framework. We follow the chain of reactions (rescatterings)

of every nucleon that goes through a number of hadron transformations, and we obtain a single-particle

spectrum of the nucleon WM (p) which depends on the number M of collisions (reactions) of the nucleon

(of the baryon characterized by the baryon number B = 1).

We argue that the number of nucleon collisions (reactions) at AGS and SPS energies is finite and the

maximal number of collisions Mmax is not more than Mmax = 43. Apart from this, all the nucleons which

are freezed out during a particular nucleus-nucleus collision, can be subdivided into groups. In every

group, the nucleons went through the same number M of collisions. We determined that themost popula-

ted groups are for the number of collisions M which are in the range: M = 14−17. Starting from the initial

moment of the nucleus-nucleus collision, we follow the sequential collisions of every nucleon through the

opposite nucleus (see figure 1). Nevertheless, the original nucleon can be transformed during a particular

collision into another particle, for instance into delta isobar ∆+. Then, we follow a new particle which

carries the same charges (the baryon number, electrical charge, etc.) as the original nucleon. During the

last collision (it can be a decay), all these “intermediate” particles transform back into nucleons. Hence,

we can investigate just nucleons in the final state. Starting from this point, every group of nucleons in the

final noninteracting state is the subject of a statistical model. For the multiscattering stage of evolution,

we treat UrQMD [3, 4] as a source of “experimental data” which we use to adjust the parameters of our

model.

We propose a mutually complementary combination of these two approaches, i.e., an approximate

description of the dynamical stage of evolution of nucleons during the nucleus-nucleus collision which is

completed with a statistical description of the nucleon freezed out stage. Our approach is based on “The

multiscattering-statistical model” elaborated by us.
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2. The multiscattering-statistical model

Consider successive variations of the momentum of a nucleon from nucleus A (see figure 1) which

moves along the collision axis from left to right through the nucleus B . Every m-th collision induces the

momentum transfer, qm , for this nucleon. Consequently, after M collisions, the nucleon acquires the

momentum k :

k0 → k 0 +q1 → k0 +q 1 +q 2 → ··· → k0 +Q = k . (6)

where Q = ∑M
m=1 q m is the total momentum transfer finally obtained by our nucleon after M collisions

(see figure 2). If the M -th collision is the last one, then the nucleon is free after having been freezed out

from the system. As amatter of fact, it will be a group of such nucleons which experienced the same num-

ber of collisions M before the freeze-out. The relation of these nucleon groups (nucleon sub-ensembles)

to the spectrum is discussed in the next section.

k0+Q
k0

q(1) q(2) q(M)

.... ..

Figure 1. Two colliding identical nuclei. Two-

stream system is created during the collision of

every nucleon from nucleus “A” with nucleons

from nucleus “B” and vice versa.

Figure 2. Transformation of the initial nucleon mo-

mentum, k0, as a result of M collisions; Q =∑M
m=1 qm is the total momentum transfer after M

collisions, q m is the momentum transfer in the m-th

collision.

We assume that all the momentum transfer q m obtained by the nucleon from the nucleus “A” during

its travel through the system “B” are some random quantities. Then, when the number of collisions M

is big enough in accordance with the central limit theorem, the distribution of the random quantity Q

should be a Gaussian one

G(Q) = 1

z
exp

{
−

(
Q −〈Q〉

)2

2σ2

}
→ GM (k) = 1

zM

exp

{
−

(
k −k0 −〈Q〉M

)2

2σ2
M

}
, (7)

where we take into account the equation (6), i.e., Q = k −k 0, and explicitly write the dependence on

the final momentum of the nucleon k . Here, z is the normalization constant. Actually, this distribution

depends on the number M of random quantities q1, q2, . . . , q M , which coincides with the number of

collisions M experienced by the nucleon before being freezed out.

Further, we design the many-particle distribution function GM (EM ;k 1,k2, . . . ,k N ) as

GM (EM ; k̃) = 1

AM (EM )
G̃M (EM ; k̃) , k̃ = (k1, k2, . . . , k N ), (8)

where

G̃M (EM ; k̃) ≡
N∏

n=1

exp

{
−

(
kn −k0 −〈Q 〉M

)2

2σ2
M

}
δ

[
EM −

N∑

j=1

ω(k j )

]
, (9)

and make the Laplace transform with respect to the total energy EM

G̃M (β; k̃) =
∫

dEM e−βEM G̃M (EM ; k̃), ZM (β) =
∫

dEM e−βEM AM (EM ). (10)
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Basically, from now on, any physical quantity that depends on the nucleon momenta, can be averaged

using the many-particle distribution function

GM (β; k̃) ≡ 1

ZM (β)
G̃M (β; k̃) . (11)

If we introduce expression (9) into (10), then in the framework of the multiscattering-statistical model

(MSS-model) we obtain

GM (βM ; k̃) = 1

ZM (βM )

N
M∏

n=1

exp

{
−βM ω(kn)−

(
kn −k 0 −〈Q 〉M

)2

2σ2
M

}
=

N
M∏

n=1

fM (kn), (12)

where ZM (βM )=
[
zM (βM )

]N
M and the single-particle distribution function is as follows:

fM (k) ≡ 1

z
M

(β
M

)
exp

{
−β

M
ω(k)−

(
k −k0 −〈Q 〉M

)2

2σ2
M

}
(13)

with zM (βM ) as the single-particle partition function. Note, a derivation of the analogous distribution can

be found in [5, 6].

3. Two-stream dynamics

Based on the obtained results, we are coming to a description of a two-stream system which is cre-

ated in the course of relativistic nucleus-nucleus collisions. The description is based on the following

assumptions:

1. Starting from the initial state (first touch of the colliding nuclei), at an arbitrary moment of time,

there are two systems of nucleons: one system consists of nucleons with a positive z-component of

the nucleon momentum, i.e., pz Ê 0 (we refer to this system as “A”) and the second system consists

of the nucleons with a negative z-component of the nucleon momentum, i.e. pz É 0 (we refer to this

system as “B”, see figure 1). Even after the freeze-out, there is a good enough separation of these

systems along pz -axis.

2. The number of collisions of every nucleon (hadron) is finite because the lifetime of the fireball is

limited. To determine the maximal number of collisions, Mmax, in a particular experiment we use

the results of UrQMD simulations [3, 4].

3. Since the colliding nuclei are spatially restricted, different nucleons experience a different number

of collisions, and it is intuitively clear that the collision histories of the inner nucleons and sur-

face nucleons will be different. That is why, we subdivide all the freezed out nucleons (nucleon

ensemble) into different nucleon sub-ensembles in accordance with the number of collisions M

the nucleons went through before being freezed out. Then, the nucleons from every sub-ensemble

give their own contribution to the total nucleon spectrum.

It is time to write a two-stream distribution function FM (p) which, in accordance with the first as-

sumption, should take into account the spectrum produced from both particle streams, “A” and “B”. Being

normalized to unity, a two-stream distribution function looks as follows:

FM (p) = 1

2

[
f (a)

M
(p) + f (b)

M
(p)

]
, (14)

where

f (a)
M

(k) = 1

z
M

(β
M

)
exp

{
−β

M
ω(k)−

k2
⊥

2
(
σ2
⊥
)

M

}
exp

{
−

(
kz −k0z −〈Qz〉M

)2

2
(
σ2

z

)
M

}
(15)

and

f (b)
M

(k) = 1

zM (βM )
exp

{
−βM ω(k)−

k2
⊥

2
(
σ2
⊥
)

M

}
exp

{
−

(
kz +k0z +〈Qz〉M

)2

2
(
σ2

z

)
M

}
(16)
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with k0 =
(
0, 0, k0z

)
andwe assume 〈σ2

x〉M = 〈σ2
y 〉M ≡ 〈σ2

⊥〉M . Here, the single-particle partition function

reads z
M

(β
M

) =
∫

d3k/(2π)3 f (a)
M

(k). Now, the slope parameter β
M

reflects also a collective motion of the

M -th nucleon sub-ensemble moving in the laboratory system.

Figure 3. (Color online) The populations NM of the

nucleon sub-ensembles which depend on the num-

ber of collisions M . The result is obtained from the

UrQMD simulations for themost central collisions.

Figure 4. (Color online) The z-component of the

mean momentum transfer versus the number of

collisions.

Keeping in hands the two-stream distribution functions FM (p), where M = 1, 2, . . . Mmax, one can

construct the nucleon spectrum which occurs in the course of a central nucleus-nucleus collision. If we

denote the number of particles in a particular sub-ensemble, where the nucleons experienced M colli-

sions, by NM , then in the c.m.s. of the colliding nuclei, the total nucleon spectrum is as follows:

dN

d3p
=

Mmax∑

M=1

NM FM (p) , with
Mmax∑

M=1

NM = Ntotal , (17)

where Ntotal is the total number of net nucleons. The number of nucleons NM in every sub-ensemble cal-

culated for different energies with the help of the microscopic transport model UrQMD [3, 4] is depicted

in figure 3. Every sub-ensemble of nucleons can be described as an ideal gas which moves with some

collective velocity.

4. Extraction of physical parameters from the data

First we obtain from UrQMD [3, 4] the longitudinal distribution of nucleons for every M -th sub-

ensemble. The distributions for the stream “A” (positive pz ) and the stream “B” (negative pz ) were ob-

tained separately. We refer to this pool of distributions as “UrQMD data”. We fit the “UrQMD data” on the

longitudinal distribution of nucleons of the M -th sub-ensemble of the stream “A” exploiting the theoret-

ical distribution function (15) integrated over a transverse momentum. The variations of the theoretical

distribution function were provided by four parameters: 〈Qz〉M , βM ,
(
σ2
⊥
)

M
and

(
σ2

z

)
M . The results of

the fit of the “UrQMD data” (nucleon longitudinal distributions) for the energies 10.8 and 158 AGeV are

depicted in figure 5.

The dependence of the parameters with respect to the number of reactions, M , of the nucleon before

the freeze-out is shown in the following figures: The slope parameter T
M
= 1/β

M
in figure 6 (the curves

markedwith square symbols) and the temperature T0 (the curves markedwith circle symbols); Themean

value of the shift of the distribution function, 〈Qz〉M , in figure 4; The longitudinal variance
(
σ2

z

)
M in

figure 8. Note, we use the system of units where the Boltzmann constant is unit, kB = 1.

Temperature of the hot ideal gas T0 is determined in the local rest frame of the gas. This temperature

is connected with the total kinetic energy of N particles (nucleons) in the local rest frame in the following
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Figure 5. The spectrum of the M -th nucleon sub-ensemble (M = 6, 10, 18, 30) with respect to pz -

component of the nucleon momentum calculated using the UrQMD transport model for Au+Au collision

(black squares). The grey curves are the fits of the UrQMD data within the framework of the proposed

multiscattering-statistical model (MMS-model).

way:

Er.f.

N
= 3T0 + mN K1

(
m

N

T0

)/
K2

(
m

N

T0

)
. (18)

In our model Er.f. is the total kinetic energy of the sub-ensemble of nucleons in the rest frame of this

group of particles, mN is the nucleon mass (Er.f. = γ
[
E −V Pz

]
, γ= 1/

p
1−V 2).
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M
Figure 6. (Color online) Dependence of the slope parameter TM (curve marked with squares) and tem-

perature T0 (curve marked with circles) on the collision number M for different energies of the nucleus-

nucleus collision: 10.8, 158 AGeV.

To obtain the transverse distribution we integrate the “A”-stream distribution function (15) over the

longitudinal component of the nucleon momentum. The results of the description of the “UrQMD data”

on the nucleon transverse distribution for the energy 20 AGeV is depicted in figure 7 (left hand panel).

For this description, we use the same values of parameters 〈Qz〉M , β
M
,
(
σ2

z

)
M and

(
σ2
⊥
)

M
, which were

obtained during the fit to the “UrQMD data” on nucleon longitudinal distributions. The experimental data

for transverse nucleon distributions in central Au+Au reactions at plab = 11.6A GeV/c [7] were described

using the formula (17), the result is depicted in figure 7 (right hand panel). We see a good agreement of

the description with experiment.
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Figure 7. (Color online) Fit of the UrQMD data (left panel) and description of the experimental data [7] on

nucleon transverse distribution in central Au+Au reactions at plab = 11.6A GeV/c (right panel).

5. Discussion and conclusions

The description of a many-particle system, which is in thermal equilibrium state, can be regarded

as quite understandable and complete by means of the temperature and chemical potential if the latter

is needed. Then, to obtain the value of the temperature, one has to fit the particle spectrum data using

one of single-particle distribution functions. The fitting procedure is nothing more as an extraction of the

physical quantity, i.e., “temperature”, from the data.

5 10 15 20 25 30
0

1

2

3

4

5

6
Au+Au, E=10.8 AGeV

,  
(G

eV
/c

)2
 

M

 2
long

 2
trans

5 10 15 20 25 30
0

5

10

15

20
Pb+Pb, E=158 AGeV

,  
(G

eV
/c

)2
 

M

 2
long

 2
trans

Figure 8. (Color online) Longitudinal and transverse variances,
(
σ2

z

)
M and

(
σ2
⊥

)
M
, versus the number

collisions M for collision energies 10.8 and 158 AGeV.

Next, if we come to the description of a many-particle system in a nonequilibrium (nonstationary,

nonhomogeneous) state, a natural question arises: which set of parameters is needed to get a relevant

physical picture of the many-particle system, which state evolves in time? Of course, by the words “phys-

ical picture” one means a physical interpretation of the parameters of a model. The set of parameters of

a model, as well as the behavior of the evolution of the parameters take the form of a specific language

based onwhich we investigate, describe and “understand” our nonequilibriummany-particle system and

the processes inside it.

In the present paper for description of a nonequilibrium state we propose three parameters, which

are defined in “The Multiscattering-Statistical Model”.

1. The slope parameter T (M) = 1/βM , which reflects as well a collective motion of the nucleon sub-

ensemble. Its dependence on the number of collisions M experienced by nucleons, which belong to
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M -th sub-ensemble, is depicted in figures 6. By means of the energy per particle (after the freeze-

out), this parameter is directly connected with the instant temperature T0(M) of the M -th nucleon

sub-ensemble which is defined in the frame where the sub-ensemble is in rest.

2. The mean value of z-component of the total momentum transfer 〈Qz〉M = ∑M
m=1〈qz〉m , which is

related to the kinematics of a particle-particle collision.

3. The variance of the Gaussian distribution. Actually, due to the different collision dynamics along

the different axis, the variance is split in two pieces: a) The longitudinal variance
(
σ2

z

)
M . b) The

transverse variance
(
σ2
⊥
)

M
. In figures 8, the behavior of the transverse variance is confronted with

the longitudinal variance. We see a steady broadening of the transverse distribution with an in-

crease of the number of collisions M in the nucleon sub-ensemble. Indeed, the initial transverse

variance of nucleons is approximately zero on the scale of collision energy. The distribution of nu-

cleons around the initial value in the transverse direction becomes broader and broader with time.

We can conclude that the evolution of the physical parameters of “The Multiscattering-Statistical

Model” elaborated in the present paper gives a transparent insight into the dynamics of the net nucle-

ons in the course of relativistic nucleus-nucleus collisions. The appearance of the Gaussian distribution

as a factor in the nonequilibrium distribution function of nucleons, see (15), is common in describing any

multiscattering process with a big but finite number of rescatterings of the particle when we can regard

every particular scattering independent of others. This condition is especially satisfied for the nucleons

in the course of high energy heavy-ion collisions when the particle wavelength λ= ħ/p is much smaller

than the mean distance between the nucleons in a nucleus.
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Nonequilibrium distribution functions of nucleons in relativistic nucleus-nucleus collisions

Нерiвноважнi функцiї розподiлу нуклонiв при

релятивiстичних ядро-ядерних зiткненнях

Д. Анчишкiн1, В. Набока2, Ж. Клейманс3

1 Iнститут теоретичної фiзики iм. М.М. Боголюбова, 03680 Київ, Україна
2 Київський нацiональний унiверситет iменi Тараса Шевченка, 03022 Київ, Україна

3 Унiверситет Кейп Тауна, Рондебош 7701, Пiвденно-Африканська Республiка

Дослiджується розмиття iмпульсiв нуклонiв навколо своїх початкових значень, яке вiдбувається в реля-

тивiстичних ядро-ядерних зiткненнях. Наша модель вiдноситься, певною мiрою, до транспортних, ми до-

слiдили еволюцiю нуклонної системи, створеної в ядро-ядерних зiткненнях, але ми параметризуємо цей

розвиток не часом, а числом зiткнень кожної частинки. Припускається, що група нуклонiв, якi залишають

систему зазнавши однакову кiлькiсть зiткнень, можуть бути об’єднанi в певний статистичний ансамбль.

Обраховується нерiвноважна функцiя розподiлу нуклонiв в iмпульсному просторi, яка залежить вiд пев-

ного числа зiткнень нуклона перед випромiнюванням iз системи.

Ключовi слова: релятивiстичнi зiткнення, нерiвноважна функцiя розподiлу, спектр нуклонiв,

параметризацiя еволюцiї
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