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One-dimensional quantum spin-1/2 XY models admit the rigorous anal-
ysis not only of their static properties (i.e. the thermodynamic quantities
and the equal-time spin correlation functions) but also of their dynamic
properties (i.e. the different-time spin correlation functions, the dynamic
susceptibilities, the dynamic structure factors). This becomes possible after
exploiting the Jordan-Wigner transformation which reduces the spin mod-
el to a model of spinless noninteracting fermions. A number of dynamic
guantities (e.g. related to transverse spin operator or dimer operator fluctu-
ations) are entirely determined by two-fermion excitations and can be ex-
amined in much detail. We consider the spin-1/2 XY chain in a transverse
(]| z) magnetic field with the Hamiltonian

H= ZJ (sEshi+sUsh 1)+ Zstl

n

and calculate the dynamic structure factors

Sap(k,w) = Zexp (—ikn) / dt exp (iwt) (4;(t)Bj+n(0))

for the local spin operators {A,, Bm} = {sZ,,D.} where D,, =
87,85 11 + sY,sh, ., is the dimer operator. The results for the dynamic
transverse structure factor S, . (k,w) and for the dynamic dimer structure
factor Spp(k,w) are known, whereas the analysis of the dynamic struc-
ture factor S.p(k,w) = (Sp=x(k,w))™ has not been reported so far. We
compare different two-fermion dynamic quantities contrasting their generic
and specific features.
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The subject of analysis of the dynamic properties of low-dimensional quantum
spin systems has attracted considerable interest for the recent years. On the one
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hand, quite often the relevant quantities can be examined rigorously, especially if
the space dimension is equal to one. This is important even if the models in question
are simplified since conventional approximations usually fail after being applied to
low-dimensional quantum spin systems. On the other hand, material science provi-
des a number of magnetic materials which can be modelled using the spin-1/2 X X 7
Heisenberg chains. Therefore, to interpret the experimental data obtained in neu-
tron scattering experiments or resonance experiments for such compounds one needs
a corresponding theory of the dynamic properties. A particular case of the spin-
1/2 X X Z Heisenberg chain, the XY chain, owing to the Jordan-Wigner fermion-
ization trick can be investigated analytically, thus shedding light on the physical
effects that may be observed in less tractable cases.

In what follows, we consider the one-dimensional spin-1/2 XY model in a trans-
verse (|| z) external field [1] defined by the Hamiltonian

N N
H = ZJ(sistH + 55 1) +ZQSfL. (1)

n=1 n=1
Here J is the exchange interaction constant (we will set further J = —1), Q is the

external magnetic field, s* = 1/2-0%, 0“ with o = x,y, z are the Pauli matrices, and
N — oo is the number of sites. We imposed periodic boundary conditions in (1).
After exploiting the Jordan-Wigner transformation the considered spin model can
be presented in terms of noninteracting spinless fermions with the Hamiltonian

H= ZA ( cﬁ——), A, = Q4+ Jcosk. (2)

Here periodic boundary conditions are implied (the so-called boundary term is not
important for the dynamic quantities examined below) and & is the quasi-momentum
which takes N values in the region from —7 to .

Important information about the behavior of the system under small perturba-
tions follows from the dynamic susceptibilities [2]

XaB(k,w) Zexp —ikn / dtexp (i (w + i€) t) 1 ([A;(t), Bj+n(0)]),

1

e — +0. (3)

Here A,,, B,, are the local operators attached to the site m (for example, the spin
operators sm, s¥, s&,, the dimer operator D,, = s¥,s% | + s¥sb ., or the trimer

operator T,,, = s% s* . ,+s¥ 5%, [3-8]). Another quantities which reflect the dynamic
properties of the system are the dynamic structure factors

Sap(k,w) Zexp —ikn / dt exp (iwt) (A;(t) Bj1n(0)) . (4)

Sap(k,w) is connected to the imaginary part of y4p(k,w) through the fluctuation-
dissipation theorem. The imaginary and real parts of x 45(k,w) are connected by the
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Kramers-Kronig transformation. In what follows we focus on the dynamic structure
factors (4).

Introducing the fermionic representation (2) and exploiting the Wick-Bloch-de
Dominicis theorem we easily calculate the two-spin correlation functions entering
equations (3), (4)

(520570 (0) = (592 =~ 3 exp (=i (m1 — ) D exp (i (A — Ar))
iy (1= 1), 5)
(50D — ()D) = g S0 SRR () ey
05D (1 (Aey = M) ) 0, (1= 1), ©)
(D)D)~ (DY = 55 3 cos? ™ e (i (s — o)1)
05D (1 (Aey = M) ) 0, (1= 1), )

where n,, = (1 + exp (8A,))”" is the Fermi function and

N
A 1 o1 BA

N
1 1
(D) = Nn§_1<Dn>:_ﬁ d cos K tanh

BA.
5

The associated dynamic structure factors are obtained from equations (5)—(7)
by Fourier transform. The resulting expressions for N — oo can be brought into the
form

—T

_ Z Tyer Hl — Mot ) | (8)

2|J sin & cos (& + £*) |

S. (i, w) — 2T NGy 0 (w)(57)? = / iy, (1= ) 6 (@ 4 A — A1)
(

Sup(ss0) — 2N, 0B() (D) = exp(i§>ZC“JE;L“?CZ?&T el
Sp.(k,w) = (S.p(k,w))”, (10)

cos? (£ + &%) nyer (1 — Ny

2|J sin & cos (& + k*) |

Spp (K, w) — 27 NG 0d(w)(D)* = ) : (11)

H*
where —7m < k* < 7 are the solutions of the equation

w = —2Jsin g sin <g + Ii*) . (12)
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We can combine formulas (8)—(11) rewriting them in the form

Sap(r,w) — 21 NG, 00 (w)(A)(B)

= / d/ﬁld/ﬁgC’f}B(m, ko), (1 —1ey) 0 (w+ Ay — Asy) Oty —r00

—T

e

2|Jsin % cos (£ + k*) | (13)
with
CO(k,w) = 1, (14)
CS))(/{, k") exp (1%) cos (g + ﬁ*) : (15)
) = (CB0nr) (16)
CI()QI)J(K, k) cos” (g + H*> : (17)

The dynamic transverse structure factor S,,(k,w) was obtained by Th. Niemeijer
(see [9]), the dynamic dimer structure factor Spp(k,w) was examined in [3-5].

3 a 3 °
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Figure 1. The 1. h. s. of equation (9) multiplied by exp (—i[x/2]) for the spin
chain (1) with J = —1 and 2 =0.1 (a), 2 =0.3 (b), 2 =0.6 (c), 2 =10.9 (d) at
zero temperature 5 — oo.
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Figure 2. The same as in figure 1 at 3 = 10. Note the different vertical scales in
figure 1 and figure 2.
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Figure 3. The same as in figure 1 at 8 = 1. Note the different vertical scales in
figure 1 and figure 3.

To the best of our knowledge, the dynamic structure factor S,p(x,w) = (Sp.(k,w))”
has not been discussed so far.
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In figures 1-3 we plot the dynamic structure factor S,p(k,w) at different tem-
peratures. These plots demonstrate not only the specific features of the dynamic
structure factor S,p(k,w) but also the generic features of all two-fermion dynamic
structure factors (13).
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Figure 4. Two-fermion excitation continuum which governs the ground-state dy-
namic structure factors (13). We set |J| =1 and 2 = 0.1 (a) 2 = 0.3 (b), 2 = 0.6
(c), 2 = 0.9 (d). The lower boundary (18) (bold lines), the middle boundary
(19) (dashed lines), the upper boundary (20) (thin lines), the line of potential
singularities (21) (dotted lines).

From equation (13) it is clearly seen that the dynamic structure factors (8),
(9), (10), (11) are governed entirely by the two-fermion (particle-hole) excitation
continuum the properties of which were examined in [9,10]. Hereinafter we briefly
account for these results. At zero temperature 3 — oo the two-fermion excitation
continuum exists only if || < |J| and has the following lower, middle and upper
boundaries in the plane wave-vector xk — frequency w

‘6071’ = QSin@ sin (|—;’—a> : (18)
TJTWE = QSin%sin<%+a), (19)
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(20)

T — 2a,
s

<
<kl <

ZSin@, if ™— 2« ,

Wy { 25in|%|sin ('%l +a> , if 0 < |k
respectively; here we have introduced the parameter o = arccos(§2/|.J|) which varies
from 7 when Q = —|.J| to 0 when = |J|. The region w; < w < w,, corresponds to
the lower two-fermion excitation continuum, whereas the region w,, < w < w, corre-
sponds to the upper two-fermion excitation continuum. The w-profiles at fixed x of
the two-fermion dynamic structure factors (13) may exhibit Van Hove’s singularities
(as the density of one-particle states in one dimension) when w — wy — 0,

Ws K|
— = 2sin —. 21
] sin = (21)

Figure 4 shows expressions (18)—(21) plotted for |J| = 1 and various 2. As temper-
ature increases the lower boundary of the two-fermion excitation continuum smears
out, i.e. w; = 0, and the upper boundary becomes w, = 2|.J|sin(|x|/2).

The specific features of different dynamic structure factors are connected with
the explicit form of the function Cf%(/{, k*) (14)—(17). Thus, the dynamic dimer

structure factor vanishes (and hence does not diverge) along w; (21) since C](:)Q])D(Ii, K*)
(17) cancels the zero in the denominator in equation (13). This is contrary to the case
of the dynamic transverse structure factor with C.2 (K, k*) (14). Moreover, the zero-
temperature dynamic structure factor S,p(k,w) is zero in the upper two-fermion
excitation continuum, i.e. for w,, < w < w,. For this region of the xk—w plane the
two roots k] and k% of equation (12) yield in equation (13) two contributions of the
same value but with opposite signs. At nonzero temperatures the values of these
contributions become different and S,p(k,w) deviates from zero in the upper two-
fermion excitation continuum. In the lower two-fermion excitation continuum one
of the roots does not contribute at zero temperature due to the Fermi functions in
equation (13). However, when temperature tends to infinity 5 — 0 the restrictions
owing to the Fermi functions in equation (13) disappear and two roots s} and k%
come into play for all 0 < w < w,. They again have the same value but opposite
signs and as a result, S.p(k,w) disappears within the whole two-fermion excitation
continuum in the x-w plane. This behavior is illustrated in figures 1-3.

Thus, all the considered dynamic quantities exhibit the same generic properties
controlled by the d-functions and the Fermi functions in equation (13) (lower, mid-
dle and upper boundaries, soft modes, Van Hove’s singularities) and some specific
properties controlled by the function Cf}g(m, K*) (zero values in the accessible region
of the k—w plane, disappearance of Van Hove’s singularities). Our results may be
important from the theoretical point of view helping to understand the dynamic
properties of quantum spin chains. Thus, equation (13) gives a hint to the form of
multi-fermion excitation continua contributions to dynamic quantities (see [7,8]).
On the other hand, we note that spin-1/2 XY chains are realized in some quasi-one-
dimensional magnetic insulators [11,12], and hence our findings may have a relation
to the experimental data obtained in dynamic experiments.
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AvHamika dnykTyauin gumepHoro oneparopa i
onepartopa z CniHOBOI KOMMOHEHTN y cniH-1/2 XY
JIAHLIOXXKY

O.4Oepxko, T.Kpoxmanbcbkuia, M.Mywak

IHCTUTYT Pi3nkm koHaeHcoBaHUX cmctem HAH Ykpainu,
79011 JlbBiB, ByNn. CBEHUiUbKOrO, 1

OtpumaHo 15 ceprnHa 2005 p.

OpHoBUMIpHI KBaHTOBI cniH-1/2 XY mopgeni [onyckailoTb CTPOruii
aHanis He fiMLe iX CTaTUYHUX BNacTMBOCTEN (TOOTO TEPMOANHAMIYHUX
BENIMYMH | OOHAKOBOYACOBUX CMIHOBUX KOPEnsauinHux @yHKLUin), ane
TakoX i iX OWMHaMIiYHUX BnacTMBOCTEN (TOOTO PiI3HOYACOBMX CMIHOBMX
KOPENAUINHUX DYHKUINA, ANHAMIYHUX CAPUAHATAMBOCTEN, ANHAMIYHUX
CTPYKTYpHMX dakTopiB). Lle cTae MOXIMBMM MiCns BUKOPUCTAHHS
nepeteBopeHHa WoppaHa-Birvepa, sike 3BOOMTb CMiHOBY MOAenb 00
Mogeni 6e3cniHoBMX HeB3aeMogjiloumx GepMioHiB. Psap oMHamivyHuX
BENMYMH (Hanpuknag, nos’a3aHux 3 GAykTyauisMm onepartopa no-
NepeyHoi CMiHOBOI KOMMOHEHTU 4YXM AMMEPHOro oneparopa) UiNKoMm
BM3HAYaTbCS ABOPEPMIOHHUMUN 30YIKEHHAMM | MOXYTb OyTU aeTanb-
HO BMBYeHi. Mun po3rnagaemo cniH- 1/2 XY naHLUIoXOK Yy NonepeyHomMy
(|| 2) marHiTHOMyY noni 3 raMiNbTOHIAHOM

H= Z J(shst i +sYsh 4)+ Z QsZ
n n
i 0BYMCNIOEMO ANHAMIYHI CTPYKTYPHI pakTopu

Sap(k,w) = Zexp (—ikn) / dt exp (iwt) (4;(t)Bj+n(0))

o0
— 00

AN nokanbHux cniHoBux onepatopiB {A,,, B} = {sfn,Dm}, ae
Dy, = syst i+ s¥ sy, 1 € LUMEPHAM onepaTopom. Pesynbtaty

ON19 AMHAMIYHOro NOMepeYHoOro CTPYKTypHoro dakrtopa S, (k,w) i ons
ONHaMIYHOrO AMMEPHOro CTPYKTypHOro daktopa Spp(k,w) € Bioomi,
TOAj X AK AMHAMIYHUI CTPYKTYPHUIA dakTop S.p(k,w) = (Sp.(k,w))™
noci He OyB npoaHanisoBaHMn. Mu MOPIBHIOEMO Pi3Hi ABOPEPMIOHHI
ONHaMIYHI BENMNYMHK, CMIBCTABASIOYN iXHI 3aranbHi i cneuudivHi Bnac-
TUBOCTI.

KniouoBi cnoBa: kBaHTOBI CriHOBI IaHLIKOXKU, ANHAMIYHI CTPYKTYPHI
pakTopun

PACS: 75.10.-b
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