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Motivated by recent research of Nikitin et al. [J. Phys. D: Appl. Phys., 2009, 49, 055301], we examine the effects

of interatomic interactions on adatom surface diffusion. By using a mean-field approach in the random walk

problem, we derive a nonlinear diffusion equation and analyze its solutions. The results of our analysis are

in good agreement with direct numerical simulations of the corresponding discrete model. It is shown that

by analyzing a time dependence of adatom concentration profiles one can estimate the type and strength of

interatomic interactions.
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1. Introduction

Diffusion is ubiquitous in Nature. It determines the behavior and controls the efficiency of many bio-

logical and technological processes. Examples include thewetting, conductivity of biological membranes,
catalysis, growth of crystals, sintering, soldering, etc. Surface diffusion is particularly important in nano-
technological processes which are aimed at obtaining objects of submicron sizes where the surface prop-
erties are of the same importance as the bulk ones. Macroscopic description of diffusion is based on Fick’s
law, which postulates proportionality between particle flux and concentration gradient. Establishing a
link between macroscopic laws of diffusion and microscopic non-equilibrium density matrix approach
is one of the most challenging and important problems of non-equilibrium statistical mechanics (for re-
views see, e.g. [1–6]). Surface diffusion is essentially a many-particle process. Even at very low coverage
when the interaction between adatoms is negligible, the random walk of an isolated adsorbed particle is
a collective motion due its interaction with substrate atoms [4, 5]. The walker moves in a potential land-
scape which is changed by the walker [7]. The walk on a deformable medium where the walker leaves
behind a trail and the trail affects the next walker due to slow relaxation, is also a collective process [8, 9].
At finite coverage, in addition to the interaction with a substrate, particles at surfaces experience lateral
interactions of different origin: the attractive van der Waals, direct and indirect electronic exchange and
multipole-multipole electrostatic interactions. The dipole-dipole interaction which occurs due to a polar
(mainly dipolar) character of adsorption bonds is long-ranged (as r−3) and generally repulsive since all
dipole moments are essentially parallel (see review papers, e.g., [4, 5]).

Bowker and King [10] used Monte-Carlo simulations in order to clarify the effect of lateral interactions
of adatoms on the shape of the evolving concentration profiles in surface diffusion. They showed that the
intersection point of the diffusion profiles with the initial stepwise profile lies above θmax/2 in the case
of lateral repulsion and below θmax/2 in the case of attraction (θmax is the maximum concentration at the
initial step).

In a quite recent paper [11] an approach based on error function expansionwas proposed to fit experi-
mental concentration profiles. This algorithm provides a high-accuracy fitting and improves the accuracy
of the concentration dependence of diffusivity extracted from experimental data. The goal of our paper is
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to model and examine the effects of interatomic interactions on adatom surface diffusion. Starting with
nonlinear random walk equations where the interatomic interactions are considered in the mean-field
approach, we derive a nonlinear diffusion equation and analyze its solutions. The results of our analy-
sis are in good agreement with direct numerical simulations of the corresponding discrete model. It is
shown that by analyzing a time dependence of adatom concentration profiles one can estimate the type
and strength of interatomic interactions. The paper is organized as follows. In section 1 we present the
model. In section 2 we study both analytically and numerically the interaction effects for the case of low
adatom coverage. Section 3 is devoted to analytical treatment of nonlinear diffusion in the case of non-
monotonous concentration dependence of the diffusion coefficient. We also compare our results with
the results of full scale numerical simulations and the results of experimental observations. Section 4
presents some concluding remarks.

2. Model and equations of motion

The transport of particles on a surface is described by a set of random walk equations

d

dt
θ~n(t) =

∑

~ρ

{

W~n+~ρ→~n θ~n+~ρ(t)
[

1−θ~n (t)
]

−W~n→~n+~ρ θ~n (t)
[

1−θ~n+~ρ(t)
]}

, (2.1)

where θ~n is the probability for a particle to occupy the ~n-th binding site on the surface (in the literature
on surface science, this quantity has the meaning of coverage), W~n→~n+~ρ gives the rate of the jumps from
the binding site ~n to a neighboring site ~n +~ρ (the vector ~ρ connects the nearest neighbors). The terms

[1−θ~n (t)] in equations (2.1) take into account the fact that there may be only one adatom at a given site
or, in other words, the so-called kinematic interaction. The probability with which the particle jumps
from site ~n to the nearest neighbor ~n +~ρ satisfies the detailed balance condition

W~n→~n+~ρ e−βE~n =W~n+~ρ→~n e−βE~n+~ρ , (2.2)

where E~n is the binding energy of the particle located at site ~n , β= 1/kBT , kB is the Boltzmann constant
and T is the temperature of the system. For transition rates we choose

W~n→~n+~ρ = w~ρ eβE~n , (2.3)

which corresponds to setting the activation energy for a jump to the initial binding energy. Here, w~ρ =
ν~ρ e−βEb

(

w~ρ = w−~ρ
)

is the jump rate of an isolated particle with standard notations: ν~ρ is a frequency
factor and Eb −E~n is the height of the random walk barrier. Inserting equation (2.3) into equations (2.1)
we obtain a description of the random walk of particles on the surface by a set of equations

d

dt
θ~n (t)=

∑

~ρ

w~ρ

{

[

1−θ~n (t)
]

θ~n+~ρ(t)eβE~n+~ρ − θ~n (t)
[

1−θ~n+~ρ(t)
]

eβE~n

}

. (2.4)

In the case when the characteristic size of the particle distribution inhomogeneity is much larger than
the lattice spacing, one can replace θ~n and E~n by the functions θ(~r ) and E (~r ) of the continuous variable~r
and, by expanding the functions θ(~r +~ρ) and E (~r +~ρ) into a Taylor series, we obtain from equations (2.4)
a description of the transport of particles on the surface in the continuum approximation by the equation
of the form

∂tθ = w~∇
{

[

~∇θ+βθ (1−θ)~∇E
]

eβE
}

, (2.5)

where the notation w = 1
2

∑

~ρ ~ρ2 w~ρ is used.

We will study the particle kinetics in the mean field approach when the binding energy E is assumed
to be a functional of the particle density θ(~r , t): E (~r ) = E (θ). Note that the passage through a saddle point
which separates two neighboring binding sites is also sensitive to interparticle interactions. However,
taking into consideration that a lion’s share of time the particles dwell near the potential well minima, one
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can expect that the interaction more strongly effects the particle propagation by modifying the binding
energy. In this case, equation (2.5) takes the form of nonlinear diffusion equation

∂tθ = ~∇
[

D(θ)~∇θ
]

, (2.6)

where

D(θ) = w

[

1+βθ (1−θ)
δE

δθ

]

eβE (2.7)

is a nonlinear (i.e., collective) diffusion coefficient.

3. Surface diffusion at low coverage

In what follows we restrict ourselves to studying the particle distributions spatially homogeneous
along the y coordinate: θ(~r , t) ≡ θ(x, t). We assume that initially the particles are step-like distributed

θ(x,0) = θmax H(−x) , (3.1)

where H(x) is the Heaviside step function. By introducing a centered particle density ξ(x, t) =
[θ(x, t)−0.5θmax] /θmax, we see that the initial distribution ξ(x,0) is an odd function of the spatial vari-
able x. It is obvious that in the no-interaction case (E = const), when the diffusion equation (2.6) is linear,
the antisymmetric character of the function ξ(x, t) is preserved for all t > 0. This means that in the case
of noninteracting particles, the concentration profile for each time moment t passes through the point

(0,θmax/2) . However, the interacting diffusing particles exhibit quite a different behavior. In 1969, Vedula
and one of the present authors for the first time found out that the concentration profiles formed in the
process of surface diffusion of thorium on tungsten intersected the initial step-like profile at a point ly-
ing well above θmax (see [2, 13]). Since then, similar behavior has been found for many electropositive
adsorbates whose adatoms are known to interact repulsively. A recent example obtained in the case of
surface diffusion of Li on the Dy-Mo (112) surface was discussed in [11]. It is worth noting that the above
mentioned behavior was observed even for rather low coverage: θmax < 0.3 (see figure 2 in [11]). There-
fore, to explain such a behavior one may assume that the binding energy E (~r ) is linearly dependent on
the particle concentration:

E (~r ) = E0 +
∫

d~r ′V (~r −~r ′)θ(~r ′) , (3.2)

where E0 is the site energy and V (~r −~r ′) is the effective adatom-adatom interaction which includes all
types of lateral interactions. By using a Fourier representation of the interaction V (~r ) and the particle
density θ(~r )

V (~r ) =
∫

d~r ei~k~r V̂ (~k) , θ(~r ) =
∫

d~r ei~k~r θ̂(~k) , (3.3)

equation (3.2) can be written in the form

E (~r ) = E0 +
∫

d~k ei~k~r V̂ (~k) θ̂(−~k) . (3.4)

By expanding the Fourier component of the interaction V (~r ) into a Taylor series

V̂ (~k) = V̂ (0)+
1

2

∂2V̂ (~k)

∂kα∂kβ

∣

∣

∣

∣

~k=0

kα kβ+ . . . (3.5)

and using an inverse Fourier transform, one can represent the expression (3.2) as follows:

E (~r )−E0 = V̂ (0)θ(~r )−
1

2

∂2V̂ (~k)

∂kα∂kβ

∣

∣

∣

∣

~k=0

∂2

∂α∂β
θ(~r ). (3.6)
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In equations (3.5) and (3.6) α,β= x, y and Einstein’s summation rule is applied. The first term in the right-
hand side of equation (3.6) characterizes the change of the energy barrier due to the finite concentration
of adatoms on the surface (i.e., mean field approximation) and the second one represents dispersion ef-
fects. In what follows we restrict ourselves to the mean field approximation. This implies the assumption
that the binding energy E (~r ) is expressed as follows:

E (~r ) = E0 +θ(~r )

∫

d~r ′V (~r ′) (3.7)

and the nonlinear diffusion coefficient (2.7) takes the form

D(θ) = D∗ [

1+αθ (1−θ)
]

eαθ , (3.8)

where

D∗ = w eβE0 ≡ νe−β(Eb−E0) (3.9)

is the diffusion coefficient for an isolated particle (or the so-called tracer diffusion coefficient) and the
dimensionless parameter

α≡βV0 , V0 =
∫

d~r ′V (~r ′)

characterizes the strength of the lateral interaction.
Diffusion equations with concentration-dependent diffusion coefficients are widely explored in liter-

ature. A vast variety of tools which permit to study nonlinear diffusion processes both analytically and
numerically are described in [12]. The goal of this section is to develop a new simple perturbation ap-
proach which permits to directly estimate the effects of interparticle interactions in the surface diffusion.

It is seen from equations (2.6) that the spatio-temporal behavior of the centered particle density ξ(x, t)

is governed by the equation

∂τξ= ∂2
x

[

ξ+P (ξ)
]

, (3.10)

where τ= D0 t is a rescaled time and the quantity

P (ξ)=
1

D∗

(1/2+ξ)θmax
∫

0

D(θ)dθ−
(

1

2
+ξ

)

θmax (3.11)

describes the nonlinear properties of the diffusion and vanishes when α→ 0. Taking into account that
equation (3.10) with the initial condition given by equation (3.1) is invariant under gauge transformations
τ→λ2τ, x →λx, θ→ θ (λ is an arbitrary number) one can look for a solution of equation (3.10) in terms
of the Boltzmann variable

z =
x

2
p
τ

, ξ(x,τ) = ζ(z) ,

where the function ζ(z) satisfies the equation

d2

dz2

[

ζ+P (ζ)
]

+2z
dζ

dz
= 0 (3.12)

with the boundary conditions

ζ(z) →∓
1

2
, z →±∞ . (3.13)

Equations (3.12), (3.13) can be rewritten in the form of the following integral equation:

ζ(z) =
p
π

4

∞
∫

0

dz w+(z)−
1

2



1−
p
π

2

∞
∫

0

dz w−(z)



 erf(z)

−
p
π

2

z
∫

0

dz1 ez2
1
[

erf(z)−erf(z1)
] d2

dz2
1

P
(

ζ(z1)
)

,

w±(z) = ez2 [

1−erf(z)
] d2

dz2

[

P
(

ζ(z)
)

±P
(

ζ(−z)
)]

, (3.14)

13604-4



Adatom interaction effects in surface diffusion

where erf(z) is the error function [20]. It is seen from equation (3.14) that the concentration profiles ξ(x, t)

for different time moments intersect at the point
(

0,ζ(0)
)

with

ζ(0) =
p
π

4

∞
∫

0

dz w+(z) . (3.15)

In the weak interaction/low coverage limit when αθmax < 1 one can replace the function ζ(z) in the
right-hand-side of equations (3.14), (3.15) by its expression obtained in the linear case: ζ0(z) = 1

2 erf(z)

and state approximately that under the step-like initial condition (3.1) the concentration profiles θ(x,τ)

for different time moments intersect at the point which corresponds to the concentration

θ0 =
[

1

2
+ζ(0)

]

θmax ,

ζ(0) =
π−2

4π
α

(

1−
θmax

2

)

θmax ≈ 0.091α

(

1−
θmax

2

)

θmax . (3.16)

Thus, the concentration value θ0 at which the concentration profiles intersect changes in the presence of
lateral interatomic interactions: θ0 > θmax/2 (θ0 < θmax/2) when the interaction is repulsive (attractive).
We used equation (3.16) to analyze the results obtained in [11] for the diffusion of Li on the Dy-Mo (112)
surface at low coverage (θmax ≈ 0.33) for which θ0 ≈ 0.19. First, we checked if our results which were
obtained for an infinite domain can be applied for the samples used in experiments [11]. It is obvious
that samples can be considered as physically infinite when the length of the sample L is large compared
with the diffusion length:

L ≫
√

D texp , (3.17)

where texp is the time during which the experiment was performed. The parameters used in [11] are
D ∼ 10−7 ÷10−9 cm2/s, texp ∼ 103 s, L ∼ 10−1 cm. They clearly satisfy the inequality (3.17). Comparing
experimental and our theoretical results we found out that αθmax ≈ 1. It is seen that strictly speaking it
is not fully legitimate to use our simple analytical perturbation approach (which is valid for αθmax ≪ 1)
to analyze the results of experiments [11] but a qualitative agreement takes place.

To validate our analytical results we have carried out numerical simulations of equations (2.4), (2.3)
which in the 1D-case for a system with N binding sites have the form

d

dτ
θ1 = (1−θ1)eβE2 θ2 − (1−θ2)eβE1 θ1 ,

d

dτ
θn = (1−θn )

(

eβEn+1 θn+1 +eβEn−1 θn−1

)

− (2−θn+1 −θn−1) eβEn θn , (n = 2, . . . , N −1) ,

d

dτ
θN = (1−θN )eβEN−1 θN−1 − (1−θN−1) eβEN θN , (3.18)

where βEn =αθn . Thus, in our model, the total number of particles is a conserved quantity. As an initial
state we used a step-like distribution

θn = θmax , for 1 É n É N /2 ,

θn = 0 , otherwise . (3.19)

In figure 1, the intersection concentration θ0 as a function of the interaction parameter α obtained at
very low coverage (θmax = 0.1) within the framework of the analytical approach [see equation (3.16)]
is compared with the results of numerical simulations. It is seen that in the limit of weak interparticle
interaction (α< 1), the agreement is very good. The results of the numerical simulations obtained for the
case of intermediate coverage are presented in figure 2. We found out that as in the experiment [11] for
θmax = 0.33 at early stages of evolution, the concentration profiles intersect at the point (N /2,0.186), i.e.,
well above the level θmax/2 for α ≈ (3÷3.5) (see figure 2, left-hand panel) or αθmax ≈ (1÷1.15) which
is in a good agreement with our analytics. However, this intersection point shifts downward and to the
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Figure 1. (Color online) Intersection concentration θ0 as a function of the interaction parameter α ob-

tained from numerical simulations (dots) and from equation (3.16) (solid line) for θmax = 0.1.

right at the late stage of evolution (see figure 2, right-hand panel). Thus, basing on our approach one can
conclude that Li adatoms on the Dy-Mo (112) surface mostly repel each other and the intensity of the
repulsion is V0 ≈ (3÷3.5)kB T .

Diffusion of Li adatoms on Dy/Mo(112) was investigated experimentally at T = 600 K [11], so the
estimated repulsion energy V0 amounts to ≈ 0.16 eV. Let us assess this value in terms of the dipole-dipole
interaction. The energy of the repulsive interaction between two dipoles having moments p and located
on the surface at a distance r is

Udd = 2
p2

r 3
≈

1.25 p2 [Debyes]

r 3 [Angstroms]
[eV] . (3.20)

The dipole moment can be determined from the work function change ∆ϕ using the Helmholtz formula
for the double electric layer:

|∆ϕ |= 4πna p e , (3.21)

where na is the surface concentration of adatoms and e is the electronic charge. For Li on the Mo(112)
surface, the p value at low coverage was found to be 1.4 Debyes [14]. Then, using equation (3.20) we can

Figure 2. (Color online) Concentration profiles obtained from nonlinear random walk equations (3.18)

for α = 3 and initial distribution given by thin dashed curves. The left-hand panel shows an early stage

of evolution: w t = 1000 (dashed curve), w t = 5000 (solid thin curve), w t = 10000 (thick solid curve);

the right-hand panel shows the late stage of evolution: w t = 50000 (dashed), w t = 100000 (solid). The

line which corresponds to θ = θmax/2 is shown as a horizontal dotted line. The point n = N/2, θ = 0.186

where concentration profiles at the early stage of evolution intersect is marked as a line segment. In the

same way, the intersection point at the late stage of the evolution is marked on the right-hand panel. The

parameters used are N = 1600, α= 3.
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find that for two dipoles of this kind the interaction energy Udd = 0.16 eV can be attained at a distance
r ≈ 2.5 Å, which is close to the distance between the nearest adsorption sites (2.73 Å) within the atomic
troughs on Mo(112). This estimation shows that the intensity of the lateral interaction deduced from
the diffusion data in the way presented above seems physically reasonable. Recall, however, that V0

determines a resultant effect experienced by a jumping particle from all its counterparts which, in the
case of heterodiffusion, are non-uniformly distributed over the surface and provide an additional driving
force (supplementary to the coverage gradient) that favors a faster diffusion of repulsing particles.

4. Mean-square deviation

The adatom interactions also manifest themselves in the integral characteristics of kinetics of adatom
diffusion. It is well known that in the linear regime the variance

〈x2〉 =
∞
∫

−∞

dx x2 θ(x,τ)
/

∞
∫

−∞

dx θ(x,τ) (4.1)

behaves (in one-dimensional case) as 〈x2〉 = 2τ. Therefore, it is only natural to introduce a variance rate

∆(τ) =
(

2−
d

dτ
〈x2〉

)2

(4.2)

whose time dependence provides a useful information on nonlinear effects in the diffusion process.
For this quantity, from equation (3.10) we obtain

∆(τ) =α2





∞
∫

−∞

dx θ2(x,τ)
/

∞
∫

−∞

dx θ(x,τ)





2

. (4.3)

Assuming that initially the particles concentrate in a finite domain in a Π-like form:

θ(x,0) = θmax

(

H(x + l)−H(x − l)
)

, (4.4)

Figure 3. (Color online) Concentration profiles

for initial pulse-like distribution (dashed line)

and for τ = 200 (solid line). The nonlinearity

parameter α= 0.2.

where 2l is the size of the initial domain, for small non-
linearities α and low coverage θmax ≪ 1 we approxi-
mately obtain

∆(τ) =α2





∞
∫

−∞

dx θ2
lin(x,τ)

/

∞
∫

−∞

dx θlin(x,τ)





2

, (4.5)

where

θlin(x,τ) =
θmax

2

[

erf

(

l − x

2
p
τ

)

−erf

(

−
l + x

2
p
τ

)]

(4.6)

is the solution of the linear diffusion equation with the
initial condition (4.4). In the limit of small l we obtain

∆(τ) ≈
α2θ2

max

2πτ
l 2 . (4.7)

We checked our analytical considerations by carry-
ing out numerical simulations of equations (3.18) with
the initial concentration profile given by equation (4.4)
(see figure 3) for different values of the nonlinearity
parameter α. The results of these simulations are pre-
sented in figure 4. The figure shows that the numeri-

cally evaluated temporal behavior of the rate function ∆ is in a good agreement with our analytical ex-
pression given by equation (4.7). Moreover, the slopes of the curves, as it is prescribed by the analytics,
relate as 0.51 : 0.91 : 2.0 : 3.6 ≈α2

1 : α2
2 : α2

3 : α2
4 = 0.152 : 0.22 : 0.32 : 0.42. Thus, by measuring the temporal

behavior of concentration profiles, it is also possible to estimate the strength of interatomic interactions.
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Figure 4. (Color online) Numerically obtained variance rate ∆ given equation (4.2) as a function of the

inverse time 1/t for three different values of the nonlinearity parameter α: α= 0.2 (dotted line), α= 0.3

(dashed line), α= 0.4 (solid line).

5. Concentration profiles with plateau

In general, the diffusion coefficient is a non-monotonous function of atomic concentration (see
e.g. [5]). There is a number of physical reasons which can cause a non-monotonous coverage dependence
of the diffusion coefficient. It is well known that in thermodynamic terms, the diffusion flux is propor-
tional to the gradient of chemical potential of adsorbed particles µ which can be written as [15, 16]

µ=µ0 −q(θ)+
1

β
ln

(

θ

1−θ

)

. (5.1)

The first term in this equation is the standard chemical potential of the adsorbate, q(θ) is the differential
heat of adsorption and the third term stems from the entropy of mixing of adatoms with the vacant
adsorption sites on the substrate. (Note that this simplified expression relates only to the first monolayer
and does not take into account the possibility of formation of the second and next monolayers). The
diffusion coefficient can be represented as a product

D(θ) = D j β

(

∂µ

∂ lnθ

)

, (5.2)

where D j is the so-called kinetic factor (or jump diffusion coefficient) [1, 5, 16] and the derivative in
the brackets is referred to as thermodynamic factor. In the simplest case, when there are no cross-
correlations between the velocities of diffusing particles, D j coincides with the tracer diffusion coefficient
D∗ given by equation (3.9). Inserting equation (5.1) into equation (5.2), we get

D(θ) = D j

(

−βθ
∂q

∂θ
+

1

1−θ

)

. (5.3)

It is seen from equation (5.3) that any effect which entails a sharp decrease in the heat of adsorption as a
function of coverage will result in a maximum of the diffusion coefficient in this coverage range [17]. For
instance, such a situation occurs when all energetically profitable sites at the surface are occupied and
adatoms start to fill less favorable sites. Actually, Bowker and King [10] found in their Monte Carlo simu-
lations that a well-pronounced maximum in the D(θ) dependence observed by Butz andWagner [21] can
be explained by the existence of two types of lateral interactions: a repulsive one between the nearest
neighbors and an attractive one between the next-nearest neighbors. A similar effect is typical of volume
diffusion of interstitial atoms in disordered binary alloys having a BCC structure with two nonequiva-
lent interstitial positions [22]. In the framework of local equilibrium statistical operator approach [23]
it was shown that the physical reason for a non-monotonous concentration dependence coefficient is a
combined action of lateral interaction and adatom density fluctuations [24]. A sharp drop in the heat of
adsorption is also observed in the transition from filling the first, strongly bound (chemisorbed) mono-
layer to filling the second, weakly bound (e.g., physisorbed) monolayer. In such a case, the spreading of
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Figure 5. (Color online) Diffusion coefficient for a step-like on-site energy. The inset shows the concentra-

tion dependence of the on-site energy. The parameters used are α= 1, κ= 20, θthr = 0.5.

the first monolayer proceeds through diffusion in the mobile uppermost (second or next) monolayer (the
so-called “unrolling carpet” mechanism) [1]. This example shows that a change in the heat of adsorp-
tion can be accompanied not only by variation of the diffusion parameters (the activation energy and
prefactor D0 in the Arrhenius equation), but also by a change in the atomistic diffusion mechanism itself.

It is worth noting that without entering the microscopic mechanisms of the non-monotonous con-
centration diffusion coefficient dependence, it may be phenomenologically connected with a step-like
dependence of the heat of adsorption on the coverage (see a review paper [25]). A typical example of the
diffusion coefficient calculated from equation (2.7) by assuming the on-site adatom energy E (θ) (which
in most cases is proportional to the heat adsorption q(θ)) has the form

E (θ) =α
[

1+ tanhκ
(

θ−θthr

)]

(5.4)

shown in figure 5. In equation (5.4) the parameter θthr gives the threshold value of the coverage and the
parameter κ characterizes the sharpness of the transition to the new state [26].

The aim of this section is to consider both analytically and numerically the diffusion process with
a step-like concentration dependent on-site energy given by equation (5.4) and to clarify what kind of
new information one can derive by comparing the theoretically obtained concentration profiles with the
experimental ones.

It is very hard and probably hopeless to solve the equation (2.6) with the diffusion coefficient given
by equations (2.7) and (5.4). However, the problem can be solved and some insight into the kinetics can
be achieved in the limiting case of a very sharp energy concentration dependence: κ→∞. In this case,
the diffusion coefficient (2.7) and (5.4) takes the form

D(θ) = D∗ [

1+aδ
(

θ−θthr

)

+b H
(

θ−θthr

)]

, (5.5)

where

a =αeαθthr

(

1−θthr

)

, b = e2α−1. (5.6)

The nonlinear diffusion equation (2.6) with the diffusion coefficient (5.5) and the initial condition (3.1)
has a self-similar solution θ(x,τ) ≡Θ(z), (z = x/2

p
τ) which can be presented in the form (see appendix

for a detailed derivation)

θ(x,τ) =



































θthr

erfc
(

x
2
p
τ

)

erfc(z1)
, when x Ê 2 z1

p
τ ,

θthr , when − 2 z2
p
τeα É x É 2 z1

p
τ ,

θmax −
(

θmax −θthr

)

erfc
(

− x
2
p
τ

e−α
)

erfc(z2)
, when x É−2 z2 eα

p
τ .
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Figure 6. (Color online) Analytically obtained concentration profile for the diffusion coefficient in the δ-

function limit (5.5) with α = 1, θthr = 0.5, Θmax = 1 for three different time moments: τ = 0.005 (dotted

line), τ= 1 (dashed line), τ= 5 (solid line).

Here, the parameters z1 and z2 are determined by the equations

z2 =
p
π

2
α

(

1−θthr

)

ez2
1 erfc(z1)− z1 e−α ,

eα
(

θmax −θthr

)

ez2
2 erfc(z2) = θthr ez2

1 erfc(z1) (5.7)

which are obtained from equations (A.9) taking into account the definition (5.6). Thus, the concentration
profile in the case of non-monotonous diffusion coefficient is characterized by the existence of a plateau
where the concentration of adatoms does not depend on the spatial variable x. The length of the plateau
ℓp = 2

p
τ (z1 + z2 eα) increases with time. Such a behavior is shown in figure 6. The rate with which

the length ℓp of the plateau increases is determined by the nonlinear parameter α and the threshold
coverage θthr. We also carried out numerical simulations of equations (3.18) with the the step-like on-
site energy En = α

{

1+ tanh
[

κ
(

θn −θthr

)]}

and, as it is seen from figure 7, our simple model (5.5) is in
reasonable agreement with numerics. Note that the plateau in the concentration dependence develops
only at the intermediate stage of the evolution. For large enough times, the concentration profile flattens,
the effects of interatomic interactions become negligible and the profile evolves in accordance with the
linear diffusion equation (see figure 7).

Figure 7. (Color online) Numerically obtained from equations (3.18) concentration profiles in the case of

the step function energy dependence given by equation (5.4) with θthr = 0.5, α = 1, κ = 20 for different

time moments: t = 0 (dotted gray line), t = 6000 (dotted line), t = 12000 (dashed line), t = 20000 (solid

line),t = 40000 (dashed, red, thick line).

13604-10



Adatom interaction effects in surface diffusion

It is worth noting that the diffusion of Dy adatoms absorbed by Mo(112) for the initial coverage
θ(x,0) ≈ 0.7H(−x) shows a very well pronounced plateau in the concentration profile dependence both
on the spatial coordinate for different time moments and on the Boltzmann variable (see figures 7 and
8 in [11]). It means that according to our analytical considerations, the length of the plateau increases as
t 1/2. This suggests that our simple analytical model may be a useful tool in analyzing the experimentally
observed concentration behavior.

6. Conclusions and discussion

In this paper, we have investigated the role of interactions between adatoms in surface diffusion.
The problem was considered analytically in the mean-field approach. By analyzing discrete nonlinear
randomwalk equations and the corresponding nonlinear diffusion equations with an initial condition in
the form of step-like concentration profile, we have found that the interactions between adatoms greatly
effect the concentration profile development at on early and the intermediate stages of the process. In the
case of low coverage, the interaction between adatoms makes the concentration profile asymmetric: it is
shifted towards high concentration in the case of repulsive interactions and towards low concentration
for attractive interactions. By calculating the magnitude of the shift, one can estimate the intensity of
lateral interactions between adatoms. At the late stage of kinetics, the role of interatomic interactions
becomes negligible. By studying the nonlinear random walk process which is characterized by a sharp
maximum in the concentration dependence of the diffusivity, we have found that a well-pronounced
plateau develops in the concentration profile. The length of the plateau increases in time as t 1/2. The
coverage in the plateau θthr corresponds to the maximum of the diffusion coefficient which within the
framework of our approach corresponds to a sharp decrease in the heat of adsorption as a function of
coverage. The rate with which the length of the plateau increases with time is determined by an amount
at which the adsorption heat drops at the threshold coverage θthr. All the above mentioned results were
and can further be verified experimentally.
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Appendix

The nonlinear diffusion equation (2.6) with the diffusion coefficient (5.5) and the initial condition (3.1)
has a self-similar solution θ(x,τ) ≡Θ(z), (z = x/2

p
τ) which satisfies the equation

−2 z
dΘ

dz
=

d

dz

[

D(Θ)
dΘ

dz

]

. (A.1)

The boundary conditions for equation (A.1) are

Θ(z)→Θ, for z →−∞ ,

Θ(z)→ 0, for z →∞ . (A.2)

From equations (A.1) and (5.5) we see that the function

y(Θ)=
Θ

∫

0

dΘ′ z(Θ′) , (A.3)

where z(Θ) is an inverse function with respect to Θ(z), satisfies the equation

−2
d2y

dΘ2
= D(Θ)

1

y
(A.4)
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or equivalently, two equations

−2
d2 y

dΘ2
=

1

y
, for Θ< θthr ,

−2
d2 y

dΘ2
=

1+b

y
, for Θ> θthr (A.5)

augmented by the jump condition

dy

dΘ

∣

∣

∣

∣

Θ=θthr+0

−
dy

dΘ

∣

∣

∣

∣

Θ=θthr−0

=−
a

2 y(θc)
, (A.6)

and the continuity condition

y(θthr +0) = y(θthr −0) = y(θc) . (A.7)

By integrating equations (A.5), we get

dy

dΘ
=

√

2z1 + ln
y(θthr)

y
, for Θ< θthr ,

−
1

p
1+b

dy

dΘ
=

√

2 z2 + ln
y(θthr)

y
, for Θ> θthr , (A.8)

where the constants y(θthr), z1 and z2 satisfy the equations

θthr =
p
π

2

a

z1 +
p

1+b z2

ez2
1 erfc(z1) ,

p
1+b

(

θmax −θthr

)

=
p
π

2

a

z1 +
p

1+b z2

ez2
2 erfc(z2),

y(θthr) =
a

z1 +
p

1+b z2

(A.9)

which were obtained from the jump condition (A.6) and the continuity condition (A.7). Taking into ac-
count the definition (A.3), we eventually obtain from equations (A.5) that the concentration profile is
determined by the following expressions

θ(z) = θthr
erfc(z)

erfc(z1)
when z Ê z1 ,

θ(z) = θthr when −
p

1+b z2 É z É z1 ,

θ(z) = θmax −
(

θmax −θthr

)

erfc
(

−z/
p

1+b
)

erfc(z2)
when z É−z2

p
1+b . (A.10)
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Вплив адатомної взаємодiї на поверхневу дифузiю

Ю.В. Гайдiдей1, В.М. Локтєв1, А.Г. Наумовець2, А.Г. Загороднiй1

1 Iнститут теоретичної фiзики iм. М.М. Боголюбова НАН України,

вул. Метрологiчна, 14 б, 03680 Київ, Україна

2 Iнститут фiзики НАН України, просп. Науки, 46, 03680 Київ, Україна

Мотивованi недавнiми дослiдженнями Нiкiтiна та iн. [J. Phys. D: Appl. Phys., 2009, 49, 055301], ми вивчаємо

вплив мiжатомних взаємодiй на адатомну поверхневу дифузiю. Використовуючи середньо-польовий пiд-

хiд у проблемi випадкових блукань, ми виводимо нелiнiйне рiвняння дифузiї i аналiзуємо його розв’язки.

Результати нашого аналiзу добре узгоджуються з прямими числовими симуляцiями вiдповiдної дискре-

тної моделi. Показано, що, аналiзуючи часову залежнiсть профiлiв адатомної концентрацiї, можна оцiни-

ти тип i силу мiжатомної взаємодiї.

Ключовi слова: адатом, поверхня, нелiнiйна дифузiя, числовi симуляцiї
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