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Spinless fermions on highly frustrated lattices are characterized by the low-
est single-particle band which is completely flat. Concrete realizations are
provided by the sawtooth chain and the kagomé lattice. For these models
a real-space picture is given in terms of localized states. Furthermore, we
find a finite zero-temperature entropy for a suitable choice of the chem-
ical potential. The entropy is computed numerically at finite temperature
and one observes a strong cooling effect during adiabatic changes of the
chemical potential. We argue that the localized states, the associated zero-
temperature entropy as well as the large temperature variations carry over
to the repulsive Hubbard model. The relation to flat-band ferromagnetism
is also discussed briefly.
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Frustrated quantum magnets exhibit a rich variety of semi-classically ordered and
disordered ground states. This has been analyzed in some detail for two-dimensional
models (see [1,2] for recent reviews). Interesting behaviour is also observed in a
magnetic field, including plateaux in the zero-temperature magnetization curve and
field-induced quantum phase transitions (compare [3,2,4] and references therein).
A particularly intriguing phenomenon are non-interacting localized magnons which
have recently been discovered at the saturation field of the spin-s X X Z model on
highly frustrated lattices [3,2,4-6]. This gives rise to an enhanced magnetocaloric
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effect. Indeed, cooling rates around the saturation field in geometrically frustrated
classical spin systems were predicted [7] to be up to several orders of magnitude
bigger than in non-frustrated spin models. Enhanced cooling rates have also been
verified experimentally, namely for Gd;Ga;O12, a hyper-kagomé lattice (see [8] and
references therein), and the pyrochlore magnet GdyTi,O7 [9]. Since these results
suggest applications for efficient low-temperature magnetic refrigeration, the mag-
netocaloric properties of the corresponding quantum systems are currently under
intense investigation [10-15].

With the aid of the Jordan-Wigner transformation (see e.g. Chapter 1 of [16]),
s = 1/2 XXZ chains can be mapped to spinless fermions. These are generally
interacting fermions, but the interaction is irrelevant at low densities for sufficiently
dispersive bands such that the low-temperature magnetocaloric properties at the
transition to saturation in some quantum spin chains can be understood in terms
of free spinless fermions [10]. Although there is no such direct connection for flat
bands or in higher dimensions, we may still expect that free spinless fermions capture
relevant qualitative features. This motivates us to analyze low-energy properties of
free spinless fermions on the sawtooth chain (section 3) and the kagomé lattice
(section 4), after a brief summary of some basic equations in section 2. In section 5
we discuss implications for the Hubbard model on the same lattices and mention a
relation to flat-band ferromagnetism [17-21].

2. Model and basic equations

A central quantity of this paper is the entropy S. It is given in terms of the
partition function Z by!

S(T)—a%Tan. (1)

Furthermore, we will analyze free spinless fermions, whose Hamiltonian reads

N
H =3t (eles+éle) +ud . 2)
(i) =

The first sum runs over the nearest-neighbor pairs (i, j) of a lattice with N sites.

¢! and ¢; are fermion creation and annihilation operators at site ¢ with anticommu-
1 1

tation relations {él-,éj} = 0;;, and n; = ¢;¢; is the number operator at site ¢. The
hopping parameter ¢; ; > 0 corresponds to the exchange constant of an antiferro-
magnetic spin-s X XZ model, and the chemical potential ;1 to a magnetic field h
along the z-axis (the sign of 1 has been chosen positive in order to allow for a direct
comparison with the X XZ model in a magnetic field). We denote the single-fermion
energies of (2) by €, and note that this one-particle problem is equivalent to the one-
magnon problem relative to the ferromagnetically polarized state of the spin-s X X

model on the same lattice. Furthermore, the Hilbert space of spinless fermions on

!The Boltzmann constant will be set to unity throughout this paper kg = 1.
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an N-site lattice is isomorphic to that of the s = 1/2 XX Z model on the same
lattice. Nevertheless, the many-particle states are not equivalent. Apart from the
different statistics, interactions are absent in the model of spinless fermions (2). The
latter property makes it straightforward to derive the thermodynamics, which is a
challenging problem for the X X Z model.

For a free Fermi-gas the grand partition function? is given by Z = [], (1 4 e=*+/7).
Substitution into (1) yields the entropy for a system of free fermions

—e/T

|
S(T) =3 In(1+e/7T) + leg’jreei_w (3)
k k

3. Sawtooth chain

The first model to be discussed is the sawtooth chain shown in figure 1. The
one-particle problem for (2) on the sawtooth chain leads to a 2 x 2 matrix whose
eigenvalues yield two bands of one-particle energies

e+(k) =t cos(k) £ \/t2 cos?(k) + 2”2 cos(k) + 212 4 . (4)

+1 +1
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Figure 1. The sawtooth chain. The hopping parameter along the baseline is ¢,
while along the diagonal directions it is ¢’. For ¢ = /2t the one-particle states
can be localized, as indicated by the bold line and the coefficients of the wave
function (6) written next to the three associated sites.

When one chooses the hopping parameters along the diagonals ' = /2t in terms
of the hopping parameters along the baseline t, the one-particle energies become

e (k)=—-2t+p, er(k) =2t (1 +cos(k)) + p. (5)

Note that the lowest band ¢_(k) is completely flat. The result (5) is equivalent to
the one-magnon energies of an XX spin model on the sawtooth lattice [3]. Very
similar results are also obtained for the Heisenberg model on this lattice (com-
pare equation (33) of [10] for an explicit expression of the one-magnon energies for
s=1/2).

Now we will concentrate on the case ¢’ = v/2¢ where the lowest band ¢_(k) is
completely flat. As in the X XZ model [3,4], it is possible to localize these one-
particle states on the three sites indicated by the bold line (a “valley”) in figure 1.

2The chemical potential y is included in the definition of the one-particle energy ;. for state k.
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To be more precise, let us number the sites along the baseline by 27 and the ones
at the top of the triangles by 2i+ 1. If we further denote the fermionic vacuum by
|0), the localized wave functions are given by (up to normalization)

|l2i> :L;i|0>’ Lgi:é;i—l—f_é;i—&-l_\/ié;i‘ (6)

At p = 2t we have €_(k) = 0. This implies a degeneracy of the ground states with
0 < n < 1/2 due to the 2V/2 distinct ways to fill the zero-energy band. In this
manner we have identified a zero-temperature entropy at u = 2t, t' = /2t

S(0) B In2 B
=5 = 034657 (7)

This corresponds to the zero-temperature entropy found in the Heisenberg model
at the saturation field. However, the value in the latter case is smaller, namely
S(0)/N = 0.2406059. .. [10-12]. That a larger value is obtained for free fermions
can be understood as follows. Many-particle states can be constructed from localized
one-particle states in different valleys. For spinless fermions it is possible to put
one-particle states in neighbouring valleys. The corresponding two-particle state
L; (i+1) L;i |0) is an exact eigenstate with energy 2e_. However, in the X X Z model
the energy of two localized magnons occupying neighbouring valleys is higher since
they share a site [10,12]. The condition that two localized magnons may not occupy
two neighboring valleys lowers the ground state degeneracy and hence the zero-

temperature entropy of the X X7 model dereases as well.

2 o
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T
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Figure 2. Lines of constant entropy for free spinless fermions on the sawtooth
chain with #' = v/2t. The value of the entropy per site S(7")/N is indicated next
to each line.

The entropy at finite temperature and with arbitrary u can be evaluated from (3).
One can either go to the thermodynamic limit and replace the sums by integrals.
Alternatively, one can choose a large system size (N = 2048, for example) and
evaluate the sums numerically. The latter has been performed to obtain figure 2
which is indistinguishable from the thermodynamic limit N — oco. The right half of
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this figure can be compared to figure 6(a) and figure 7 of [10] which show numerical
results for the entropy of the s = 1/2 Heisenberg model in the h-T-plane. The
following different low-temperature regions can be distinguished in figure 2:

(i) for g > 2t both bands are empty and all excitations are gapped,
(i) for p = 2t the ground state is degenerate with the 7" = 0 entropy given in (7),

(iii) for 2¢ > p > 0 the chemical potential is in the band gap between the lower
band e_(k) and the upper band €, (k) such that excitations again have a gap,

(iv) for 0 > p > —4t the chemical potential is in the upper band ¢, (k) and we
have gapless low-energy excitations,

(v) for p < —4t both bands are filled and all excitations are again gapped.

Now let us start at a small temperature 7" and change the chemical potential
adiabatically. Such an adiabatic process keeps the entropy constant, therefore the
temperature T has to change along the curves as in figure 2. If we approach the
region (iv) either from region (iii) or region (v) we see that temperature drops as
i — 0or u — —4t. An even larger temperature drop is observed when we approach
point (ii) either from region (i) or region (iii). This enhanced cooling is clearly
due to the zero-temperature entropy (7) at p = 2t. In fact, if the entropy at the
starting point is below this value, we theoretically approach T"— 0 as u — 2t. The
qualitative behavior is similar to that of the X X Z model on the sawtooth chain [10]
(an interacting model) despite quantitative differences.

4. Kagom é lattice

In this section we discuss a two-dimensional lattice, the kagomé lattice shown in
figure 3. Since a unit cell of this lattice contains three sites, the one-particle problem

OX XA
XX
.

Figure 3. The kagomé lattice. The bold hexagon indicates a localized one-particle
state, the signs in the corresponding wave function are written next to the six sites
of this hexagon. Circles indicate the closest non-overlapping packing of localized
one-particle states.
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for the Hamiltonian (2) now leads to a 3 x 3 matrix whose eigenvalues yield three
bands of one-particle energies

EO(kxaky) = p—= 2t7

ex(ke,ky) = p+tEt 1—1—4008(%) <cos<‘/§;ky>+cos<%>>. (8)

(e-mit
T
|
T
|
T
i <
1 1

Figure 4. The three bands 5Z(E) of single-particle energies for spinless fermions

on the kagomé lattice along the path in the Brillouin zone shown in the inset.

Note that eo(E) is completely independent of k.

Figure 4 shows these three one-particle bands along a path in the Brillouin zone.
Note that the lowest band 50(12) turns out to be completely flat. These results can
be related to the known ones. Firstly, using a particle-hole transformation [17], the
present problem maps to a tight-binding problem of electrons moving on the kagomé
lattice (compare figure 4 e.g. with figure 1(b) of [22]). The one-magnon problem for
the X XZ model on the kagomé lattice is another equivalent problem (see [3] and
in particular figure 2.31 of [2], compare also equation (1) of [12]).

As in the XX Z model [3,2], it is again possible to localize these one-particle
states in real space, namely on a hexagon, as indicated by the bold line in figure 3.
If we number the sites around a hexagon h with j =1, ..., 6, these localized wave
functions can be written as (compare also figure 3 for the signs (—1)7)

1
Ly =LI0)y, LIi=—
|ln) = Ly, |0) P

(=17 &, 9)

-

The energy of the lowest band becomes g¢(k) = 0 at u = 2¢. Consideration of all
possible ways to fill this zero-energy band yields 2V/? zero-energy excitations. For
p = 2t another one-particle energy vanishes, namely £_(0,0) = 0 (see figure 4). How-
ever, this occurs only at a single point k=0. Therefore, the additional contribution
can be neglected in the thermodynamic limit N — oco. Hence, the zero-temperature
entropy per site is at u = 2t

S(0) In2

2 = =2 20.231049. .. . 1
¥ 5 = 0.231049 (10)

818



Entropy of fermionic models on highly frustrated lattices

The X X Z model on the kagomé lattice also gives rise to a finite zero-temperature en-
tropy at the saturation field [2,11,12]. A mapping of the configurations (9) to the ex-
actly solved problem of hard hexagons [23,24] yields a lower bound
S(0)/N > 0.11108 in this case [11,12]. On the one hand, one expects to find a
lower entropy in the X X7 model than for spinless fermions, because the creation
of localized magnons on two neighbouring hexagons costs no energy for free spin-
less fermions while localized magnons can be created for the X X7 model only on
spatially separated hexagons. On the other hand, the situation remains more compli-
cated than in one dimension because of additional topological effects. In fact, a class
of many-magnon states has been found in the X XZ model which are independent
of hard-hexagon configurations [12,14]. Therefore we believe that the precise value
of the zero-temperature entropy at the saturation field of the s = 1/2 Heisenberg
model on the kagomé lattice deserves further attention.

2

Th

Figure 5. Lines of constant entropy for free spinless fermions on the kagomé
lattice. The value of the entropy per site S(T")/N is indicated next to each line.

Also for the kagomé lattice it is straightforward to obtain the entropy at finite
temperature and with arbitrary p from (3) and the single-particle energies (8). We
have again evaluated the sums numerically on a large but finite lattice (N = 10800).
The corresponding values of the entropy per site are shown in figure 5 and can
be considered as representative for the thermodynamic limit. The following four
low-temperature regions can be distinguished in figure 5:

(i) for p > 2t all bands are empty and all excitations are gapped,
(i) for = 2t the ground state is degenerate with the 7" = 0 entropy given in (10),

(iii) for 2¢ > p > —4t the chemical potential is in one of the bands ai(l;) and one
has gapless low-energy excitations,

(iv) for pu < —4t all bands are filled and all excitations are again gapped.
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Additional structures in region (iii) can be attributed to the features in the 7' =0
single-particle density of states (compare Figure 4). Note that in contrast to the
sawtooth chain, the kagomé lattice does not give rise to a gap for u slightly below 2¢.

If we now change p adiabatically, temperature drops considerably as p — 2t.
One can even reach T' = 0 during an adiabatic process if the starting entropy is less
than the 7" = 0 entropy (10) at u = 2t. Note the asymmetry of the curves in figure 5
around p = 2t: The dependence on p is generally weaker in the gapless regime (iii)
than in the gapped regime (i). We also observe a cooling effect as up — —4t from
the gapped regime (iv), although unlike in figure 2 there is no pronounced minimum
close to p = —4t.

5. Hubbard model and flat-band ferromagnetism

Now we will discuss the effect of interactions using the Hubbard model as an
example. The fermions are assigned an additional spin index ¢ =T, |, and there is
an on-site Coulomb repulsion U > 0 for fermions (electrons) with different spin:

N N
H = Z Z tij (é;r,g@j,g + é;r-’géi,a> +U Z ni NG| + p Z Z Rig - (11)
i=1 1

g <Z7]> o 1=

The Coulomb repulsion is not effective for spin-polarized configurations (all o equal).
These configurations can be identified with spinless fermions. Conversely, each eigen-
state of the spinless fermion Hamiltonian (2) yields a spin-polarized eigenstate of the
Hubbard model (11). In particular the one-particle problem is identical in both mod-
els. The single-particle bands of the Hubbard model are simply twofold degenerate.
Using the results from the previous sections, we can now establish a T' = 0 entropy
for the Hubbard model (11) for U > 0 and otherwise the same conditions which lead
to T' = 0 entropy for spinless fermions (2). A relation to flat-band ferromagnetism
[17-21] is also evident.

Let us assume that the lowest single-particle band is completely flat, as we found
for the sawtooth lattice (figure 1) at ¢’ = /2t and the kagomé lattice (figure 3). The
corresponding states can be localized in real space as before; the creation operator
of a local state L;U just acquires an additional spin index. States localized at j,
J2, ... with spins o1, 09, . . . can be created by repeated application of distinct creation
operators

Lt Lt -]0). (12)
These states are clearly eigenstates for any j; # jo if they are spin-polarized o; = 0.
As long as the local states are created in spatially non-overlapping regions, the
states (12) with o1 # o9 are also eigenstates with the same energy as the spin-
polarized states. However, once the localization regions overlap, there are generally
two electrons with a distinct spin at a site. The Coulomb repulsion in (11) raises
the energy of such states by an amount of oc U. Note that certain combinations
where local states with different spins overlap must have the same energy as the
spin-polarized states due to the SU(2)-symmetry of the Hamiltonian (11). However,
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if Coulomb repulsion is active, it will raise the energy of many-particle states in the
lowest band.

Now choose g such that the lowest band has zero energy e(k) = 0 (u = 2t for
the sawtooth chain and the kagomé lattice). The preceding discussion then yields a
lower bound of the T' = 0 entropy of the Hubbard model (11) in terms of spinless
fermions (2): Saupbara(0) = Ssp(0). The precise value of the entropy of the Hubbard
model (11) is difficult to determine due to the additional zero-energy states which
are not spin-polarized. In any case, in the Hubbard model adiabatic changes of
will also give rise to large temperature variations.

Spatial overlaps of the individual local states are unavoidable at large filling
fractions of the flat band. Spin-polarized states still have the lowest possible energy
in this case while a non-polarized state is generally pushed higher in energy by
Coulomb repulsion. This implies a phenomenon known as flat-band ferromagnetism
[17-21]: In this region of densities, spin-polarized (i.e. ferromagnetic) configurations
are preferred over non-magnetic configurations. To be more precise, let us consider
the kagomé lattice. Using our conventions (11), the lowest band can be filled in a
spin-polarized manner for 0 < n < 1/3. On the other hand, local wave functions
have to overlap for n > 1/9 (see figure 3). Slightly above the threshold n = 1/9,
ferromagnetism can still be avoided by having an overlap only for localized states
with equal spins. According to a detailed mathematical analysis [17], the ground
state of the Hubbard model (11) is ferromagnetic for 1/6 <n < 1/3.

6. Summary and outlook

In sections 3 and 4 we have examined spinless fermions on the sawtooth chain
and the kagomé lattice. We found that the lowest single-particle band is completely
flat for a particular choice of hopping parameters in the case of the sawtooth chain
and without any fine-tuning for the kagomé lattice. These states can be localized in
real space. Since the particles have zero energy at pu = 2t¢, one finds a finite 7" = 0
entropy at this value of the chemical potential. This implies large adiabatic tem-
perature variations when p is changed adiabatically at finite temperature. At least
on the single-particle level, the construction is completely analogous to the X X Z
model on the same lattice. It can therefore be generalized to many other lattices
for which localized magnons have been constructed [2—4,6], including in particular
the pyrochlore lattice in three dimensions. We do not wish to speculate about pos-
sible experimental applications. Rather we regard these non-interacting models as
an illustration of important qualitative features of spin models. First experimental
investigations [8,9] of the magnetocaloric effect in highly frustrated magnets shows
that they are indeed promising candidates for efficient low-temperature magnetic
cooling.

The tuning of the chemical potential p through a non-degenerate band-edge,
i.e. an edge without flat directions, yields a second-order quantum phase transition.
Spinless fermions thus provide a simple realization of the quantum critical scenario
discussed in detail in [25,26].
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In section 5 we have briefly commented on the Hubbard model where an on-site
Coulomb repulsion U gives rise to interactions. However, this repulsion is not active
for spin-polarized configurations. Therefore, the existence of a finite 7" = 0 entropy
for a certain value of u and consequently the large temperature variations when p is
tuned through this point carry over from spinless fermions to the Hubbard model.
Nevertheless, both the T' = 0 entropy and the cooling rate in the Hubbard model
remain to be analyzed in more detail. In this context it is also intriguing to note
that a finite 7" = 0 entropy arises in the Hubbard model under the same conditions
which lead to flat-band ferromagnetism [17-21].
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EHTpoOnia ¢pepmioHHUX Moaenen Ha CUJIbHO
pPO3BNOPAAKOBAHUX FrpaTKax

A.lonekep !, N.Pixtep?

TexHiyHUM yHiBepcuTeT BpayHLuBelra,
IHCTUTYT TEOPETUYHOI Di3nKH,
38106 BpayHwiseir, HimeydnHa

IHCTUTYT TEOPETUYHOI Pi3nKH,
YHiBepcuteT Margebypra im. OTTo ¢oH lMopike,
39016 Marne6bypr, Hime44mnHa

OTtpumaHo 20 nunHs, 2005

Bes3cniHoBI GepMiOHM Ha CUSIbHO PO3BMNOPSAAKOBAHMX rpaTtkax xapak-
TEPU3YIOTLCS HAMHUXYOI0 OAHOYACTUHKOBOKO 30HOI0, SIKa € MOBHICTIO
nnockot. KoHKpeTHi peani3auii 3pobneHi 3a 4ONOMOrol nunkonomid-
HOrO naHuioXka Ta rpatkm Karome. [na umx mopenenm npuBengeHo
KapTUHY B AINCHOMY NPOCTOPI B NPeacTaBfieHH] JIOKani3oBaHMX CTaHIB.
Oani Mn 3HaxoguMO CKiHY4EHY €HTPOMilo NpW HyNbLOBIV TeMnepartypi
Onsi NeBHOro BMOGOpPY xiMiYHOro mnoteHujany. EHTponis po3paxoByeTb-
CS 4YncenbHO NpPW CKiHYEHIn TemnepaTypi i CNOCTEPIraeTbCa CUNbHUN
edekT OXONOoMXKEHHS Mif Yac afiabaTUyYHUX 3MiH XiIMIYHOro NoTeHLiany.
Mwn aprymeHTyeMO, LLO NOKani3oBaHi CTaHuW, BigNOBiAHA eHTpOonia npu
HY/IbOBIN TemMnepaTtypi 9K i CUbHI Bapiauji TemnepaTypy nepeHocATb-
cs Ha mogenb Mabbapaa 3 BigwToBXyBaHHAM. KOPOTKO 0O6roBOpPIOETLCS
TakoX 3B’A30K i3 pepoMarHeTM3MoM NIOCKMUX 30H.

Knwo4oBi cnoBa: risiocka 30Ha, J10kani3o0BaHi CTaHu, pO3BropsiAKoBaHa
rparka, 6e3crniHoBi pepmioHn, moaesib [abbapaa, MarHeTOKan0pPUYHNA
epekTt

PACS: 71.10.Fd, 65.40.Gr, 75.30.Sg, 75.10.Jm
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