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The quantum spin-1/2 two-leg ladder with an anisotropic XY Z Heisenberg intra-rung interaction and Ising
inter-rung interactions is treated by means of a rigorous approach based on the unitary transformation. The
particular case of the considered model with X-X intra-rung interaction resembles a quantum compass ladder
with additional frustrating diagonal Ising interactions. Using an appropriately chosen unitary transformation,
the model under investigation may be reduced to a transverse Ising chain with composite spins, and one may
subsequently find the ground state quite rigorously. We obtain a ground-state phase diagram and analyze the
interplay of the competition between several factors: the XY Z anisotropy in the Heisenberg intra-rung cou-
pling, the Ising interaction along the legs, and the frustrating diagonal Ising interaction. The investigated model
shows extraordinarily diverse ground-state phase diagrams including several unusual quantum ordered phases,
two different disordered quantum paramagnetic phases, as well as discontinuous or continuous quantum phase
transitions between those phases.
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1. Introduction

Quantum spin ladders with frustrated interactions are intensively studied during the last few decades,
since they exhibit a rather complex ground-state behaviour to be reflected in extraordinarily rich low-
temperature thermodynamics as well [E| I] Quite recently, a number of exact solutions have been ob-
tained for several particular examples of quantum spm—— two-leg ladders [3-7]. The railroad ladder con-
sidered by Lai and Montrunich (6] has a quite specific configuration of inter-spin interactions, namely,
the staggering of X-X and Y-Y couplings along the legs is supplemented by the uniform Z-Z coupling
present along the rungs. An exact solution of this specific quantum spin ladder has been found by adopt-
ing the method originally developed by Kitaev [IQ], which proved a striking spin-liquid ground state in this
quantum spin ladder. On the other hand, the railroad ladder with the uniform Z-Z interaction along the
legs and the uniform X-X interaction along the rungs has been rigorously solved by Brzezicki and Ole$
IB—B]. To a certain extent, this exactly solved quantum spin ladder can be regarded as an one-dimensional
analogue of the quantum compass model on a square lattice, which describes the orbital ordering in
transition-metal compounds ].

In this work, we will examine a more general model of the quantum spin—% two-leg ladder, which
includes the fully anisotropic XY Z-Heisenberg coupling between spins from the same rung and two dif-
ferent Ising (Z-Z7) interactions between spins from neighbouring rungs considered along the legs and
across the diagonals, respectively. Nevertheless, it should be mentioned that the investigated quantum
spin ladder extends our previous exact calculations for the spm-— Heisenberg-Ising ladder with the X X7
intra-rung coupling [B] whereas the quantum compass ladder investigated in detail by Brzezicki and Ole$
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IB—B] also represents a very special limiting case of the investigated model system. The main goal of the
present paper is to examine the simultaneous effect of two different kinds of frustration: the geomet-
ric frustration caused by the antiferromagnetic interaction between spins from an elementary triangle
plaquette and the competition between X-X and Y-Y intra-rung interactions with both Z-Z inter-rung
interactions.

The outline of the paper is as follows. In section 2, we define the model and show how to get the
ground state by a rigorous calculation based on the appropriate unitary transformation. The ground-
state phase diagram of the spm-— X Z-Ising and XY-Ising ladders is explored in section 3. Finally, some
conclusions are drawn in section 4.

2. Model and solution
Consider the quantum spm-— Heisenberg-Ising ladder with an anisotropic XY Z intra-rung coupling

and two different Ising-type couplings, which involve Z-Z spin-spin interactions along the legs and
across the diagonals of a two-leg ladder (see figure[T):
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Here, s¢ It . denote three spatial components a = x, y, z of the spm-— operator, the former subscript j = 1,2
determines the number of a leg and the latter subscript enumerates the lattice position in a particular leg.
Apparently, the interaction terms J=, ]1 ,J§ account for the quite anisotropic XY Z-Heisenberg coupling
between two spins belonging to the same rung, while the interaction terms J» and /3 take into consider-
ation the Ising-type interactions between the nearest-neighbor spins along the legs and across the diago-
nals of the two-leg ladder. It should be pointed out that the z-component of the total spin SZ = s it s
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Figure 1. (Color online) A schematic representation of the considered Heisenberg-Ising two-leg ladder.
The intra-rung XY Z-Heisenberg coupling is represented by thick lines, while Z-Z Ising interactions
along the legs and across the diagonals are displayed by thin solid and broken lines, respectively.

on ith rung commutes with the Hamiltonian, i.e. [(Sf)z, H] =0, and this property allows us to present
the model in an integrable form. To obtain a ground state of the investigated quantum spin model quite
rigorously, it is advisable to closely follow the procedure worked out previously for the quantum spm-—
Heisenberg-Ising ladder with X X Z intra-rung interaction. After the unitary transformation [H]

:2~Z X

X _ =X
107800 =25 $1,i%2,i»

1182l’
s¥. =25 . § sy =-25°.§ $&.=5 (2.2)
2,0 1,i°2,i’ g 1,i i 2,0 — 2,0’ .

one may rewrite the Hamiltonian (2.1) into the following pseudospin representation:

Ny Ji
— 1 J’~ < 1z = < < X =
H—Zi{(? lft)s§t+?slt []2(1+4sfzsfz+1)+2]3(5f,i+5f,i+1)]Sg,isg,iﬂ}’ 2.3)
i=

which shows the symmetry of the model in a more explicit way. It is quite obvious that only z-components
of spin operators from the first leg are present in the Hamiltonian (2.3), which means that § 1 are good
quantum numbers. By contrast, dlfferent spatial components of spin operators from the second leg are
still involved in the Hamiltonian (2.3) and thus, they still represent quantum spins with regard to the
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presence of two non-commuting parts fs'gj and 55'1. of each spin operator. Altogether, the Hamiltonian
(2.3) can be identified as the Ising chain of composite spins in a transverse field, whereas the values of
the effective interaction and the effective transverse field locally depend on a particular choice of eigen-
values of the classical Ising spins §7 ;. Following [H] one may also establish the following correspondence
between new and initial states:

. . 1 o . 1
il2,i) =10 = NG (Iite,)=111il2)), Hil2,) =110 = NG (Hite,d)+1tuil2)),
[ . 1 I : 1

Miiled) =gy )= % (IMite,d =1 il2)), Myile,) =gy ) = E (IMite,d +1il2)),

(2.49)

where |¢6,0> denotes the singlet state of the ith rung and the other three states I(/bi i), I(/bio) form the
triplet state of the ith rung. It should be stressed that the square of zth component of the total spin Sl?
on the ith rung acquires two different values. It either equals (Sf)2 =0 for |¢>f)y0> and |¢f,o>’ or (Sf)2 =1
for |¢>{ +)- To get the partition function one has to diagonalize the Hamiltonian 2.3) for all particular
conﬁguratlons of ; and sum up all contributions in the trace of statistical operator. However, it is quite
evident from the transformed Hamiltonian (2.3) that the chain decomposes into two independent parts
whenever two neighboring spins §7 . and s1 ;-1 have opposite orientation (i.e., take on different eigen-
values). In this respect, the comp051te chain is divided into a set of finite chains of different sizes for
any chosen configuration of ;- Generally, this problem seems to represent a quite formidable task, but
the ground state of the 1nvest1gated model can be found quite rigorously usmg the same arguments as
given in [ﬂ]. Since the ground-state energy of two finite but isolated spm-z Ising chains in a transverse
field is always higher than the ground-state energy of one unique spin-% Ising chain in a transverse field
obtained by joining both independent finite chains, the ground state of the model under investigation
should accordingly correspond only to the uniform conﬁguratlon of all s Therefore one may single

out only two different uniform configurations with all § 2 orall §.=-3 from which the ground
state of the Heisenber-Ising ladder can be derived. The effectrve Hamlltoman - 3) for the two uniform
configurations acquires the following form:

(2.5)
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The ground state energies per site of both effective Hamiltonians can be exactly calculated using the
Jordan-Wigner fermionization [IE,

T+t
e(i)’ —— —ME (2.6)
7
where _
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is the complete elliptic integral of the second kind.

Both Hamiltonians H* and H~ imply a precise mapping correspondence between the spin-% Heisen-
berg-Ising two-leg ladder and the spin-% quantum Ising chain in a transverse field, which can be, how-
ever, characterized by different values of the effective interaction and transverse field. Bearing this
in mind, one should expect quantum phase transitions of two different types. The first kind of zero-
temperature phase transitions may correspond to a continuous (second-order) quantum phase transition
inherent to the transverse Ising chain, which arises for one particular ratio between the effective inter-
action and transverse field. Beside this, there may also occur discontinuous (first-order) quantum phase
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transitions whenever a crossing of the lowest-energy levels inherent to both effective Hamiltonians
takes place. In the following two sections, we will illustrate all the aforementioned features of quantum
phase transitions on ground-state phase diagrams of two particular cases of the model under considera-
tion.

3. Ground state of X Z-Ising and X Y-Ising ladders

In this section, we will consider two particular cases of the investigated model (Z1) by switching off
either the y- or z-component of XY Z-Heisenberg coupling (i.e., either ]y 0 or J{ = 0). It is notewor-
thy that the two aforementioned particular cases represent a direct extension of the quantum compass
ladder [E—E] to which the considered model reduces when neglecting the z-component of the Heisenberg
coupling (J = 0), one of the two transverse components of the Heisenberg coupling (i.e., either J; =0 or
]i/ = 0) and the frustrating Ising interaction across the diagonals (/3 = 0). Furthermore, the problem of
two-dimensional quantum compass model is quite complex and the exact solution for this model has not
been found yet.

Let us first consider all possible phases that may appear in the ground state of the model under in-
vestigation. Each uniform configuration of §f ; corresponds to the transverse Ising chain, which has three

possible ground-state phases. The ground-state phases for all Efl. = —% appear if e; < eg . It is worthwhile
to remark that the ground-state phases belonging to this effective model were thoroughly analyzed in our
preceding paper [7] and let us, therefore, give here just their definition for the sake of easy reference:

* Quantum paramagnetic (QPM1) state for %( Ji+ ]1y ) > |J2 — J3|: the Heisenberg-Ising ladder is in
the gapped disordered state with no spontaneous magnetization. The rung singlet dimers dominate
on the Heisenberg bonds and in the very special case J, = J3, the ground state factorizes to a set of
the completely non-correlated rung singlet dimers.

* Stripe Leg (SL) state for %( Ji+ ]1y ) < J3 — Jo: the Heisenberg-Ising ladder shows a ferromagnetic
order along the legs and antiferromagnetic order along the rungs, i.e., the magnetizations of two
chains are oriented opposite to each other ((s1 l) (s? sy z+1> = <52 l) = —(s? 85 z+1> # 0). The following
staggered magnetization can be defined as the relevant order parameter of this phase

1

1
N (]x+]J’)2 8
L3 (- )~ AL

4(J2 - J3)?

which undergoes the obvious quantum reduction of magnetization.

* Néel state for %( Ji+ ]{’ ) < J» — J3: the nearest-neighbor spins both along the legs and rungs ex-
hibit predominantly antiferromagnetic ordering. The dependence of staggered magnetization as
the relevant order parameter is quite analogous to the previous case

N ARk
4(J2—J3)?

"= 37 f D (4550 - 4sE0) = 5

The most fundamental difference between the ground states of the Heisenberg-Ising ladder with the
XXZ- and XY Z-Heisenberg intra- rung interaction can be found in the phases arising from the uni-
form configuration with all § 5. While in the former model with the XX Z intra-rung interaction,
all ground-state phases are classmal in their character [ﬂ] the emergent ground-state phases of the latter
model with the more anisotropic XY Z intra-rung coupling display significant quantum features. One

may indeed identify the following three quantum ground states for a particular case eg < e, with all
R 1.

SL,i= 2

* Quantum paramagnetic (QPM2) state for 1| Ji- ]y | > |J2 + J3|: the equivalent transverse Ising
chain H* ) is in the gapped disordered state with no spontaneous magnetization (§) = 0 and
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non-zero magnetization (S’f ) # 0induced by the effective transverse field. For the initial Heisenberg-
Ising ladder, one consequently gets the ground state with the prevailing dimer state |(p§ _)on the
rungs.

 Stripe Rung (SR) state for %I Ji- ]{’ | < Jo+J3: the equivalent transverse Ising chain exhibits a spon-
taneous antiferromagnetic ordering with <§§‘ y=(— l)i my # 0. Due to relationships (2.2), one obtains
for the Heisenberg-Ising ladder (sf D= —<sf, ) = <s§, S —<s§, i+1) # 0. Thus, the Heisenberg-Ising
ladder shows an antiferromagnetic order along the legs and ferromagnetic order along the rungs.
The staggered magnetization as the relevant order parameter in this phase is non-zero and it ex-
hibits evident quantum reduction of the magnetization given by:

1
NUARE
4(J2+ J3)?

min =5 2 D (Fp+s50) = 5

* Ferromagnetic (FM) state for 1 31 ]x ]y | < —=(Ja + J3): the effective transverse Ising chain shows a
ferromagnetic ordering. Due to transformatlon relationships (2.2), all the spins of the ladder have
the same magnetization in the z-direction. The ground state corresponds to the ferromagnetic spin
state

Ui-1)°

_L§(< >+< )l —_— =
My oN & (B 20)=3 11 2mt By

Altogether, it could be concluded that the XY anisotropy in the Heisenberg intra-rung coupling is re-
sponsible for quantum features of otherwise classical SR and FM states and, moreover, it may also lead
to the appearance of a new disordered phase QPM2. Two paramagnetic phases QPM1 and QPM2 have
quite similar features: they are both disordered states with the energy gap in their excitation spectrum
and, consequently, their pair spin-spin correlation functions decay exponentially. Both quantum param-
agnetic phases can be distinguished by the square of zth component of the total spin (Sf)2 on ith rung,
which is equal to (S7)* = 0(1) in QPM1 (QPM2).

Now, let us pay our attention to the ground-state phase diagram established for the particular case of
X Z-Ising ladder as depicted in figure Rlby considering J i/ = 0. Assuming the XZ intra-rung interaction,
one gets a striking competition between the X-X interaction along the rungs and the Z-Z interaction
along the legs, while the additional Z-Z interaction along rungs acts generally against the X-X inter-
action. It should be also mentioned that one may recover some known examples from the ground-state
phase diagram of the X Z-Ising ladder presented in figure[2] In fact, figure 2l (a) shows the particular lim-
iting case of a quantum compass ladder with an additional diagonal frustrating Ising interaction. Let us
follow the known results of a simple quantum compass ladder [3] to be obtained from our model by dis-
regarding the frustrating Ising interaction J3 = 0. Both Hamiltonians H* and H~ become identical
under this special condition and, consequently, the ground state of the model is always two-fold degen-
erate due to the equality ¢, = eg . The investigated model is either in the SL or FM state for % Ji <—Ja,
either in QPM1 or QPM2 state for % ]i‘ > | 5], either in SR or Néel state for % ]f < J». Note that the quantum
phase transition from the disordered to the long-range ordered state takes place at |J2| = % Ji.

It is quite evident that the diagonal interaction J3 removes the two-fold degeneracy of the ground state
[see figure[2](a)] by changing the effective spin interaction in the effective Hamiltonians H* and H~. The
effect of the additional Z-Z intra-rung interaction is shown in figure 2] (b)-(d), where the results for a
different relative strength of J{ are presented. It could be understood from that J¥ lowers initially
the energy of the §Z = —l configuration by the amount lN J§ with respect to the energy of the §Z

2 configuration. Therefore the regions of the phases, which correspond to the § 2 conﬁguratlon
become smaller with increasing J5. For sufficiently strong J, QPM2 phase can completely disappear
from the ground-state phase diagram. Another distinctive feature is that J{ makes the singlet-dimer phase
favorable along the line J» = J3 inside the region of QPM1 state.

The relevant ground-state behavior can be supported by the dependencies of respective order pa-
rameters as displayed in figure [3] (a). If there is no frustrating diagonal interaction, the model may stay
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Figure 2. (Color online) Ground-state phase diagram of the X Z-Ising ladder for ]f‘ =1, ]f’ =0 and four
different values of ]f: (@) ]12 =0; () ]IZ =0.05; (c) ]IZ =0.1; (d) J§ = 0.5. QPM1 is the paramagnetic phase
with the prevailing rung states |(/)(i) o)- QPM2 is the paramagnetic phase with the prevailing rung states
Iqbi _). Dotted lines indicate the rung singlet-dimer state.
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Figure 3. (Color online) Order parameters (a) and nearest-neighbor correlation function (b) as a function
of intra-leg interaction J, for ]f‘ =1, ]lz =0.1 and different /3 =0,0.25,0.5,0.75. (a) The curves on the left
correspond to mgj, the curves on the right for /3 = 0.25,0.5,0.75 (J3 = 0) correspond to mgg (maf).
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in the disordered QPM1 or the ordered SL and Néel phases. The corresponding nearest-neighbor corre-
lation function along the legs shows a continuous change with a weak singularity at the quantum critical
points indicated by filled circles in figure 3l (b). The curve for another particular case J3 = 0.25 looks sim-
ilar except that the diagonal interaction of this strength leads to a direct phase transition between two
disordered quantum paramagnetic states QPM1 and QPM2. This unusual transition can be recognized
from the relevant dependence of the nearest-neighbor correlation function, which sustains a jump at this
special critical point. It is interesting to note that the further increase of a frustrating Ising interaction
J3 demolishes both disordered phases QPM1 and QPM2. Thus, one may also detect the quantum phase
transition between two ordered SL and Néel phases, whereas the order parameters do not reach zero
continuously in this particular case.

(@) 1 b) 1

SL
e
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Figure 4. (Color online) Ground-state phase diagram of the XY-Ising model for ]f =1, ]12 =0 and four

different values of ]{/: (a) ]{/ =0; (b) ]{/ = 0.05; (¢) ]{/ =0.1; (d) ]i/ = 0.5. Dotted lines indicate the rung
singlet-dimer state.

In figure[] the ground-state phase diagram of the X Y-Ising ladder is depicted by considering another
particular case with J§ = 0. The effect of the Y-Y intra-rung interaction has some similarities with the one
of Z-Z7 intra-rung interaction, although the origin is completely different. The ground-state energy of H~
is generally lowered with respect to that of H*, because ]{/ > 0 increases the effective transverse field in
H~ and decreases it in H*. Owing to this fact, the regions of SL, QPM1, and Néel states that correspond to
the uniform configuration with all §fi = —% get extended with an increase of ]i/ . One may also generally
conclude that ]{/ > 0 acts against the QPM2 phase, which gradually shrinks with increasing ]{/ until it
completely disappears at ]{’ = % Ji. Similarly to the case with the Z-Z intra-rung interaction, the Y-Y
intra-rung interaction also induces the presence of the rung singlet-dimer state along a special line J» = J3.
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4. Conclusions

In the present paper, the effect of the most general XY Z anisotropy in the intra-rung interaction
on the ground state of the spin-% Heisenberg-Ising two-leg ladder was investigated in detail. It has been
shown that the most general kind of anisotropy, which breaks the rotational symmetry of the Heisenberg
interaction, may lead to the appearance of new quantum phases in the ground-state phase diagram. We
have also considered the special case of quantum compass ladder with an additional frustrated diagonal
interaction and showed that the singlet-dimer phase cannot appear in this particular case. The order
parameters and the nearest-neighbor correlation function were calculated and analyzed in detail in the
ground state. It has been demonstrated that the relevant behavior of the correlation function can help us
to reveal the quantum phase transition between two different disordered quantum paramagnetic phases.
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OCHOBHMIA CTaH cniH-1/2 ABOHOrOi APa6bNHKN
FaliseH6epra-I3uHra 3 XY Z B3aemogieto B3A0BX LLa6niB

T. Bepxonsid i. Ctpeuxd?

IHCTUTYT di3nkm koHAeHcoBaHMX cuctem HAH YkpaiHu, Byn. CBeHuiubkoro, 1, 79011 JlbsiB, YkpaiHa

N =

Kadpeapa TeopeTnuHoi disvkm i actpodisnky, Yrisepcutet M1, Ladapwika, napk AHreniHym, 9, 04001 Kowuwuyj,
CnoBalibka pecnybnika

KBaHTOBY CniH-1/2 ABOHOTY ApabuHKy 3 aHi3oTponHoto XY Z B3aemogieto [alizeHbepra B3A0BX LLa6AiB i [31H-
r'OBO B3aEMOZI€H0 MiX CMiHaMM Ha CyCiAHiX LWabasx po3rasHyTo B MeXax CTPOroro nigxoAy, AKni rpyHTyeTbCs
Ha yHiTapHOMY nepeTBOpeHHi. YacTkoBuii BUNagok mogeni 3 X-X B3aeMoi€lo B3Z0BX LabniB Bigobpaxae
MOJe/b KBaHTOBOrO KOMMacy Ha ApabuvHLi 3 40AaTKOBMMM AiaroHanbHUMKN I3MHIOBMMM B3aeMoAiamu. Buko-
PVCTOBIOYYM YHITapHe NepeTBOpeHHs, MoAeNb MOXHa 3BeCTV A0 MOMepeyvyHoro naHLuoxKa IsnHra 3 komnosunT-
HUMU CniHamW, i IK HAaCNiJ0K OCHOBHUIA CTaH MOXHa 3HaiTK cTporo. My oTpuMyeMo $a3oBy AiarpaMy OCHOB-
HOrO CTaHy i aHaNi3yeMO B3aEMOBMINB KOHKypeHLi KinbKox ¢pakTopis: XY Z aHi3oTponii B3aemogii [aii3eH6ep-
ra, I3HroBoi B3aEMOZIi B340BX NIaHLIOXKIB Ta GPYyCTPOBaHOI AiaroHasbHOI I3MHIroBOI B3aeMOZii. Po3rnsHyTa
MoJenb AeMOHCTPYE CknaAHi $pa3oBi giarpamyi OCHOBHOTO CTaHy, BKAKOUAOUM AeKiNbka HeTUMOBMX KBAaHTOBUX
BMOPAAKOBaHUX CTaHiB, ABa Pi3HNX HEBMOPSAAKOBAaHNX KBAaHTOBMX CTaHIB, a TakoX KBaHTOBI ¢a30Bi nepexoan
MepLLoro i Apyroro NOPaAKy MiX LM dpasamu.

KntouoBi cnoBa: kBaHTOBa CriiH-1/2 gpabuHKa, TOYHI pe3yabTaTy, OCHOBHWUI CTaH, KBAaHTOBUI @a3oBuii
nepexig
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