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In a hot system every excitation acquires a finite lifetime, manifesting itself
in a non-zero spectral width. Ordinary damping as well as quantum mem-
ory effects arise from this nontrivial spectral function. This report presents
a new method for the self-consistent calculation of the spectral width of
a fermion coupled to massless bosons of scalar, vector and pseudoscalar
type. In accordance with the known procedures of Quantum Electrodynam-
ics, the self-consistent summation of the corresponding Fock diagram elim-
inates all infrared divergences although the bosons are not screened at
all. The solutions for the fermion damping rate are analytical in the cou-
pling constant g , but not analytical in the temperature parameter, i.e.,
γ ∝ g2T +O(g4T log(T/M)) .
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1. Introduction

The damping rate of a fermion moving through a hot system, i.e., the width of
its spectral function, is an interesting quantity for a wide range of physical systems.
Some examples are electrons and holes in semiconductor crystals, or particles in the
early universe as well as in heavy-ion collisions [1]. In such systems, the fermion
damping rate allows us to estimate the relaxation time in collisions as well as the
quantum memory time [2] and radiation properties [3].

The damping rate of massive fermions interacting with massless bosons is an
especially interesting problem in this context. From the phenomenological point of
view this importance is due to the fact that all fundamental forces of nature involve
massless gauge bosons. From the theoretical standpoint a similarly big interest lies
in the infrared divergence associated with this particular problem.
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It arises from the fact, that fermions interacting with strictly massless bosons may
emit an infinite number of such bosons with infinitely small energy. Such a concept
is of course meaningless in the real world, and consequently the solution of the
problem has to connect the abstract world of quantum physics with reality. At zero
temperature such an infrared divergence occurs in QED as well as in QCD, and its
removal (or regularization) has become a standard textbook content. Generally, the
argument used is the finite energy resolution of every physical measuring apparatus.

At non-zero temperature, however, the question of the gauge-independent, cau-
sality preserving and therefore physical removal of the infrared divergence is far from
settled. Most of the schemes discussed so far involve momentum scale cutoff factors
or quasi-particles with “magnetic mass” [4]. As will be argued in the next section,
such schemes violate several fundamental rules of quantum theory.

The present paper attempts a new solution to the infrared problem in hot sys-
tems, motivated by one of the few mathematically rigorous theorems of finite tem-
perature quantum theory. This NRT theorem due to Narnhofer and Thirring states
that particle-like excitations with infinite lifetime can exist in a hot system only if
they do not interact [5].

The use of particle-like excitations in a perturbative scheme, which are asymptot-
ically stable and only have a temperature dependent “mass” is therefore unjustified a

priori and can only be obtained as a limiting case at the very end of all calculations.

Still deeper is a mathematical reason that the symmetry group of space and
time in thermal states is not the Poincaré group as in the vacuum state, but rather
a product of SO(3) and the four-dimensional translation group [6]. Its irreducible
representations can be interpreted as having a continuous mass spectrum, i.e., the
concept of a mass-shell (and thereby of stable asymptotic states) is not well-defined
at non-zero temperature.

The solution of this problem has been pointed out by Landsman [7], using earlier
work of Licht [8] and Wightman [9] and leading to a perturbative expansion in
terms of generalized free fields without a mass-shell. To account for the proper
temporal boundary conditions in a thermal system, these generalized free fields
have to be embedded in a description with doubled Hilbert space, i.e., the single-
particle propagators are 2×2 matrices [10]. Two flavours exist for such a formalism,
the Schwinger-Keldysh (or closed time-path) method [11] and the method called
thermo field dynamics (TFD) [12]. Within the latter this merger of different aspects
of finite temperature field theory has been discussed in ref. [13], which also introduces
the notation used in the following.

The mathematical framework used is a relativistic quantum field theory, however,
as was pointed out above, the results apply to a wide range of physical systems also
in the low energy sector.

The present paper is organized as follows: First, some general remarks are made
about nonequilibrium propagators in terms of their spectral function. These remarks
are then used to obtain well-defined approximations to the spectral functions of
bosons and fermions in a hot medium.

In section 3 the problem of calculating one-loop diagrams with effective propa-
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gators is discussed, and how they may be used for a self-consistent determination
of the spectral function. Sections 4 and 5 are rather technical and are devoted to
analytical approximations for the Fock self-energy function.

In section 6 these results are assembled, and consequently one obtains approxi-
mate solutions for the self-consistent Fock approximation, i.e., for the full fermion
propagator calculated with a one-loop self-energy function at finite temperature.
Finally these results, which are different from those obtained by other methods, are
used to draw some conclusions.

2. Spectral functions

Appropriate for a description of dynamical phenomena in a thermal system is
a formalism with 2 × 2 matrix valued Green functions. In thermo field dynamics
(TFD) this “doubling” arises naturally because TFD contains two different (anti-)
commuting representations of the canonical (anti-) commutation relations.

In the Schwinger-Keldysh method the doubling is introduced because a full de-
scription of statistical systems can be achieved only when using causal and anti-
causal Green functions as well as Wigner functions. Consequently, the full propaga-
tor matrix is

S(ab)(x, x′) = −i



〈
T
[
ψxψx′

]〉
−
〈
ψx′ψx

〉

〈
ψxψx′

〉 〈
T̃
[
ψxψx′

]〉

 , (1)

where 〈. . .〉 denotes the statistical average, T[. . .] the time ordered and T̃[. . .] the
“anti-time ordered” product. The same matrix valued propagator is obtained in
TFD (see [13,14] for detailed discussions of this equivalence).

By construction the propagator matrix obeys the linear relation S 11 + S22 −
S12−S21 = 0. Furthermore, in an equilibrium state it has to fulfil the Kubo-Martin-
Schwinger condition [15], i.e., an anti-periodic boundary condition in the imaginary
time direction. In momentum space the KMS condition then reads [10,13,14]

(1− nF(p0))S
12(p0, ~p ) + nF(p0)S

21(p0, ~p ) = 0. (2)

S12 and S21 are the Green functions without time ordering (Wigner functions) and
nF(E) is the fermion equilibrium distribution function at a given temperature, the
Fermi-Dirac function

nF(E) =
1

eβE + 1
. (3)

An almost identical KMS relation holds for bosons, but here the fields are periodic
in the imaginary time direction. Consequently, occupation number factors are given
as Bose-Einstein function

nB(E) =
1

eβE − 1
. (4)

For simplicity only the case of zero chemical potential is discussed.
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In interacting systems, the KMS boundary conditions lead to a causal propagator
which has a cut along the real energy axis. Its analytical structure therefore is not
easily understood, and especially when combining several of such propagators in a
perturbative scheme one has to implement more or less complicated cutting rules to
understand pieces of diagrams physically [16,17].

It is therefore generally a safe method to use only retarded and advanced propa-
gators, and to condense the matrix structure of equation (1) into the vertices where
such propagators join. This amounts to a diagonalization scheme for the matrix (1),
which has been described in several publications [13,14].

2.1. Retarded and advanced propagators

The retarded and advanced propagators are, by definition, analytical functions
of the energy parameter in the upper or lower complex energy half plane. Analyti-
cal functions obey the Kramers-Kronig relation, and this implies that the retarded
propagator is known completely if only its imaginary part (or spectral function) AF

is known along the real axis. Hence, for arbitrary complex E

SR,A(E, ~p ) =

∞∫

−∞

dE ′ AF(E
′, ~p )

1

E − E ′ ± iǫ
. (5)

Trivially, the spectral function is recovered for real E,

AF(E, ~p ) = ∓
1

π
Im(SR,A(E, ~p )) =

1

2πi

(
SA(E, ~p )− SR(E, ~p )

)
. (6)

The diagrammatic rules to combine these propagators in the calculation of physical
quantities are well established. In terms of the spectral functionAF(E, ~p ), the matrix
valued propagator of equation (1) can be expressed as [13,14]

S(ab)(p0, ~p ) =

∞∫

−∞

dEAF(E, ~p )

× τ3 (B(nF(E)))
−1




1

p0 − E + iǫ
1

p0 −E − iǫ


 B(nF(E)). (7)

τ3 is the diagonal Pauli matrix, and the transformation matrix B is

B(nF(E)) =

(
(1− nF(E)) −nF(E)
1 1

)
. (8)

It is a matter of a few lines to show that this matrix-valued propagator obeys relation
(2) for each spectral function.

A similar relation holds for the boson case, see [13,14] for details of the corre-
sponding B. For both cases, the transformation matrices B have a special meaning
in the TFD formalism, where they play the role of a thermal Bogoliubov transforma-
tion. However, the explicit form (5) of the propagator is the same in the Schwinger-
Keldysh method.
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2.2. Normalization and locality

The spectral function has got two features which are intimately related to funda-
mental requirements of quantum field theory. Here they are commented on only for
the fermionic case, and refer to [18] for the case of bosons. Firstly, the quantization
rules for fields, {

ψ(t, ~x), ψ†(t, ~y)
}
= δ3(~x− ~y ) (9)

require that the spectral function is normalized

∞∫

0

dE Tr
[
γ0AF(E, ~p )

]
= 2. (10)

The second important feature of the spectral function is that its four dimensional
Fourier transform into coordinate space must vanish for space-like arguments. This
is equivalent to the Wightman axiom of locality , i.e., field operators must (anti-)
commute for space-like separations in Minkowski space [19]:

CF(x, y) =
〈{
ψ(x), ψ†(y)

}〉

=

∫
dE d3~p

(2π)3
e−i(E(x0 − y0)− ~p(~x− ~y ))AF(E, ~p )

= 0 if x− y space-like. (11)

In an interacting many-body system, one may very well expect non-locality in a
causal sense: Wiggling the system at one side will certainly effect the other side
after some time. The locality axiom ensures that this effect does not occur over
space-like separations, i.e., faster than a physical signal can propagate. Thus, to
distinguish between the causal non-locality and the violation of the locality axiom,
the latter will henceforth be denoted as a violation of causality .

It is trivial to establish that normalization and locality axiom are satisfied for
free fermions of massM . Defining their on-shell energy as ωp =

√
~p 2 +M2, the free

spectral function is obtained as

A0
F(E, ~p ) =

(
Eγ0 + ~p~γ +M

)
sign(E) δ(E2 − ω2

p). (12)

Without loss of generality one may set y = 0 in the free fermionic anti-commutator
function, and obtain

C0
F(x, 0) = (i∂µγ

µ +M)Z(x0, ~x), (13)

where

Z(x0, ~x) =
−i

4π

[
δ(x20 − ~x 2)−Θ(x20 − ~x 2)

M

2
√
x20 − ~x 2

J1

(
M
√
x20 − ~x 2

)]
, (14)

and J1 is a Bessel function of the first kind. Clearly this is zero for space-like argu-
ments, i.e., for |~x| > |x0|. However, from this prescription follows that for a general
spectral function the locality axiom is not automatically guaranteed, a careful check
is necessary in any application involving spectral functions.
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2.3. Ghost poles

For an interacting system, the full fermion propagator and thus also the spectral
function is defined in terms of a self energy function Σ:

AF(p0, ~p ) = ∓
1

π
Im
[(
pµγ

µ −M − ΣR,A(p0, ~p )
)−1
]
. (15)

Note, that also the self-energy function is Dirac matrix valued, i.e., this equation
contains the inversion of a 4× 4 matrix.

However, the real part of the full propagator is not given by the real part of
the quantity in square brackets of (15). The reason is, that according to Weinberg’s
theorem [20] the self-energy function in a relativistic theory behaves as

Σ(p0, ~p ) ∝ p0

(
log
( p0
M

))n
, p0 → ∞, (16)

i.e., it is more than linearly divergent. This implies, in general, the presence of
unwanted poles when the interaction is not asymptotically free. For fermions, these
Landau ghost poles appear at four points in the complex energy plane [21, p. 636].

Since their appearance contradicts the definition of the retarded/advanced prop-
agator as being free of poles at least in one half plane, they must be considered
unphysical. For a sufficiently large coupling, they have a big effect on the propaga-
tor along the real axis, while for small coupling they are far away from the physical
region. Hence, their consistent removal is mandatory for strongly interacting sys-
tems, and the only way to do so is by calculating the real part of the propagator by
a dispersion integral according to (5).

It was pointed out in reference [22], that this indeed conforms to a non-pertur-

bative correction to the propagator, in the sense that the correction term is not an
analytical function of the coupling constant. In general, it will be of order exp(−1/g 2)
instead. Hence, equation (5) is the only safe method to calculate a relativistic prop-
agator, and the input needed for this calculation is a physically meaningful spectral
function which obeys all the rules discussed here.

To demonstrate briefly how the removal of unphysical poles is achieved through
a dispersion integral, consider a bosonic toy model spectral function of Lorentzian
type which has got a peak along the real axis at some value ωp

A0(E, ~p ) =
1

π

γp

(E − ωp)
2 + γ2p

. (17)

By definition, this spectral function may be used only for real energy arguments, and
does not take on negative values. If this were violated, the probabilistic interpretation
of the quantum (field) theory behind this formulation would be invalid.

The above function has a trivial expansion into simple poles in the complex
plane,

A0(E, ~p ) =
1

2πi

(
1

E − ωp − iγp
−

1

E − ωp + iγp

)
. (18)
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The real part of the corresponding propagator is obtained through

GR
0 (p0, ~p ) =

∞∫

−∞

dEA0(E, ~p )
1

p0 − E + iǫ
. (19)

The integrand is expanded into simple poles,

1

E − ωp ± iγp

1

p0 − E + iǫ
=

1

p0 − (ωp ∓ iγp)

(
1

E − ωp ± iγp
+

1

p0 −E + iǫ

)
. (20)

The E-integration is convergent, and closing the integral in the upper complex en-
ergy half plane then picks up the residues of the corresponding poles. First consider
the case Im(p0) > 0, where the equal sign is permitted because of the iǫ terms in the
denominator of the dispersion integral. Clearly, the integrand then has three poles
in the upper complex half plane, but two of the residues are cancelled.

In the second case Im(p0) < 0 the integrand has only one pole in the upper
complex half plane. Assembled together the integral gives

GR
0 (p0, ~p ) =





1

p0 − (Ep − iγp)
, Im(p0) > 0

1

p0 − (Ep + iγp)
, Im(p0) < 0

, (21)

which is free of poles on both sides of the real axis. This may be cast into the
statement, that retarded and advanced propagator have a common analytical con-
tinuation.

A similar effect occurs, when a self-energy function according to (16) is used, i.e.,
when ghost poles are present in a perturbative propagator: The dispersion integral
always shifts complex (ghost) poles to the unphysical Riemann sheet.

As a matter of fact it has been shown very long ago in quantum field theory,
that this is the only scenario compatible with causality: The retarded as well as the
advanced propagator should be free of poles in the complex energy plane on both
sides of the real energy axis [23].

2.4. Approximate spectral functions

The toy model spectral function of equation (17) cannot be used in a consistent
calculation, since it propagates only the states of positive energy. More useful is a
symmetric ansatz, which for bosons reads

AB(E,~k) =
1

2ωk

(
A0(E,~k)−A0(−E,~k)

)
=

1

π

2Eγk

(E2 − Ω2
k)

2
+ 4E2γ2k

, (22)

with Ω2
k = ω2

k + γ2k . This spectral function is normalized according to the canonical
field commutation relations, i.e.,

∞∫

0

dE EAB(E,~k) =
1

2
. (23)
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Note, that in this ansatz the dependence of γk on the momentum of the relativistic
boson is completely arbitrary, and one may also introduce a more general relationship
between ωk and momentum than in the free case.

The approximation of the full propagator by such an approximate spectral func-
tion amounts to the approximation of the denominator of a relativistic retarded
boson propagator along the real axis as

kµk
µ −m2 − ΠR(k) = (k0 − (ωk − iγk)) (k0 + (ωk + iγk)), (24)

where Π is the boson self-energy function, and solving this equation for ωk, γk. An
example for such an approximation has been given in reference [13], and there the
momentum dependence of ωk as well as of γk was quite strong for the case of a
pseudoscalar coupling between bosons and fermions.

Note at this point, that a general momentum dependence of the γk-parameter
does not guarantee the causality of the model, i.e., it may violate the locality ax-
iom as discussed above. For a physically correct model, it is mandatory that the
Fourier transform of the spectral function vanishes for space-like coordinate argu-
ments. Indeed one may show, that for the ansatz equation (22) this is achieved when

considering an ω2
k which is quadratic in ~k and a constant γk.

This ansatz may be extended to the fermionic case. The spectral function then
is slightly more complicated because of its Dirac matrix structure. In equation (10)
the normalization was given for a fermion spectral function. The simplest ansatz
compatible with this normalization, as well as with known properties of fermion
systems, would be to multiply the spectral function from equation (22) by a factor
(Eγ0 + ωp).

However, as one may show, such an ansatz violates the locality axiom, therefore
it is not useful for a consistent calculation. Rather, one has to use a more complicated
spectral function,

AF(E, ~p ) =
γp
π

γ0
(
E2 + ω2

p + γ2p
)
+ 2E~γ~p+ 2EM

(
E2 − ω2

p − γ2p
)2

+ 4E2γ2p

=
1

4πiωp

(
ωpγ

0 + ~p~γ +M

E − ωp − iγp
−

−ωpγ
0 + ~p~γ +M

E + ωp − iγp

−
ωpγ

0 + ~p~γ +M

E − ωp + iγp
+

−ωpγ
0 + ~p~γ +M

E + ωp + iγp

)
, (25)

where in principle γp may be momentum dependent, Ωp
2 = ωp

2 + γp
2 and M is

a constant which may be different from the physical fermion mass in the vacuum
state.

As argued in the previous subsection, the Fourier transform of the spectral func-
tion has an important physical interpretation. Note, that in the special case where γ
is independent of momentum the 4-dimensional Fourier transform of equation (25)
is

CF(x, 0) = e−γ |x0|
(
iγµ

∂

∂xµ
+M

)
Z(x0, ~x), (26)
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with the function Z as defined in equation (13). Hence, for momentum independent
γ andM , the locality axiom is fulfilled and interactions in the system are causal. One
therefore has to limit the use of the spectral function (25) to this approximation,
i.e.,

γp ≡ γ = const,

ω2
p ≡ ω2 = ~p 2 +M2,

⇒
(
ω(~p+ ~k)

)2
= ω2 + 2|~p | |~k|η + ~k2, (27)

where η is the cosine of the angle between the two momenta ~p and ~k.

3. Fermion damping rate

The next step is to use spectral functions, together with the definition of the
complete propagator by dispersion integral, in a “perturbative” expansion at finite
temperature. One finds, that “perturbative” is certainly not the correct label for
such a skeleton expansion, because in general due to the properties of the dispersion
integral the results will not be expandable into power series in the coupling param-
eters (see section 2.3). Indeed up to correlation diagrams and vertex corrections, a
perturbative expansion in terms of full propagators is exact already at the one-loop
level [21, p. 476].

For simplicity, first consider a simple scalar coupling of a boson field having the
spectral function AB to a fermion field having the spectral function AF. In equations
(39) and (40), some generalizations are investigated.

The “one-loop” diagram for the fermion self-energy, the Fock diagram, is given
by the integral

ΣR(p0, ~p ) = g2
∫

d3~k

(2π)3

∞∫

−∞

dEdE ′ AF(E, ~p+ ~k)AB(E
′, ~k)

(
nB(E

′) + nF(E)

p0 + E ′ − E + iǫ

)
.

(28)
This function is split into real and imaginary part as ΣR = ReΣ− iπΓ, and for the
latter one obtains

Γ(p0, ~p ) = g2
∫

d3~k

(2π)3

∞∫

−∞

dE AF(E + p0, ~p+ ~k)AB(E,~k) (nB(E) + nF(E + p0)) .

(29)
To fulfil the Kubo-Martin-Schwinger boundary condition (2) for the fermion prop-
agator including the above self-energy function, it is absolutely essential that both
propagators in the above expression have the same equilibrium temperature. In other
words, one may not disregard the fermion distribution function nF(E + p0) in the
above expression in any case.
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The corresponding “one-loop” result for the retarded scalar boson self-energy is,
according to reference [13]

ΠR(k0, ~k) = g2
∫

d3~p

(2π)3

∞∫

−∞

dEdE ′ Tr
[
AF(E, ~p+ ~k)AF(E

′, ~p )
] ( nF(E

′)− nF(E)

k0 + E ′ −E + iǫ

)
.

(30)
The imaginary part of ΠR = ReΠ− iπσ is explicitly

σ(k0, ~k) = g2
∫

d3~p

(2π)3

∞∫

−∞

dE Tr
[
AF(E, ~p+ ~k)AF(E − k0, ~p )

]
(nF(E − k0)− nF(E)).

(31)
The above imaginary part vanishes at k0 = 0, more generally when the external
energy parameter equals the boson chemical potential. This relation is violated if
different propagators for the fermions are used on the two legs of the diagram, e.g.,
when inserting different “thermal masses” for the two legs [24]. This violation in turn
leads to a violation of the Kubo-Martin-Schwinger (KMS) boundary conditions for
the full boson propagator, i.e., it is not an equilibrium Green function.

In principle, one could now introduce a self-consistent calculation scheme: The
expressions (28) and (30) are calculated with an approximate spectral function, then
used as input to equation (15) and a similar equation for the full boson propagator
in terms of its self-energy. This gives new spectral functions, which may be used
again to determine self energies. Such a scheme has been used in refs. [25,26], and
based on these papers one might hope that a few iterations are enough to determine
the spectral function numerically quite well.

However, as pointed out, there is no way to guarantee that in such a scheme
causality (in the representation of the locality axiom) is preserved. Moreover, in an
entirely numerical scheme it would be impossible to point out the path to the solution
of the infrared problem. Two strategies exist which may be used to circumvent this
difficulty.

The first strategy is to enforce locality after each iterative step. This can be done
by folding the resultant spectral functions with the Fourier transform of Θ(t2−~x 2),
which makes this scheme numerically much more difficult than even the iterative
procedure used in [25,26].

The second strategy is to use a simple causality-preserving parametrization of
the spectral functions. The parameters are then determined self-consistently in a
closed scheme. Apart from the possibility to achieve analytical approximations, this
strategy also has the virtue that one can use it as an input to the first one. Thus,
for obvious reasons this second course will be used henceforth.

3.1. Approximations to the boson spectral function

As was pointed out above, and is well known for many years, the boson prop-
agator may have isolated poles only on the real energy axis, but not away from it
on the physical Riemann sheet [23]. Furthermore it may exhibit cuts along the real
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energy axis due to self-energy corrections with continuous non-zero imaginary part
like in equation (31).

In the absence of condensation phenomena these self-energy corrections have got
a zero imaginary part when the boson energy parameter is equal to the chemical
potential. Consequently, the product of a Bose-Einstein distribution function (4)
and a continuous part of the boson spectral function is always infrared finite.

The only possible source for an infrared divergence, therefore, are poles on the
real axis, corresponding to particles with infinite lifetime. As argued above, such
poles may not exist in a finite temperature system [5], and thus it is on the one hand
clear that infrared divergences in finite temperature field theory are not present in
the full theory but a mere artifact of perturbation theory.

On the other hand it is nevertheless instructive to study how these divergences
are removed within a proper calculational scheme. Therefore, momentarily one may
choose the worst case for a boson spectral function, corresponding to a kind of
electromagnetic interaction without screening or damping:

A0
B =

1

2k
(δ(E − k)− δ(E + k)) (32)

with k = |~k|. It is obvious, that the product of this spectral function with the cor-
responding (particle plus antiparticle) Bose-Einstein distribution function is highly
singular for E → 0. In particular, the infrared dominant piece of the imaginary part
(29) of the self-energy function is

Γ(p0, ~p ) ≈ g2
∫

d3~k

(2π)3
T

2k2

(
AF(p0 + k, ~p+ ~k) +AF(p0 − k, ~p+ ~k)

)
e−k/T , (33)

i.e., the integral is infrared finite as long as the fermion spectral function is finite.
That it is also ultraviolet finite is not obvious from the expansion made here, but
follows from equation (29).

Various methods exist to obtain approximate propagators or spectral functions.
However, these methods either violate the NRT theorem, or causality. Introducing a
modified (i.e., less singular) spectral function for the bosons, of course, modifies the
result for Γ quantitatively, but only one direction for such a modification is possible
since the calculation of Γ is dominated by the infrared sector. Any less singular
spectral function than (32) therefore diminishes the value for Γ, because it leads to
a “smearing” of the Bose pole with some distribution.

Consequently, one may consider the values, obtained in the following, an upper
bound on the full calculation with screened massless bosons – as well as a quite good
approximation to the case of “unscreened static magnetic fields”.

3.2. Approximations to the fermion spectral function

Suppose, one really would approximate the full spectral function according to
equation (15) by the simple parametrization of equation (25). This then would
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amount to equate the denominators on the real energy axis as

(
pµ − Vµ(p) + iπΓv

µ(p)
)2

− (M + S(p)− iπΓs(p))2

= (p0 − (ωp − iγp)) (p0 + (ωp + iγp)) . (34)

The functions of momentum appearing here are the components of the retarded
self-energy function, split into real and imaginary part according to

ΣR(p) = ReΣ(p)− iπΓ(p),

ReΣ(p) = S(p) + Vµ(p)γ
µ ,

Γ(p) = Γs(p) + Γv
µ(p)γ

µ. (35)

In the above expressions, the self-energy functions have been split into a Lorentz
scalar and a Lorentz vector piece, henceforth simply abbreviated as scalar and vector
part.

It was stated above, that in general this may give rise to a momentum dependent
γp as well as to a non-quadratic dependence of ωp on ~p. Consequently, to check for
the locality axiom, i.e., the preservation of causality in the interactions of the system,
requires great numerical effort and one would lose all the virtues that come with a
simple parametrization of AF. It is therefore useful to study first, how the choice of
spectral function (25) affects the imaginary part of the self-energy (29). Clearly it
has got only two independent components, since its Lorentz scalar and vector parts
are

Γv
0(p) = ΓI(p0, ~p, γ),

Γv
i (p) =

~pi
M

ΓII(p0, ~p, γ),

Γs(p) = ΓII(p0, ~p, γ). (36)

To study a slow massive fermion on its effective mass-shell, i.e., for p0 = ωp =√
~p 2 +M2, one may therefore make the approximation that the real part of the self

energy function may be absorbed into the mass parameter M .
For the scalar coupling considered here, the self-consistency equation obtained

from equation (34) reads

γS = πΓI(ω, ~p, γS) + πΓII(ω, ~p, γS)

(
1−

~p 2

M2

)
M

ω
. (37)

According to the assumption, the left side does not depend on the momentum ~p.
While one certainly cannot hope that the momentum dependence on the right side
is cancelled completely, one may nevertheless expect that it possesses an expansion
of the type

γS = ν0 + ν1
~p 2

M2
+ ν2

~p 4

M4
+ . . . . (38)

Consequently, the approximations made here are reasonable if the coefficients in
this expansion are at least of the same magnitude – and they should be considered
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a failure when e.g. |ν0| ≪ |ν1|. Checking this condition, therefore, will provide an
a-posteriori test of the assumptions.

It is quite simple to generalize this scheme to the exchange of a massless vector
boson, if the boson propagator is taken in Feynman gauge [21, p. 329]: The inclusion
of Dirac matrices γµ, γµ at the vertices of the Fock diagram simply multiplies Γ v by
a factor –2 and Γs by a factor 4. The resulting vector boson self consistency relation
is

γV = −2πΓI(ω, ~p, γV) + 4πΓII(ω, ~p, γV)

(
1 +

~p 2

2M2

)
M

ω
. (39)

It is worthwhile to note, that the ansatz of a momentum independent imaginary part
of the fermion self-energy ensures the gauge invariance of this self-consistent damping
rate in the limit ~p → 0. Gauge invariance even of the first momentum dependent
correction term requires to introduce a vertex correction into the equation (29) to
satisfy the correct Ward identity [27].

Physically interesting is also the result for massless pseudoscalar bosons , where
one has

γP = πΓI(ω, ~p, γV)− πΓII(ω, ~p, γP)

(
1 +

~p 2

M2

)
M

ω
. (40)

3.3. Angular integrations

The integration over the angle between the two momenta ~k and ~p may be done
analytically. Using the above spectral functions, one obtains as the γ 0-proportional
imaginary part of the self-energy

ΓI(ω, ~p, γ) =

g2 γ0 γ

4π3

∞∫

0

dk k

{[(
(k + ω)2 − kω + γ2/2

)
I1(k + ω) + pk I2(k + ω)

]

×
(
nB(k) + nF(k + p0)

)

−
[(
(k − ω)2 + kω + γ2/2

)
I1(k − ω) + pk I2(k − ω)

]

×
(
nB(−k) + nF(−k + p0)

)}
. (41)

I1 and I2 are integrals over the angle between the momenta ~p and ~k, and k = |~k|,
p = |~p | (see appendix A for technical details and the definition of the functions I1
and I2).

A similar expression can be found for the second (scalar) piece of the self-energy
function,

ΓII(ω, ~p, γ) =
g2M γ

4π3

∞∫

0

dk k

{
(k + ω) I1(k + ω)

(
nB(k) + nF(k + p0)

)

+ (k − ω) I1(k − ω)
(
nB(−k) + nF(−k + p0)

)}
. (42)
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The infrared problem addressed above finds its representation in the fact, that in
the limit γ → 0, I1 and I2 behave like a negative power 6 −2 of k. This becomes
obvious when expanding the integrand around the value k = 0.

To check the conjecture of infrared finiteness made after equation (33), one may
perform this expansion in the above expressions and obtains for the quantity in curly
brackets of equation (41), at the point p0 = ω:

lim
k→0

{
. . .

}

p0=ω

= γ0
T

γ

ω2 + γ2/2

ω2 + γ2/4
+O(k2). (43)

Consequently, the infrared divergence of the fermion damping rate is removed by
starting with a small non-zero γ.

4. “Vacuum” state

In this section, the temperature independent part of the Bose-Einstein and Fermi-
Dirac distribution functions is used to calculate contributions to the self energy
function of fermions. In this limit, n0

B(E) = −Θ(−E) and n0
F(E) = Θ(−E).

One may argue, that these are “vacuum” contributions, therefore not present in
a properly renormalized theory. However, the propagators employed here are not the
ordinary vacuum propagators for the fermion field, rather, they contain a non-zero
damping rate as input. Only in the very end one may be able to find a self-consistent
solution of zero damping rate in a “true” vacuum state.

Using the above step functions in the expression for the imaginary part of the
self-energy leads to the simpler form

ΓI
vac(ω, ~p, γ) =

g2 γ

4π3

∞∫

0

dk k

[ (
(k − ω)2 + kω + γ2/2

)
I1(k − ω) + pk I2(k − ω)

]
Θ(ω − k). (44)

This part of the self-energy function has an asymptotic behaviour according to Wein-
berg’s theorem [20]: The above integral is ultraviolet finite, but the corresponding
real part is divergent and has to be renormalized. It is connected to the above imag-
inary part only through a subtracted dispersion relation. This asymptotic behaviour
of the self-energy function for large values of p0 implies, that the ghost problem
discussed in section 2.3 becomes relevant.

In the light of our introductory remarks to this section it is instructive to study
the integral in case of zero γ and momentum, where it becomes

ΓI
vac(p0, 0, 0) =

g2

4π3

π

8
p0

(p20 + 2Mp0 −M2)2(p20 −M2)

p40(p
2
0 +M2)

Θ (|p0| −M)

→
g2

4π3

π

8
p0, p0 → ∞. (45)

This imaginary part vanishes at p0 = M , more generally at p0 = ω where the
spectral width is calculated. We put it bluntly: Zero input γ gives zero output Γvac

for “on-shell” particles.
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0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

Figure 1. Imaginary part ΓI
vac of the self-

energy function. Temperature T = 0,
momentum p = 0, factor g2/(4π3) set
to one. Different constant values of γ:
thin line: γ = 0, equation (45); thick line:
γ = 0.2M

However, this holds no longer, once
the integral in (44) is calculated with
a non-zero positive γ as input. Instead,
one obtains a non-zero imaginary part
also at the point p0 = ω. In figure 1,
ΓI
vac(p0, 0, γ) is plotted for two different

values of γ: At p0 = M , the imaginary
part of the Fock self-energy function is
zero only in case γ = 0, otherwise it is
positive.

One may therefore complete the
statement above: Non-Zero input γ gives
non-zero output Γvac even at p0 = ω.

One may now exploit the virtue of
a simply parametrized spectral function
for fermions, by expanding the continu-

ous function Γvac around its value at γ = 0. The imaginary part of the self energy
function with p0 = ω is not an analytical function of γ: It has a cut in the com-
plex γ-plane, starting at γ = 0. Thus, a Taylor expansion in γ is not possible, one
has to perform an asymptotic expansion, explicitly taking into account the leading
non-analyticity.

Various techniques exist for such an expansion, for the purpose of the present
paper the leading terms were isolated by first substituting k → xγ and then ex-
panding the integrand in powers of γ. It turns out, that for finite momentum p the
scale for the expansion is ω2− p2 – which implies, that this asymptotic expansion is
reliable only up to momenta p ≈ M .

Within this limitation, the result for the vector imaginary part of the Fock self-
energy function is

ΓI
vac(ω, ~p, γ) = −

g2

4π3

{
γ

4

ω2

ω2 − p2

[
log

(
γ2

ω2 − p2

)
− 1 +

p

ω
log

(
ω + p

ω − p

)]

−
γ2 π

8

ω(ω2 + 3p2)

(ω2 − p2)2

+
γ3

24

1

(ω2 − p2)3

[
1

6

(
15ω4 + 122ω2p2 − 9p4

)

−
(
9ω4 + 20ω2p2 + 3p4

)
log

(
γ2

ω2 − p2

)

−
ω

p

(
2ω4 + 18ω2p2 + 12p4

)
log

(
ω + p

ω − p

)]}

+O(γ4), (46)

where p = |~p | and k = |~k|. In figure 2, this expansion in γ is compared to the full
numerical calculation of equation (44): With each additional order that is included,
the quality of the approximation grows.
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Figure 2. Imaginary part Γvac: Numerical calculation vs. analytical approxima-
tion. Left panel: vector piece ΓI

vac; right panel: scalar piece ΓII
vac. Temperature

T = 0, energy p0 = ω, momentum p = 0.5M , factor g2/4π3 set to one. Con-
tinuous thin line: full numerical calculation; dash-dotted thick line: expansion to
order γ; dashed thick line: expansion to order γ2; continuous thick line: expansion
to order γ3; dotted thin line: expansion to order γ3, but without the term of order
γ2.

An important aspect of this expansion is the occurrence of the quadratic term:
In a naive view of the integral involved, it is not present because I1(k − p0) as well
as I2(k − p0) are odd functions of γ. However, as pointed out above, the expanded
function is not analytical in γ – and this effect causes the appearance of the quadratic
contribution. To demonstrate this, figure 2 also contains a curve where this quadratic
term has been left out. Obviously in this case the third order contribution makes
the approximation worse instead of improving it.

In view of the above results one has to conclude, that for not too large values
of γ the asymptotic expansion to second order is well under control. Henceforth, to
keep the results simple, the discussion is restricted to this next-to-leading log order.

A similar expansion is performed for the second piece of the imaginary part of
the fermion self-energy. According to (42) one obtains in the vacuum

ΓII
vac(ω, ~p, γ) = −M

g2

4π3

∞∫

0

dk k γ (k − ω) I1(k − ω) Θ(ω − k), (47)

leading consequently to

ΓII
vac(ω, ~p, γ) = −

g2

4π3

{
γ

4

Mω

ω2 − p2

[
log

(
γ2

ω2 − p2

)
+
ω

p
log

(
ω + p

ω − p

)]

−
γ2 π

8

M(3ω2 + p2)

(ω2 − p2)2

+
γ3

8

M

ω(ω2 − p2)3

[
1

6

(
21ω4 + 14ω2p2 − 3p4

)

− 4ω2(ω2 + p2) log

(
γ2

ω2 − p2

)
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−
ω

p

(
ω4 + 6ω2p2 + p4

)
log

(
ω + p

ω − p

)]}

+O(γ4). (48)

Note again, that as a sign of the non-analyticity in the parameter γ, a quadratic
as well as a γ log(γ) contribution appear. In figure 2, the asymptotic expansion is
compared to the fully numerical calculation of the above integral. Similar to the
self-energy piece ∝ γ0, three aspects of this asymptotic expansion are noteworthy:

1. The approximation systematically improves from first to third order of γ,
which proves that the non-analyticity was treated consistently.

2. The quadratic contribution (due to the non-analyticity of the integral) is nec-
essary to provide a meaningful third order result.

3. For γ/M 60.1, the use of a first order asymptotic expansion is sufficient.

5. Thermal state

In this section, the explicitly temperature dependent part of the distribution
functions is used to perform a similar approximation as in the previous section.
Contributions to the full imaginary part of the self-energy function according to
(29) therefore contain an explicit temperature dependence.

For calculational convenience they are split of the complete expressions according
to

Γ(p0, ~p, γ) = Γvac(p0, ~p, γ) + ΓT (p0~p, γ)

= Γvac(p0, ~p, γ) + ΓI
T (p0, ~p, γ)γ

0 + ΓII
T (p0, ~p, γ)

(
1 +

~p~γ

M

)
, (49)

similar to the decomposition for the vacuum part only in equation (36). For the
moment it seems quite hopeless to obtain an analytical approximation to the full
expression (41) valid for all temperatures. However, for not too high temperatures
the Bose-Einstein and Fermi-Dirac distribution function may be expanded around
their zero-temperature value,

nB(k) + nF(p0 + k) ≈ e−k/T

[
T

k
+

1

2
+ nF(p0) +

k

T

(
1

12
+ nF(p0)

2

)]
,

nB(−k) + nF(p0 − k) ≈ −e−k/T

[
T

k
+

1

2
+
k

T

1

12

]

− e−k/T ep0/TΘ(k − p0)

[
nF(p0) +

k

T
nF(p0)

(
1− nF(p0)

)]

+Θ(p0 − k)

[
−1

︸ ︷︷ ︸
+ nF(p0) +

k

T
nF(p0)

(
1− nF(p0)

)]
. (50)
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The term underlined with the curly brace constitutes the “vacuum” part as ob-
tained in the previous section. The other terms are ordered according to their
dominance, i.e., the contribution proportional to T/k is the largest due to the
strongly peaked nature of the function nB(k). The terms including the fermionic
distribution functions are negligible for p0 ≫ T . Note however, that the negative
energy states of the fermionic distribution function are properly taken care of since
nF(−p0) = 1− nF(p0) ≈ 1.

It was stated in equations (33) and (43), that the introduction of a small non-zero
γ removes the infrared divergence from the integral. Thus, similar to the vacuum
case, one obtains a result for ΓT which cannot be expanded in a Taylor series around
the point γ = 0.

It was described above how to obtain an asymptotic expansion around this value.
Here this is again achieved by rescaling k → xγ in the integrand, and then expanding
everything but the exponential factor exp(−xγ/T ) in powers of γ.

To improve the calculation, yet another trick is introduced: First, the momen-
tum integral is calculated using only the leading term T/k = 1/(βk) of the above
expansion. The result is then improved by acting on it with a differential operator

ΓI
T

′
(ω, ~p, γ) = ΓI

T (ω, ~p, γ)−

(
1

2

∂

∂β
−

1

12T

∂2

∂β2

)
ΓI
T (ω, ~p, γ)

T
. (51)

For both pieces of the self-energy function this is a quite laborious task, for our
calculation it washily relied on symbolic computation using Mathematica tm. For the
first piece one obtains

ΓI
T

′
(ω, ~p, γ) =

g2

4π3

{
πTω

4p
log

(
ω + p

ω − p

)

+
γ

4

ω2

ω2 − p2

[
log

(
γ2ω2

T 2(ω2 − p2)

)
+
ω

p
log

(
ω + p

ω − p

)
+ 2CΓ −

17

3
+

20T 2

3ω2

]

−
γ2π

24T

ω4 + 18ω2T 2 + 18T 2

(ω2 − p2)2

+
γ3

(ω2 − p2)2

[
(ω − p)5

8p

(
log

(
γω

T (ω + p)

)
+ CΓ −

19

12

)

−
(ω + p)5

8p

(
log

(
γω

T (ω − p)

)
+ CΓ −

19

12

)
+
(
3ω2 + p2

)( ω4

216T 2
−

5

9
T 2

)]}

+O(γ4), (52)

where CΓ = 0.57721... is Euler’s constant. A comparison of this approximation to
different orders in γ with the full numerical calculation of the temperature dependent
contribution is presented in figure 3. As before, it turns out that the results are
already quite reliable in second order of γ, provided the temperature is not too
high.

In case of the vacuum parts of the self-energy function it was possible to gather
all terms of a given order in γ in this asymptotic expansion. For the present tem-
perature dependent pieces this is not possible, because of the above expansion: It
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Figure 3. Imaginary part Γ′
T : Numerical calculation vs. analytical approxima-

tion. Left panel: vector piece ΓI
T
′
; right panel: scalar piece ΓII

T
′
. Energy p0 = ω,

momentum p = 0.5M , factor g2/(4π3) set to one. Temperatures are T = 0.05M
(bottom lines) and T = 0.1M (top lines). Thin continuous lines: full numeri-
cal calculation; dash-dotted thick lines: asymptotic expansion to order γ; dashed
thick lines: asymptotic expansion to order γ2; thick continuous lines: expansion
to order γ3.

automatically counts T and γ to be of the same order, hence it is a simultaneous
expansion in these parameters. As a small reminder of this fact appears a term γT 2

in the above expansion, and the O(γ4) should be replaced by a O(γ4, γT 3)
The net result is that in second order γ the asymptotic expansion is reliable up to

γ ≈ T/2, whereas it is good up to the temperature in third order. In anticipation of
the following section, note that the quality of the approximation grows tremendously
for very small temperatures T ≪ 0.1M

With similar quality one may also obtain the second piece, asymptotically given
by

ΓII
T

′
(ω, ~p, γ) =

g2

4π3

{
πTM

4p
log

(
ω + p

ω − p

)

γ

4

Mω

ω2 − p2

[
log

(
γ2ω2

T 2(ω2 − p2)

)
+
ω

p
log

(
ω + p

ω − p

)
+ 2CΓ −

17

3

]

−
γ2πMω

24T

ω2 + 12T 2

(ω2 − p2)2

+
γ3M

(ω2 − p2)3

[
(ω − p)4

8p

(
log

(
γω

T (ω + p)

)
+ CΓ −

19

12

)

−
(ω − p)4

8p

(
log

(
γω

T (ω − p)

)
+ CΓ −

19

12

)

+
ω3

216T 2

(
3ω2 + p2

)
−

1

16ω

(
ω4 + 6ω2p2 + p4

)]}

+O(γ4, γT 3). (53)

To this expression one may apply the same considerations as before: Although there
is no piece ∝ γT 2, one may trust this expansion in second order γ only up to
γ ≈ T/2.
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The claims laid on the accuracy of our asymptotic expansions are supported by
figure 3, where they are compared with a completely independent numerical calcu-
lation. The accuracy of the results was checked with various values for momentum
and temperature, and found to persist up to momenta p ≈M .

To be completely sure of the findings, the corrections of orders γ3 will be dropped
henceforth: Unusual as it may seem for quantum field theory, one therefore has an
approximate method with controlled accuracy in the next-to-leading-log order.

6. Fermion damping rate II

In this section, the results are assembled to obtain a consistent solution for the
fermion damping rate in hot systems. This applies to the explicitly temperature
dependent part as well as the “vacuum” part of the self-energy. Combining (46)
with (52) and (48) with (53), all the terms of order γ log(γ) cancel!

The cancellation occurs for scalar and vector part of the self-energy function
independently, hence it holds for all types of massless bosons that were considered
in the equations (37)–(40). This fact is commented further in the following.

As a consequence of this cancelation, the self-consistent damping rate for the
fermion moving slowly through a hot medium, as defined in the equations (37)–
(40), is the solution of an algebraic equation of the form

f0(ω, ~p, T )−

(
f1(ω, ~p, T ) +

4π

g2

)
γ + f2(ω, ~p, T ) γ

2 = 0. (54)
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Figure 4. Self-consistent γS/M as func-
tion of T/M . Strong coupling α = 1,
compared to γ = T (thin line). Two dif-
ferent momenta: p = 0 (thick continu-
ous), p = 0.5M (thick dashed).

Note however, that the results do not
exclude the possibility of corrections of
order γ3 log(γ) to this equation – but
these are safely and even in view of the
asymptotic expansions carried out to be
considered of lower importance.

Equation (54) always has two solu-
tions for γ, but, in general, one of them
is negative or very large. Hence it is ob-
vious how to choose the physical solu-
tion, and in the following this is the only
one discussed.

The coupling constant appears only
at one point, the three functions f0− f2
do not depend on it. f0 is proportional
to the temperature T , f1 contains terms
which are not analytical around zero temperature, i.e., terms of order T log(T ).

The solution γ of equation (54) therefore is a power series in the coupling constant
– but still it includes a non-perturbative effect in the form of the non-analytical
behaviour in the temperature, which is of the order g4 T log(T ).
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Figure 5. (γS − αT )/M as function of T/M . Left panel: strong coupling α =
1; right panel: weak coupling α = 0.1. Continuous lines: p = 0; dashed lines:
p = 0.5M .

One might argue, that these non-analytical terms are not significant because
in order g4 the other two-loop diagrams that were neglected give a contribution
as well. However, as may be expected from the results obtained here, their non-
analytical contribution involving log(T ) is suppressed with respect to their leading
order contribution by a factor γ, which may be translated into a factor g2T . This
implies, that our results to order g4 yield the dominant non-analyticity and are
important for small temperatures (see figures).

Moreover, this chain of arguments also supports the conclusion that terms of
order g2Tp2/M2 log(1/g) cannot appear: Terms logarithmic in the coupling constant
wear at least a coefficient g6 or g4T 2/M2, even if vertex corrections are introduced
in the calculation of the self-energy function.
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Figure 6. Self-consistent γV/M as func-
tion of T/M . Strong coupling α = 1,
compared to γ = T (thin line). Two dif-
ferent momenta: p = 0 (thick continu-
ous), p = 0.5M (thick dashed).

Figures 4 and 5 depict the self consis-
tent solution of equation (54) for scalar
bosons coupled to the fermions. For
small temperatures, the deviation from
the linear temperature dependence is
very striking: Due to the T log(T ) terms
in the self-energy functions, γS(T ) rises
sharply at a very small temperature (see
comment in the next section).

Before discussing this in detail, the
results for the vector and pseudoscalar
boson exchange are examined. The self-
consistent γV due to massless vector bo-
son exchange in Feynman gauge is plot-
ted in figures 6 and 7. The curves ba-
sically employ the same features as for

the scalar bosons: A pronounced non-analyticity of the function γV(T ) at small
temperatures.

For the pseudoscalar boson the approach presented here leads to a result which is
surprising at the first glance: The self-consistent solution for γP is identically zero at
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Figure 7. (γV − αT )/M as function of T/M . Left panel: strong coupling α =
1; right panel: weak coupling α = 0.1. Continuous lines: p = 0; dashed lines:
p = 0.5M .

all temperatures. This follows from the fact that the leading terms in the temperature
dependence of equations (52) and (53) differ only by a factor of M/ω. Inspection
of equation (40) then reveals that these leading terms are cancelled, consequently
f0 ≡ 0 in the above equation (54) and therefore γP ≡ 0.

However, at a second glance this result is not surprising. The pseudoscalar cou-
pling is a p-wave coupling, hence it vanishes for zero momentum transfer. This is
reflected in the fact that the coefficients f1 and f2 start with power p2 instead of
possessing a constant piece. Therefore one expects a self-consistent γP which also
starts with this power p2 – clearly in contradiction to the ansatz spectral function.

Naturally it is possible to repeat the calculation with a corresponding ansatz
for γ – but this would overstress the goals of the present paper. Therefore, this
pseudoscalar result is considered merely as a consistency argument in favour of the
approximations.

Also another feature of the results for γS and γV may be seen in the figures.
Clearly, the momentum dependence of the self-consistent solution is small up to
quite high temperatures. In view of equation (38) this means |ν0|>∼|ν1| for scalar and
vector boson exchange. One may therefore conclude, that the ansatz of a momentum
independent γS and γV is very well justified.

6.1. Analytical approximations for the damping rate

It is not necessary to repeat the analytical expressions for the self-energy pieces
in order to give the three functions f0 – f2 in closed form. However, it is instructive
to extract the dominant terms in the calculation of γ.

To this end, perform an expansion of the solution of (54) in powers of the coupling
constant. Only even powers occur, hence the expansion parameter is

α = g2/4π. (55)

The contributions of order T and of order T log(T ) then are, to second order in α

γS ≈ αT

(
1−

2

3

p2

M2
+

8

15

p4

M4

)
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− α2T

π

(
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[
T

M

(
1−

11

12

p2

M2
+

1061

1440

p4

M4

)]
+

25

12
− CΓ

)

×

(
1−

2

3

p2

M2
+

8

15

p4

M4

)
+O

(
α
p6

M6
, α2 T

2

M2
, α3

)
, (56)

where p = |~p |. Naturally this last expansion is only good in the weak coupling limit.
Performing the same expansion for the vector boson exchange yields

γV ≈ αT

(
1−

2

3

p2

M2
+

8

15

p4

M4

)

− α2T

π

(
log

[
T

M

(
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)

×

(
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2
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M2
+

8

15

p4

M4

)
+O

(
α
p6

M6
, α2 T

2

M2
, α3

)
. (57)

It is a crucial aspect of these results, that they are analytical functions of the coupling
constant, i.e., in contrast to other calculations it is not proportional to log(1/g).

During the discussion of the self-consistency criterion (39) it was already stated,
that the vector boson result is gauge independent in the limit ~p → 0. A vertex
correction is needed to ensure gauge invariance for the momentum dependent parts
(which in principle also require a completely different calculation scheme). However,
this will at most give a regular modification of order α 2p2/M2, logarithmic terms
may appear only in even higher order α.

The contribution of order T log(T ), apart from being non-analytical around T =
0, has the effect of destroying the linear relationship between γ and T : Neither for
high temperatures nor for low temperatures can one approximate the self-consistent
γ by a linear function. This functional piece constitutes the leading non-analyticity
observed numerically in figures (4)–(7).

6.2. Where does the log go ?

A striking feature of the above result is, that for a slow massive fermion there
are no contributions to the damping rate of type log(1/g).

To understand this, consider an only partial assembly of the results neglecting
the parts of the self energy function that are not explicitly temperature dependent.
Taking the results of equations (52), (53) and (39) in the limit of zero momentum
and neglecting the “vacuum part”:

γ =
g2

4π

{
T +

γ

π

(
log

(
γ

T

)
+ CΓ −

11

6

)}
, (58)

which must be solved for γ. Naively, one expects a leading order result γ ∝ g 2T with
corrections of order g4 log(1/g), but as will be shown below this naive expectation
has to be taken with care.

To allow for comparison against other calculations one also may check the in-
fluence of a momentum space cutoff (seemingly taking into account only soft in-
teractions) of the order gT . This would change the leading order behaviour in the

97



P.A.Henning

temperature dependent self energy part, equation (58), from g2(T + γ log(γ)) into
g2(T + T log(γ)). In an approximate solution of the transcendental equation, this
would shift the log(1/g) contribution from order g4 log(1/g) into g2 log(1/g) – but
still and wrongly retain a logarithmic term in the final result.

Consequently to these two wrong results one may state, that the neglecting
of the “vacuum” effects, i.e., the approximation of the Bose-Einstein function by
a simple T/k, is an unnecessary oversimplification of calculations and should be
avoided. Indeed, an improved treatment of the Bose-Einstein function is crucial
in replacing the non-analyticity in the coupling constant by a non-analyticity in
the temperature. Note also, that the momentum cutoff scheme furthermore violates
causality as discussed in section 2.

7. Conclusion

This report presents a self-consistent calculation of the damping rate (=spectral
width parameter) of a slow massive fermion in a gas of hot massless bosons. The
result is obtained as a series in the coupling constant, the momentum of the fermion
and the temperature. Instead of a non-analyticity in the coupling constant, which
is sometimes quoted in the literature, the final results for the damping rate exhibit
a non-analyticity in the temperature parameter arising from contributions of order
T log(T ).

To confirm and explain this discrepancy, several careful investigations were made.
First of all, to control the quality of the approximations, every asymptotic expansion
was made to higher order than assembled in the final result. On the other hand, all
approximations were also compared to numerical calculations. Therefore, the quality
of the series expansion is very well under control and considered mathematically

sound.
Furthermore, there exists an independent physical support for this result, since it

is in accordance with the symmetry of space and time: In the presence of temperature
the Poincaré symmetry is broken to SO(3)×T4, and the symmetry restoration with
temperature T → 0 is expected to be singular. Consequently, on physical grounds
one would expect a non-analyticity in the temperature parameter.

Another check to be made for physical reason is, whether the most dominant
contribution to the fermion damping rate was taken into account. The “diagram”
used in the present paper is the imaginary part of the self-consistent Fock diagram.
Cutting this apart yields the proper scattering amplitudes hidden in the result – in
the present case, these contain the coulomb scattering of the slow massive fermion
by other fermions in the hot medium.

The only effect not included here is a polarization of the medium, i.e., a modifica-
tion of the boson spectral function. However, such a modification could only weaken
the boson propagator singularity, and consequently would give contributions which
are not logarithmic. This has been discussed in more detail in section (3.1). Numer-
ical calculations show, that using damped bosonic interactions in the self-consistent
calculation is equivalent to inserting the sum of the fermionic γ and the bosonic
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γB on the right side of equation (37), i.e., in the calculated imaginary parts of the
self-energy function. Such a substitution does not affect the lowest order thermal
contribution as obtained in section 5 of this work. Thus it must be concluded, that
the use of a modified boson propagator does not change the leading order result for
the fermionic spectral width, i.e., the non-analyticity in temperature.

By these careful investigations one is thus forced to conclude the correctness
of the results at least to the accuracy given in the previous section: The damping
rate of a slow massive fermion in a gas of moderately hot massless bosons is γ ∝
g2T +O(g4T log(T/M)).

A second ingredient of the present work therefore was the investigation of how
different mathematical or physical assumptions may produce damping rates γ ∝
g2T log(1/g). It was shown, that generally the methods used to obtain such a result
violate important axioms of quantum theory and therefore should be avoided.

This paper presents a straightforward application of the method of generalized
free fields. It automatically accounts for the undeniable mathematical fact that at
non-zero temperature a perturbative expansion in terms of quasi-particle states with
infinite lifetime is ill-defined [5–7]. One may put this into the following form: In
reality a fermion in a heat bath is always subject to some Brownian motion, hence
it will never be in the same state for an infinite time.

The use of a proper finite temperature fermion propagator, which obeys this
Narnhofer-Thirring theorem and therefore has no isolated poles anywhere in the
complex energy plane, is completely sufficient to remove all infrared divergences from
the calculations. In particular, no screening or damping of the bosonic interactions
is needed to achieve this effect.

Continuous spectral functions appear (more or less) to be the central ingredient
of the method. These functions are not a priori fixed in a theory involving general-
ized free fields [7], one may determine them from the experiment or use physically
reasonable self-consistency schemes. Such a scheme was presented here: In assigning
a constant spectral width to fermions, it goes one step beyond the introduction of
temperature dependent (“thermal”) masses. To our knowledge, this approximation
is reasonable for systems which are dominated by the low-momentum sector of the
interactions, i.e., those which involve massive fermions and massless gauge bosons.

For our approximate fermion spectral function, the summation of all nested Fock
diagrams was carried out to infinite order. Apart from vertex corrections, such a sum-
mation constitutes the solution of the full one-body problem. As pointed out, such
vertex corrections would lead to momentum dependent corrections to the damping
rate - and therefore would not affect the momentum independent parts of our results.

One must stress the fact, that the calculation of the real part of the self-energy
function by a dispersion integral was suppressed in the present paper. According
to the arguments presented, the dispersion integral may still lead to non-analytical
contributions in the coupling constant. However, these are expected to be of order
exp(−1/g2) due to the removal of the Landau ghost poles [22], and therefore they
are varying slowly around the zero point of the coupling constant.
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A. Angular integration

In the following the explicit form of the angular integrals over the approximate
fermion spectral function is given, which occur in the calculation of (41) and (42).

In this appendix, η is the cosine of the angle between the two momenta ~k (internal)

and ~p (external), and will henceforth be used k = |~k|, p = |~p |.

I1(k ± p0) =

1∫

−1

dη
1

(c1 − 2pkη)2 + c22

=
−1

4pk(k ± p0)γ
arctan

(
(k ± p0)

2 − t2 − γ2

2(k ± p0)γ

)∣∣∣∣
ωp+k

ωp−k

(59)

and

I2(k ± p0) =

1∫

−1

dη
η

(c1 − 2pkη)2 + c22

=
c1
2kp

I1(k ± p0)

+
1

8p2k2
log

(
(t2 + γ2 − (k ± p0)

2)
2
+ 4γ2(k ± p0)

2

γ2

)∣∣∣∣∣

ωp+k

ωp−k

(60)

with
c1 = ±2p0k + p20 − ω2 − γ2, c2 = 2(k ± p0)γ (61)

and boundaries of the integration defined as

ω2
p±k = ω2 ± 2pk + k2. (62)

An important aspect of the above analytical results is to select the proper Riemann
sheet for the arctan-functions: I1 and I2 are continuous functions in each variable.
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Константа затухання масивних ферміонів у

гарячому середовищі

П.А.Хеннінґ

МедіаЛаб, Університет прикладних наук м. Карлсруе,

D-76012 Карлсруе, Німеччина

Отримано 22 жовтня 1999 р.

У гарячому середовищі кожне збудження має скінченний час існу-

вання і проявляється ненульовою спектральною шириною. Звичайне

затухання, так само як і квантові ефекти пам’яті, отримується з цієї

нетривіальної спектральної функції. Дана робота представляє но-

вий метод самоузгодженого розрахунку спектральної ширини фер-

міона, зв’язаного з безмасовим бозоном скалярного, векторного та

псевдоскалярного типів. У відповідності до відомих з квантової елек-

тродинаміки процедур самоузгоджене сумування відповідних фоків-

ських діаграм вилучає всі інфрачервоні розбіжності незважаючи на

те, що бозони зовсім не екрануються. Розв’язок для константи фер-

міонного затухання є аналітичним за константою зв’язку g , але не

є аналітичним за параметром температури, тобто γ ∝ g2T +
O(g4T log(T/M)) .

Ключові слова: квантова електродинаміка, теорія поля при

скінченних температурах

PACS: 05.30.-d, 11.10.St, 11.10.Wx
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