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Using Terwiel’s cumulants the Markovian approximation to arrive to the
Quantum Master Equation, for a system interacting with a thermal bath,
is revisited. The second order weak coupling approximation is analyzed,
then a Kossakowski-Lindblad form for the generator is written in terms of
the position and momentum operators. A weak coupling approximation for
the stochastic non-Markovian wave function is worked out. A free particle
model interacting with a thermal quantum bath is studied in the context of
Schrödinger-Langevin picture. A phenomenological point of view is intro-
duced in order to overcome certain difficulties in the time evolution – in the
second order approximation – for the free particle Hamiltonian.
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1. Introduction

In nature many quantum systems behave like open dissipative bodies when their
dynamical variables are coupled to the infinite degrees of freedom of the surround-
ing. The interaction between the open system S and its environment often leads to
dissipation, fluctuation, decoherence and irreversible processes. The description of
the dynamics of S has historically been based on the analysis of the reduced density
matrix, ρ, formalism, within which both the intrinsic quantum fluctuations of S
and the quantum noise, due to the environment, can be incorporated in a unified
manner. The general evolution equation for ρ is derived from the unitary Hamil-
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tonian dynamics of the whole corresponding universe. Then, eliminating the bath
variables, a reduced dynamics can be introduced by an effective evolution equation
of the form:

ρ̇ (t) = L[ρ (t)]

This expression is in analogy with a classical transport dynamics, which determines
the evolution of any open system S.

In the Markovian framework Kossakoswki [1] and Lindblad [2] have established
the structure of the master equation (the semigroup generator) in order that the
dynamics of the quantum system be well behaved. In this way the semigroup is a
completely positive map and preserves trace, positivity, and hermiticity of ρ dur-
ing all its time evolution. A completely positive semigroup is characterized by the
generator

L [•] ≡ − i

~
[Heff , •] +

1

2~

∑

α

[

Vα•, V †
α

]

+
[

Vα, •V †
α

]

, (1.1)

where Vα is any bounded operator of S; this generator can also be written in a
different way. Taking into account an operator basis {Sα} of the N × N complex
matrices, the alternative expression is given in terms of the superoperator F [•] =
(1/2~)

∑

α,γ

aαγSα •S†
γ , α, γ = 1, ..., N2−1 and its dual3 F ∗[•], then (1.1) is rewritten

as

L [•] = − i

~
[Heff , •] + F [•]− 1

2
{F ∗[I], •}+ , (1.2)

where I is the identity operator and [aαγ ] is positive definite (structural theorem [2]).
In general we call an expression like (1.2) a Kossakowski-Lindblad (KL) form

[3]. The map will be a completely positive semigroup if and only if the hermitian
matrix [aαγ ] is positive definite [1,4,5]. If the generator is written as in (1.2) with a
non-positive matrix [aαγ ], we say that the KL form does not satisfy the structural
theorem.

Starting from a microscopic dynamics (a system S coupled to some reservoir B)
the Quantum Master Equation (QME) has been derived in several different ways [4–
6]. One of these derivations comes from a perturbative ordered expansion, which can
be obtained by tracing-out the bath variables. If any evolution time of the system
is much greater than the correlation time of the bath, and a separable structure for
the density matrix is assumed, a Markovian dominant contribution can be found.
Hence in a second order approximation (in the coupling parameter) the QME has a
KL form, but in general, it is not completely positive [3]. For systems with discrete
levels of energy and in the weak coupling approximation, it is always possible to
introduce an average formalism that leads to a bonafide KL generator. This general
procedure is the Davies device [7]; in the context of quantum optics there is an
equivalent approach known as the Rotating Wave Approximation (RWA) [8]. The
dynamics of an open system can alternatively be understood through the use of
stochastic equations for the state vector of S. This point of view includes the (linear
and non-linear) quantum state diffusion approach [9], the wave packet reduction

3Defined by Tr(F ∗[A]ρ) = Tr(AF [ρ]).
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[10,11] and the quantum jump processes [12]. The Shrödinger-Langevin (SL) picture
[3,6,13] belongs to this formulation and its interest resides in giving an alternative
way to obtain the QME with a KL form. This fact has allowed us to define a
mapping between the SL and the tracing-out technique, therefore establishing a non-
Markovian dynamics for the open system S that can reproduce (in the Markovian
limit) the behaviour of the QME obtained from tracing-out the bath variables. This
kind of stochastic formalism has the additional advantage that can be applied to
very different environments, then the influence of the quantum bath can be taking
into account by using arbitrary random operators in the SL equation.

The path integral method is another formalism for eliminating the bath variables,
which starts from the total Hamiltonian of the system S plus B [14]. We note that in
general the kind of interactions and environments (infinite set harmonic oscillators)
treated by the path integral formalisms give rise to a Gaussian influence functional.
One of the pioneer work belongs to Caldeira and Leggett [15] who obtained the
QME in the high temperatures limit by using some Ohmic linear coupling between
S and B. With these assumptions Caldeira and Leggett’s QME has a kernel local in
time. Other types of coupling with the environment can also be assumed [16,17].

It is important to remark that in general a Markovian approximation does not
satisfy the structural theorem, i.e. does not generate completely positive semigroups
(this fact can lead to non-positive or to non-physical density matrices during the
early short-time evolution [6,18]). Then many different approximations have been in-
troduced to overcome this difficulty. For example in the context of the weak coupling
approximation we could introduce some restrictions to the interaction Hamiltonian,
in order to fulfil a necessary condition for the completely positivity character [3].
Recently a path integral approach at intermediate temperatures has been considered
[19], therefore obtaining a bonafide KL. Also a pure phenomenological description
can be useful to build quantum dissipative semigroups. This approach consists in
considering, ad-hoc, suitable interaction operators Vα in the generator (1.1) [20,21].
In this case the generator does not have any problem of positivity, but it is necessary
to postulate a suitable temperature dependence in Vα, so that the evolution leads to
the corresponding thermal equilibrium state of S.

In this work we are concerned with those mentioned formalisms by giving a
revision to the Markovian and weak coupling approximation; in addition we are
going to apply the SL picture to the free particle model. This paper is organized as
follows. In section 2 we present the general approach, using Terwiel’s cumulants, to
derive a perturbative QME from the total microscopic Hamiltonian. In section 3 we
are concerned with the second order approximation: first we review the results from
tracing-out; second in the context of the SL picture we give a mapping with the
trace-out technique. In section 4 we analyze the second order QME written in terms
of p, q the momentum and position operators respectively. In section 5 we show some
results concerning the free particle Hamiltonian in interaction with a thermal bath;
in the same section we also give a phenomenological treatment to overcome some
difficulties in the evolution of the free particle model. In section 6 we present some
conclusions concerning our results. Some mathematical details about the Terwiel
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cumulants, the correlation functions and the completely positive condition can be
found in the appendixes.

2. Tracing-out the bath and the Markovian approximation

The tracing out technique starts from the total HamiltonianHT = HS+HB+θHI

where the first two terms correspond to system and bath Hamiltonians and θHI is
the interaction contribution being θ the coupling strength. The Liouville equation
for the total density matrix ρT is written in terms of the Liouvillian superoperator
L[•] = −i/~[H, •], then the evolution for the total (closed) system is

ρ̇T = (L0 + θLI)ρT . (2.1)

Without any interaction the system evolves with the Hamiltonian H0 = HS +HB.
To obtain an equation for the reduced density matrix, ρ = TrB(ρT), we trace-out the
bath variables assuming a factorized initial condition ρT(0) = ρ(0) ⊗ ρB, where ρB
denotes the bath equilibrium statistical operator. In the interaction representation
σT(t) = exp(−L0t)ρT(t) where LI(t) = exp(−L0t)LI exp(L0t), the unitary evolution
equation is

σ̇T(t) = θLI(t)σT(t). (2.2)

This equation can formally be integrated

σT(t) = T̂ exp

(

θ

∫ t

0

LI(t1)dt1

)

σT(0), (2.3)

where T̂ denotes the time ordering operator. Tracing-out the bath variables gives

σ(t) = TrB[σT(t)] =

〈

T̂ exp

(

θ

∫ t

0

LI(t1)dt1

)〉

B

σ(0), (2.4)

where we have denoted 〈•〉B = TrB [•ρB]. Under this average expectation LI(t) be-
haves like a stochastic superoperator with zero mean 〈LI(t1)〉B = 0, which is the
case in the most applications. The average and the time ordering commute, then we
can expand the exponent in cumulants [6]

σ(t) = T̂ exp

(
∫ t

0

dt1

∫ t1

0

θ2 〈〈LI(t1)LI(t2)〉〉B dt2 + · · ·
)

σ(0). (2.5)

Nevertheless in (2.5) we still have the time ordering operator telling that after ex-
panding the different terms of the exponential the individual factors inside the in-
tegrands must be ordered with the smaller times at the right. Assuming that the
correlation function of the bath has a well defined correlation time τc, an ordered
expansion in terms of Kubo’s number O(θ2τc) can be performed in the argument of
the exponential (2.5) [22], see appendix A

σ(t) = T̂ exp

(

∫ t

0

∞
∑

n=2

θnKn(t
′)dt′

)

σ(0), (2.6)
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where

Kn(t) =

∫ t

0

dt1 · · ·
∫ tn−2

0

dtn−1 〈LI(t)LI(t1) · · · LI(tn−1)〉pB , (2.7)

here 〈A(t) · · · A(tn−1)〉pB is the ordered cumulant as defined in [6,22,23]. This ordered
cumulants have a “cluster” property telling us that the cumulant vanish whenever
two successive times fulfil |ti − ti+1| > τc. This fact allows us to write a Markovian
equation for the dynamics of the system S considering t ≫ τc. Going back to the
original representation the result is

ρ̇(t) =

(

LS +
∞
∑

n=2

θn exp(LSt)Kn(∞) exp(−LSt)

)

ρ(t). (2.8)

The well known second order Markovian approximation (weak coupling limit) reads

ρ̇(t) = LSρ(t)−
θ2

~2

∫ ∞

0

dτ TrB ([HI, [HI(−τ), ρeB ⊗ ρ(t)]]) +O(θ3τ 2c ), (2.9)

where HI(−τ) is the Heisenberg evolution of HI under the free HamiltonianH0. This
is the Markovian approximation for any arbitrary open system S interacting with a
bath.

Now let us analyze a particular bath B and interaction HI. Here we assume that
B is composed by an infinite set of harmonic oscillators so HB =

∑

k ~ωkb
†
kbk and

b†k, bk create and annihilate bosons of frequency ωk. The interaction Hamiltonian is

taken as HI = B ⊗ V with the bath operator B =
∑

k vk(b
†
k + bk) where vk are

the coupling constants. It can be proved that the bath operator (in the Heisenberg
representation) B(t) behaves like a Gaussian stochastic process (under the average
Tr[ρB•]) with a non-white correlation [24]

χ(−τ) =
〈

B†B(−τ)
〉

B
=
∑

k

|vk|2[exp(iωkτ)n(ωk)+exp(−iωkτ)(n(ωk)+1)] , (2.10)

here n(ωk) is the phonon number at frequency ωk. In this case the statistical prop-
erties of LI(t) will be characterized by Gaussian processes. Therefore the exponent
(2.5) will only involve a second order cumulant, hence it can be written in the
familiar form [14,15]

σ(t) = T̂ exp
[

−(θ2/~2)

∫ t

0

dt1

∫ t1

0

dt2
(

V+(t1)− V−(t1)
)

×
(

χ(t2 − t1)V+(t2)− χ∗(t2 − t1)V−(t2)
)

]

σ(0). (2.11)

Note that (2.11) is written in the interaction representation, and we have used the
notation V+[•] = V • and V−[•] = •V. We remark that this expression is exact
because of the Gaussian statistic and the linear interaction HI between S and B.

In the context of a path integral formalism the propagator (2.11) is also obtained
as the result of working with a bosonic bath and a linear coupling, therefore leading
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to a Gaussian influence functional [14,15,19]. Note that in the case of a Gaussian
statistics (for the Liouvillian LI(t)) the second order dominant contribution (2.9) is
only an approximation. This happens because for a Gaussian statistics the normal
cumulants in (2.5) vanish for the order greater than two, but we still have to work
out the ordered cumulants in the integrand of Kn (for n > 2) in (2.7). This is so
because of the non-commuting character of V (t) at different times.

Now let us review, in this context, the Caldeira and Leggett assumptions. They
assume Ohmic coupling |vk|2 ∼ gωk when ωk 6 ΩC, high bath temperature, and
high frequency cut-off ΩC. Then the complex correlation (2.10) becomes χ∞(−τ) =
(2πg/β~)δ̃(τ) + igπδ̃′(τ). Here β is proportional to the inverse temperature and the

function δ̃(τ) = 1
π

∫ ΩC

0
cos(ωτ)dω turns out to be a Dirac-delta in the limit ΩC → ∞.

In this case the correlation time vanishes and the second order approximation (2.9)
becomes exact. Taking γ = gπ/~ and θ = 1 we get for the QME [15,25]

ρ̇(t) =
−i

~
[HS− γδ̃(0)V 2, ρ(t)]− γ

~2β
[V, [V, ρ(t)]] +

γ

2~2

[

V, [[HS, V ] , ρ(t)]+
]

. (2.12)

This result is exact because if τc = 0 the “cluster” property leads to the fact that any
ordered cumulant vanishes for n > 2. Equation (2.12) is a generalization of Caldeira
& Leggett’s QME [15], in that paper they only worked the case V = q, being q the
coordinate operator of the system S.

3. The second order approximation revisited

3.1. Tracing-out the bath variables

In this section we will review the form that the second order Markovian approx-
imation (2.9) takes. This second order QME [4–6,8,25] has the KL form (1.2); the
effective Hamiltonian Heff and fluctuation superoperator F [•] are [3]:

Heff = HS − i
θ2

2~

∫ ∞

0

dτ TrB ([HI, HI(−τ)] ρeB), (3.1)

F [ρ(t)] =

(

θ

~

)2∫ ∞

0

dτ TrB (HI ρ(t)⊗ ρeB HI(−τ) +HI(−τ) ρ(t)⊗ ρeB HI). (3.2)

Taking HI =
∑

α

Vα ⊗ Bα (in terms of system operators Vα and bath operators Bα)

the correlation functions of the bath read:

χαβ(−τ) ≡ TrB
(

ρeB B†
αBβ(−τ)

)

, (3.3)

so equations (3.1) and (3.2) can be rewritten in the form

Heff = HS − i
θ2

2~

∑

αβ

∫ ∞

0

dτ
(

χαβ(−τ)V †
αVβ(−τ)− χ∗

αβ(−τ)V †
β (−τ)Vα

)

, (3.4)

F [•] =
(

θ

~

)2
∑

αβ

∫ ∞

0

dτ
(

χαβ(−τ)Vβ(−τ) • V †
α + χ∗

αβ(−τ)Vα • V †
β (−τ)

)

.(3.5)
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Now let us define the auxiliary correlation function

Γαβ(−τ) ≡ TrB (ρeB BαBβ(−τ)) .

Then note that because HI is hermitian, there always exists a α ′ such that V †
α = Vα′

and B†
α = Bα′ , so Γα′β(−τ) = χαβ(−τ) (thus indicating that Γαβ is only a change

in the notation). This fact allows us to write the effective Hamiltonian in terms of
Γαβ(−τ) in the form

Heff = HS − i
θ2

2~

∑

αβ

∫ ∞

0

dτ
(

Γαβ(−τ)VαVβ(−τ)− Γ∗
αβ(−τ)V †

β (−τ)V †
α

)

. (3.6)

From equation (3.2) it is possible to see that the second order QME coming from
trace-out technique is not, in general, completely positive. In a previous work we
established some restrictions on HI in order to arrive to a bonafide KL [3].

3.2. The Shr ödinger-Langevin approach

The starting point in the Shrödinger-Langevin (SL) approach is a phenomeno-
logical equation for the stochastic wave function of the open system S

d

dt
|Ψ〉 =

[−i

~
HS −

θ

~
(U + iF (t))

]

|Ψ〉 , (3.7)

where U ≡ UR + iUI (UR, UI are hermitian operators) is a deterministic operator to
be found later on, and F (t) is an arbitrary mean value zero stationary stochastic
operator; here we have made evident the ~. The reduced density matrix, for the
system S, is defined as the average of the external product of the wave function
ρ =

〈

|Ψ〉〈Ψ|
〉

FF† . Hence performing a cumulant expansion in O(θmτm−1
c ) where

τc is the correlation time of the random operator F (t), and considering t ≫ τc
the second order contribution has, once again, the KL form (1.2). The operator U
is obtained, consistently, in order to preserve the trace Tr[ρ] = 1 during all the
evolution of ρ(t)

U + U † = 2UR =
θ

~

∫ ∞

0

dτ
([〈〈

F † (t)F (t− τ)
〉〉

−
〈〈

F (t)F (t− τ)
〉〉]

+ h.c.
)

.

(3.8)
Note that the last condition only fix the hermitian part of U . Considering (3.8) the
terms in the KL form, in the context of the SL picture, are characterized by

Heff = HS + θUI − i
θ2

2~

∫ ∞

0

dτ
(〈〈

F (t)F (t− τ)
〉〉

−
〈〈

F † (t− τ)F † (t)
〉〉)

,(3.9)

F [•] = θ2

~2

∫ ∞

0

dτ
(〈〈

F (t) • F † (t− τ)
〉〉

+
〈〈

F (t− τ) • F † (t)
〉〉)

. (3.10)

Note that there is a freedom in the arbitrary selection of UI, this fact can be used
to obtain a desired Heff . We can distinguish two possibilities: (i) hermitian U (so
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UI = 0) then equation (3.9) shows that the effective Hamiltonian depends only on the
correlations 〈〈F (t)F (t− τ)〉〉 and in contrast F [•] depends on

〈〈

F (t− τ)F † (t)
〉〉

[3]; (ii) non-hermitian U (so UI 6= 0) then from (3.8) we can choose U in the particular
form

U =
θ

~

∫ ∞

0

dτ
(〈〈

F † (t)F (t− τ)
〉〉

−
〈〈

F (t)F (t− τ)
〉〉)

. (3.11)

Therefore the effective Hamiltonian becomes

Heff = HS − i
θ2

2~

∫ ∞

0

dτ
(〈〈

F † (t)F (t− τ)
〉〉

−
〈〈

F † (t− τ)F (t)
〉〉)

, (3.12)

so for the case of a non-hermitian U , all the contributions into the KL form can
be written just in terms of

〈〈

F † (t− τ)F (t)
〉〉

. As we have pointed out in the
introduction this second order approximation, in general, and for any operator F (t) ,
is not completely positive. Hence some restrictions ought to be given in order to
guarantee a bonafide KL [3].

From now on we choose for the random operator F (t) in (3.7) the particular
form

F (t) =
∑

α

lα(t)Vα (3.13)

where lα(t) are complex-value c-noises. Then from (3.10) F [•] is formally equivalent
to (3.5) replacing χαβ(−τ) by 〈〈l∗α (t) lβ (t− τ)〉〉 . The SL formalism allows us to
analyze any arbitrary correlation functions that could mimic different environments.
In this way we arrive to a linear evolution equation for the stochastic wave function,
hence representing a diversity of dynamics for the open system of interest [3].

One of the situations that we want to mimic, by using the SL picture, is the
corresponding reduced dynamics obtained in the tracing-out context, equations (3.1)
and (3.2). We note that this comparison can be done only in the case when F (t)
is non-hermitian. Identifying the noise correlations with those that come from the
quantum bath a numeric equivalence is obtained with all the terms in the KL form.
The mapping for these correlations is:

〈〈l∗α (t) lβ (t− τ)〉〉 ≡ χαβ(−τ), (3.14)

and consistently chosen
〈〈lα (t) lβ (t− τ)〉〉 ≡ 0, (3.15)

then F [•] in equation (3.10) is numerically equal to equation (3.5). The problem of
positivity of the KL form in the SL picture, using the mapping (3.14), corresponds to
the positivity of the generator obtained by using the tracing-out technique. Within
this mapping we can distinguish, once again, two particular cases:

(i) In the case of a non-hermitian U and with the selection (3.11), Heff obtained
from (3.12) is numerically equivalent to that of (3.4) replacing 〈〈l ∗α(t)lβ(t−τ)〉〉
by χαβ(−τ). So in this case we can write a non-Markovian SL equation which
leads – in the second order approximation – to numerically equivalents F [•]
and Heff as those obtained from tracing-out. Note that the condition (3.15) is
not necessary but it is consistent with (3.14).
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(ii) In the case U = U † it is not possible to make the simultaneous mapping
〈〈l∗α (t) lβ (t− τ)〉〉 = χαβ(−τ) and 〈〈lα (t) lβ (t− τ)〉〉 = Γαβ(−τ). Then (3.15)
is a consistent election leading to Heff = HS. This means that it is no possible
to obtain simultaneously, for an hermitian U , both operators F [•] and Heff as
the ones coming from the tracing-out. Nevertheless the Hamiltonian term H eff

could always be incorporated into the dynamics of the SL, indicating that this
is not a serious drawback of the SL approach with an hermitian U [3].

Other correlations that can also be useful in describing, phenomenologically,
dissipative quantum systems are the Gaussian white noises

〈〈l∗α (t) lβ (t− τ)〉〉 ≡ δαβδ(−τ), (3.16)

then leading to

F [•] = θ2

~2

∑

α

Vα • V †
α . (3.17)

In this case the second order contribution gives an exact result. We note that for any
operator Vα this expression guarantees the completely positive condition [1]. This
is seen by writing Vα in an operator basis {Sα}, which leads to a positive definite
matrix [aαγ ] [see before equation (1.2)]. Now, from (3.16), we can split two different
possibilities depending on the value of 〈〈lα (t) lβ (t− τ)〉〉.

(i) We choose 〈〈lα (t) lβ (t− τ)〉〉 = 0, then U = U † and Heff = HS so the SL reads

d

dt
|Ψ〉 =

[

−i

~
HS −

θ

~

∑

α

(

V †
αVα

2
+ ilα (t)Vα

)

]

|Ψ〉 (3.18)

This equation was used by van Kampen to obtain the standard KL generator
[6,11]; also Strunz [26] arrived to this stochastic equation from the Influence
Functional in the Path Integral context.

(ii) We choose that (3.16) is fulfilled and in addition

〈〈lα (t) lβ (t− τ)〉〉 ≡ δαβδ(−τ), (3.19)

then lα (t) ∈ Re. Now if we choose an hermitian U we get a contribution for
the effective Hamiltonian of the form

Heff = HS − i
θ2

4~

∑

α

(

V 2
α − (V †

α )
2
)

, (3.20)

this is a consequence of allowing F (t) to be non-hermitian. Note that if (3.19)
is fulfilled but we adopt a non-hermitian U as in (3.11) we would have gotten
Heff = HS.
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4. Observable q and p in the quantum master equation

In this section we describe the general form of the KL in the second order ap-
proximation for the Hamiltonian HS(p, q) = p2/2 + W (q), with a potential energy
W (q) = Aqn, A > 0, n = 0, 1, 2. The interaction operators Vα are assumed to be
a linear combination of the observables: position q and momentum p. Then the
different terms in the KL form can be written in the general way:

F [•] =
θ2

~2
[2Dppq • q + 2Dqqp • p+D1q • p+D∗

1p • q], (4.1)

Heff = HS − i
θ2

2~

(

hqq
2 + hpp

2 + hpqpq − h∗
pqqp

)

, (4.2)

defining µ~ = ℑm[hpq] the effective Hamiltonian reads

Heff = H0 + θ2
µ

2
(pq + qp), (4.3)

where H0 = HS − iθ2(hqq
2 + hpp

2)/2~. Splitting the real and imaginary parts of D1

as 2Dqp = ℜe[D1] and −λ~ = ℑm[D1], the whole generator L [•] can be expressed
in the form

L[•] = − i

~
[H0, •]−

iθ2

2~
(λ+ µ)[q, •p+ p•] + iθ2

2~
(λ− µ)[p, •q + q•]

− θ2Dpp

~2
[q, [q, •]]− θ2Dqq

~2
[p, [p, •]]− θ2Dqp

~2
([q, [p, •]] + [p, [q, •]]). (4.4)

This generator has a KL form and is the most general expression, in terms of q and
p, for the potential W (q) and with the interaction operators Vα as mentioned before.
We call Dij and λ, diffusion and dissipative coefficients respectively. This kind of
QME (in terms of q, p) has been analyzed by Sandulescu et al. [21] when studying
the dissipation for an open harmonic oscillator. From this QME they reproduced
several results that had been reported in the literature. In that reference H0 is the
Hamiltonian of the harmonic oscillator and (4.4) is obtained, phenomenologically,
by proposing an interaction V being a linear combination of q and p in the KL
generator (1.1).

In particular in the present work we want to analyze, from microscopic principles,
these coefficients for the free particle model. Even when this system should be the
simplest one we will emphasize that the quantum free particle, in interaction with a
quantum reservoir, shows some controversial results in the context of a second order
approximation. Hence we will try to solve certain aspects of this model.

The completely positive condition for the generator L[•] (4.4) is assured if the
following restriction, for the coefficients, are fulfilled (see appendix C)

Dpp > 0, Dqq > 0, DqqDpp −D2
qp > (λ2

~
2/4). (4.5)

Note that there are two situations that (4.5) does not take into account. The first
is the unitary evolution, i.e. the dissipation λ and diffusion coefficient D ij vanish.
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The second one corresponds to the case when only one diffusion coefficient Dpp or
Dqq vanishes, while the other is positive. In this case we should have Dqp = λ = 0
in order to fulfil the completely positive condition. We have to mention that the
fulfilment of (4.5) also assures the validity of the generalized uncertainty relation
during the whole evolution of the reduced system S under L[•] [21,27,28].

In the Heisenberg representation the dual generator L∗[•] is defined, for any
operator A, as Tr(AL[ρ]) = Tr(L∗[A]ρ). Then the dual expression of (4.4) reads

L∗[•] =
i

~
[H0, •]−

iθ2

2~
(λ+ µ)([•, q]p+ p[•, q]) + iθ2

2~
(λ− µ)(q[•, p] + [•, p]q)

− θ2Dpp

~2
[q, [q, •]]− θ2Dqq

~2
[p, [p, •]]− θ2Dqp

~2
([q, [p, •]] + [p, [q, •]]) (4.6)

with this generator the evolution for the moments of p, q read

∂tq
n =

i

~
[H0, q

n]− θ2n(λ− µ)qn + θ2n(n− 1)Dqqq
n−2,

∂tp
m =

i

~
[H0, p

m]− θ2m(λ + µ)pm + θ2m(m− 1)Dppp
m−2,

∂tq
npm =

i

~
[H0, q

npm]− θ2

2
(λ+ µ)m(qnpm + pqnpm−1)

− θ2

2
(λ− µ)n(qnpm + qn−1pm−1q) + θ2n(n− 1)Dqqq

n−2pm

+ θ2m(m− 1)Dppq
npm−2 − 2θ2nmDqpq

n−1pm−1,

in particular for the first and the second moments we obtain

∂tq =
i

~
[H0, q]− θ2(λ− µ)q,

∂tp =
i

~
[H0, p]− θ2(λ+ µ)p,

∂tq
2 =

i

~
[H0, q

2]− 2θ2(λ− µ)q2 + 2θ2Dqq ,

∂tp
2 =

i

~
[H0, p

2]− 2θ2(λ+ µ)p2 + 2θ2Dpp ,

∂tqp =
i

~
[H0, qp]− θ2λ(qp+ pq)− 2θ2Dqp . (4.7)

From these equations we can see a behaviour resembling the classical Brownian
motion, but only in the case when λ = µ [28]. In the following sections we will
analyze under which situation this condition can be fulfilled.

4.1. Coefficients of the KL in the second order approximation

In this section we give the structure of the coefficients appearing in (4.1) and
(4.2), obtained within a second order approximation by tracing out, and conse-
quently also in the SL approach. The interaction operators are assumed to be linear
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combinations of the form Vα = aαp + bαq with α = 1, 2 where aα, ba are complex
numbers (in units of

√
~). Note that if the potential energy in HS is W (q) = Aqn,

(n = 0, 1, 2), it is easy to see that the Heisenberg evolution Vα(−τ) are, once again,
linear combinations, i.e.: Vα(−τ) = γpα(−τ)p + γqα(−τ)q, where the coefficients
γj(−τ) depend on the structure of HS. Therefore inserting this expression in (3.5)
or (3.10) the dissipative coefficients of (4.1) are

Dpp = ℜe
[

∑

αβ

b∗α

∫ ∞

0

dτcαβ(−τ)γqβ(−τ)

]

,

Dqq = ℜe
[

∑

αβ

a∗α

∫ ∞

0

dτ cαβ(−τ)γpβ(−τ)

]

,

D1 =
∑

αβ

∫ ∞

0

dτ
(

cαβ(−τ)γqβ(−τ)a∗α + c∗αβ(−τ)γ∗
pβ(−τ)bα

)

, (4.8)

here these coefficients are written in terms of the quantity cαβ(−τ). So the correlation
functions are cαβ(−τ) = χαβ(−τ) in tracing-out and cαβ(−τ) = 〈〈l∗α (t) lβ (t− τ)〉〉
in the SL approach.

In the case of tracing-out (3.4), and in the SL approach when U 6= U † from
(3.12), the coefficients in the effective Hamiltonian can be written also in terms of
cαβ(−τ). Therefore we find for the coefficient of (4.2)

hq = 2i ℑm
[

∑

αβ

b∗α

∫ ∞

0

dτcαβ(−τ)γqβ(−τ)

]

,

hp = 2iℑm
[

∑

αβ

a∗α

∫ ∞

0

dτcαβ(−τ)γpβ(−τ)

]

,

µ~ = ℑm[hpq]

= ℑm
[

∑

αβ

∫ ∞

0

dτ
(

cαβ(−τ)a∗αγqβ(−τ)− c∗αβ(−τ)bαγ
∗
pβ(−τ)

)

]

. (4.9)

In the case of a generator coming from SL when U = U †, the effective Hamil-
tonian (3.9) is written in terms of 〈〈lα (t) lβ (t− τ)〉〉, so the coefficients of (4.2)
are

hq = 2i ℑm
[

∑

αβ

bα

∫ ∞

0

dτ 〈〈lα (t) lβ (t− τ)〉〉 γqβ(−τ)

]

,

hp = 2iℑm
[

∑

αβ

aα

∫ ∞

0

dτ 〈〈lα (t) lβ (t− τ)〉〉 γpβ(−τ)

]

,

µ~ = ℑm
[

∑

αβ

∫ ∞

0

dτ〈〈lα(t) lβ(t− τ)〉〉aαγqβ(−τ)

− 〈〈l∗α(t) l∗β(t− τ)〉〉b∗αγ∗
pβ(−τ)

]

. (4.10)
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An explicit analysis of the results (4.8)–(4.10) will be given in the next section
for a particular model.

5. The free particle

In this section we investigate the effect of the fluctuations and the dissipation for
a quantum free particle in contact with an environment, which is assumed to be a
set of independent harmonic oscillators with Hamiltonian HB (as in section 1), then
the system Hamiltonian is

HS =
1

2
p2.

We are going to point out some controversial results that come from the weak
coupling approximation when it is applied to this model. In the following we will
consider the case where there is only one interaction operator

Vα = V = ap+ bq, a, b ∈ Re (5.1)

and the interaction Hamiltonian is, once again, H I =
∑

k vk(b
†
k+bk)⊗V. The Heisen-

berg evolution of V gives γp(−τ) = a − bτ and γq(−τ) = b. The bath correlation
function χ(−τ) is given in (2.10). The Fourier transform of this correlation (see
appendix B) is

h(ω) = 2π[g(ω)n(ω) + g(−ω)(n(−ω) + 1)], (5.2)

where g(ω) =
∑

k |vk|2δ(ωk − ω) is the spectral function of a phonon bath, and we
consider the Ohmic case g(ω) = g ω, if 0 6 ω 6 ΩC, where ΩC is some frequency
cutoff. To obtain the coefficients of (4.4) it is necessary to evaluate the integrals

∞
∫

0

dτ χ(−τ) =
h(0)

2
+ is(0),

∞
∫

0

dτ χ(−τ) τ = r(0) = rR(0) + irI(0), (5.3)

the real quantities h(0), s(0), rR(0), rI(0) depend on the bath structure and its tem-
perature β−1; in appendix B there are general expressions for each of them in terms
of h(ω). Using (5.3) in (4.9) we get for the Hamiltonian H0 [see below (4.3)]

hp = 2i[a2s(0)− abrI(0)], hq = 2ib2s(0) (5.4)

and hpq = b2r∗(0) + i2abs(0). The coefficients (4.8) and µ are expressed as

2Dpp = b2h(0), 2Dqq = a2h(0)− 2abrR(0), 2Dqp = abh(0)− b2rR(0),

λ~ = −b2rI(0), µ~ = −b2rI(0) + 2abs(0).

The criterium (4.5) set that the completely positive condition is satisfied only if
r(0) = 0, and the condition to be a Brownian-like particle, λ = µ, is fulfilled when a
or b are null. From the expression h(ω) we obtain in the Ohmic case (see appendix B)

h(0) = 4πg/β~, s(0) = −gΩC ,

rR(0) = −
∫ ΩC

0
dω [g(ω)cth(β~ω/2)]′/ω, rI(0) = −πg.
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So it can be seen that rR(0) is well defined and it is null in the high temperature
limit.

Now, let us consider the case when the free particle is located in a 1D box of large
L; in this case there should exist an asymptotic equilibrium statistical operator ρ eq =
exp(−βHS)/Tr[exp(−βHS)]. We now can investigate which are the conditions on
the coefficients in the QME in order that ρeq is the stationary state of the generator
L[ρeq] = 0. This gives the following restriction on some of the coefficients:

Dpp = (λ+ µ)/β, λ = µ, hq = 0. (5.5)

The equilibrium condition does not tell anything about the other nonequilibrium
coefficients. Hence it is worthwhile to see which models of the interaction will lead
to the fulfilment of the condition (5.5).

Now, let us analyze the behaviour of the free particle model for two particular
cases of interaction with the reservoir. The first one is when b = 0 in (5.1) then
V = ap. With this particular interaction we get 2Dqq = a2h(0), and the effective
Hamiltonian H0 = 1

2
p2(1 + 2θ2s(0)a2/~) (here m−1 = (1 + 2θ2s(0)a2/~) is a renor-

malized mass that is always well defined in the weak coupling approximation); the
other coefficients are null Dpp = Dqp = λ = µ = 0, so in this case the QME is
completely positive because λ = 0. This generator could also be obtained, in a phe-
nomenological way, assuming Lindblad operators of the form V = ap in equation
(1.1), with some temperature dependent coefficient a. This kind of interaction V ∝ p
has also been worked in the context of path integral formalism [17]. With the help
of equation (4.7) we see that the expectation of the observables, and the variance
of q at long-time is not diffusive because it depends on the initial condition p(0),
i.e.: q2 = 2Dqqθ

2t + (q(0) + t p(0)/m)2. A similar behaviour was also found in the
quantum random walk model [29].

A second model of interaction is when a = 0 in (5.1) then V = bq. This interaction
corresponds to the most used – linear coupling – model in the path integral formalism
[15,26]. Eliminating the bath variables we obtain

Dqq = 0, 2Dpp = b2h(0), 2Dqp = −b2rR(0), hq = 2ib2s(0), (5.6)

µ~ = λ~ = −b2rI(0) > 0

and H0 = p2/2 − θ2gΩCb
2q2/~. At high temperatures 2Dqp = −b2rR(0) → 0 so the

QME (2.12) is reobtained (with γ = gπ/~). A similar QME was also given in [30]
where they called the approach the “Non-rotating wave approximation” (NRW).
In that work the QME is obtained eliminating the bath variables in the Heisenberg
representation, but neglecting the additional spurious term θ2gΩCb

2q2/~ in H0. Now
we can analyze the characteristics of the present model. The first remarkable fact is
that the diffusion coefficient Dqq vanishes but the dissipative coefficient λ does not,
giving therefore – from (4.5) – a generator which is not a bonafide KL; even more
at high temperatures – in the second order approximation – the generator (2.12)
is not completely positive. Note that the problem of non-positivity in a second or-
der approximation and with an interaction V ∼ q can not be solved considering
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intermediate temperatures; in order to overcome this problem other approximations
must be made [19]. What is even more problematic in the (Ohmic) second order
approximation and at high temperatures, is the additional quadratic spurious term
θ2s(0)b2q2/~. This gives rise to a non-physical contribution for the effective free par-
ticle Hamiltonian (if HS represented an harmonic oscillator the spurious term could
be considered a shift, i.e. a renormalization frequency). This is a serious drawback of
the Born-Markov approximation, for the free particle model, because this term can
not be neglected in this context. On the other hand from (5.6) µ = λ, so the system
behaves like a Brownian quantum particle. From the point of view of an equilibrium
state, see (5.5), if we had hq = 0 the equilibrium state ρeq would be the stationary
point of the generator. Note also that if we could neglect the spurious term in H0

and in the limit of high temperatures (Dqp → 0), from equations (4.7) and (5.6) a
diffusive behaviour q2 ∼ Dppt/4λ would be obtained at long times. In the following
sections we overcome – phenomenologically – the problems of non-positivity and
spurious term in the Hamiltonian H0, always preserving the character of a quantum
Brownian-like motion.

5.1. Using the Shr ödinger-Langevin approach

Now we want to analyze which stochastic state vector could reproduce the be-
haviour of a free particle in contact with a thermal bath, with interaction V = bq.
Therefore this section is twofold: the first one is concerned with Caldeira and
Leggett’s QME at infinite temperature (2.12); in the second part we present a SL
equation which reproduces a completely positive QME for the Brownian free parti-
cle at finite temperature; therefore we will use some of the coefficients of (5.6) but
the others will be changed in order to obtain a positive KL form. In addition we
handle the problem of the extra spurious term in H0 and preserve the Brownian-like
dynamics. In order to go on with this program we are going to choose suitable cor-
relation functions in the SL picture. Our point of view has a similar purpose as in
the paper [20] where a phenomenological approach to Caldeira and Leggett’s QME
was presented. In that work Gao used a particular Lindblad operator V (at a finite
temperature) in (1.1) in order to obtain a stochastic differential equation [10] that
reaches Caldeira and Leggett’s QME at infinite temperatures. Unfortunately Gao’s
approach gives a non-hermitian effective Hamiltonian and the dynamics of p and q
does not correspond to a Brownian-like motion [31].

5.1.1. The Caldeira and Leggett QME ( β → 0 )

Let us introduce the exact stochastic state equation that represents the evolution
of the Caldeira and Leggett’s QME. To do this we go back to section 3.2 and
assume a stochastic operator F (t) = l(t)V with interaction V = q and l(t) a
complex-value Gaussian noise. Using the correlation mapping (3.14) with χ∞(−τ)
(i.e.: < l∗l(−τ) >= (2γ/β)δ(τ) + iγ~δ′(τ) and < ll(−τ) >= 0), and taking a non-
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hermitian U , from (3.11) we obtain that the SL equation has the form

d

dt
|Ψ〉 =

[−i

~
HS −

θ

~

(

θγ

[

q2
(

−iδ̃(0) +
1

~β

)

− i
qp

2

]

+ il (t) q

)]

|Ψ〉 . (5.7)

This exact equation represents a quantum system under the evolution of (2.12) and
gives a diffusion behaviour at long times. In this form (5.7) gives the same F [•] [once
again not fulfilling (4.5)] and Heff as in (2.12).

We note that if U were hermitian the SL dynamics, considering the same F (t)
and correlation mapping as before, would have given F [•] with coefficients Dpp, Dqq,
Dqp, λ as in (5.6) for β → 0, but in this case Heff = HS so µ = 0. Therefore the
observables p, q would have shown damping in the velocity and in the position, i.e.:
q̇ = p − λq and ṗ = −λp. At long times the behaviour of the second moment
of the position is subdiffusive q2 ∼ Dqq/2θ

4λ3 and p2 ∼ Dqq/λ, so giving finite
dispersion at infinite times. Hence if U = U † the SL dynamics of the system is not
completely equivalent to that of tracing-out. As expected we see that the inclusion
of the effective Hamiltonian (4.3) gives a non-trivial contribution to the dissipative
dynamics. We note that, as was mentioned in section 3.2, using an hermitian U and
stochastic c−numbers lα(t) it is not possible to map the superoperator F [•] and
consistently the effective Hamiltonian from tracing-out. This fact can only be solved
using the phenomenological Hamiltonian

Heff = p2/2 + θ2µ(pq + qp)/2 (5.8)

with µ = λ.

5.1.2. The QME at a finite temperature

Now let us work out two models in the context of the SL picture with U =
U †, from which it is possible to reproduce the behaviour of a quantum Brownian
free particle at a finite temperature. In addition we fulfil the completely positive
condition on the QME and eliminate the spurious term.

Model (1): Here we take the stochastic operator F (t) = apl1(t) + bql2(t) (a, b
are real parameters) with colour noises lα(t). So we have two correlation
functions to be defined 〈〈l∗α (t) lβ (t− τ)〉〉 = δαβ cαα(−τ) for α = 1, 2 with
〈〈lα (t) lβ (t− τ)〉〉 = 0. If hα(ω) is the Fourier transform of cαα(−τ), see ap-
pendix B, the coefficients of F [•] are:

2Dqq = a2h1(0), 2Dpp = b2h2(0), 2Dqp = −b2rR2 (0), λ~ = −b2rI2(0) , (5.9)

comparing with (5.6) we can choose h2(ω) = h(ω) from (5.2), and h1(ω) in
such a way to assure the completely positive condition and also to get that
h1(0) goes to zero for β → 0. Hence using (4.5) the following inequality must
be satisfied

a2h1(0)h2(0) > b2(r2(0))
2. (5.10)
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In order to have a Brownian-like dynamics we have to introduce the phe-
nomenological effective Hamiltonian (5.8). With the correlations previously
introduced we now have a colour linear stochastic dynamics that reproduces
the non-Markovian behaviour for a free particle in a reservoir.

Model (2): In this case we propose F (t) =
∑

α lα(t)Vα, with Vα = aαp + bαq,
α = 1, 2, · · · and assume white noise correlations as defined in (3.16) and
(3.19). Then we obtain from (3.17) and (3.20) the coefficients

2Dpp =
∑

α |bα|2, 2Dqq =
∑

α |aα|2, 2Dqp =
∑

αℜe(bαa∗α),
hq = i

∑

αℑm(bα
2), hp = i

∑

αℑm(aα
2),

λ~ = −
∑

αℑm(bαa
∗
α), µ~ =

∑

α ℑm(bαaα). (5.11)

Now we can play around with these coefficients in order to fulfil all the re-
quirements mentioned before. In order to have a proper free particle Hamiltonian
H0 = p2/2, i.e.: with hq = 0, we can choose bα ∈ Re; now to get µ = λ we choose
ℑm(aα) 6= 0. In this case the completely positive condition is fulfilled for any bα, aα
(as we saw in section 3.2). The simplest case corresponds to α = 1, then comparing
(5.11) with the coefficients from (5.6), and using (4.5) we obtain for the parameters:

b =

√

4πg

β~
, a =

√

β~

4πg
(−rR(0) + iπg).

We remark that in this case we get a completely positive KL form, which in addition
in the high temperature limit β → 0 represents – in the second order approximation–
the situation of (2.12). Then our SL equation, with white noise correlations, also
provides a good tool to reproduce the behaviour of a free particle in a reservoir at
a finite temperature.

6. Discussion

In this work we review the Markovian approximation for the evolution of an
open quantum system in contact with a thermal bath. We analyze the quantum
master equation by using Terwiel’s cumulants and the projector operator technique.
Taking into account an infinite set of harmonic oscillators (the bath), we have com-
pared our solution with the propagator of the reduced density matrix obtained
from the path integral approach. We have revisited in a second order approxima-
tion the Kossakowski-Lindblad form for the generator. We have also presented –
in a phenomenological approach – the quantum master equation obtained from the
Schrödinger-Langevin picture; this was written in terms of a dissipative operator U
and some stochastic operator F(t). For the case when U is non-hermitian we have
been able to present a non-Markovian wave function whose Kossakowski-Lindblad
form completely matches the Heff and F [•] as obtained from tracing-out in a sec-
ond order approximation. This procedure is a helpful tool since the state vector is
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simpler to handle than the density matrix. The second order weak coupling ap-
proximation – for these two formalisms – is applied to systems with potentials
W (q) = Aqn, n = 0, 1, 2 and when the interacting operators Vα are linear com-
bination of the momentum p and position q.

The Kossakowski-Lindblad form for a free particle interacting with a thermal
environment has been analyzed. Eliminating the bath variables a Brownian-like be-
haviour is obtained although the generator does not satisfy the “structural theorem”,
when V = q. Therefore in the context of the Schrödinger-Langevin picture, we
present a phenomenological treatment in order to produce the Brownian dynamics
and to obtain a bonafide KL. The stochastic wave function for the free particle has
been introduced in section 5.1. In section 5.1.1 we show the Schrödinger-Langevin
picture that exactly represents the dynamics given by the Caldeira and Leggett
quantum master equation. We also noted the role of the effective Hamiltonian, which
leads to an important contribution to the dissipative behaviour. In section 5.1.2 we
consider two models of dynamics. In model (1) we show a non-Markovian state
vector, for the free particle, which matches (in a second order approximation) the
behaviour given by the Kossakowski-Lindblad generator. In this case the correct
free particle Hamiltonian is obtained by adding the phenomenological term (5.8).
In model (2) the dynamics is controlled by white noises, then by selecting suitable
parameters a Brownian-like behaviour is obtained. In this case the spurious term is
automatically eliminated and the generator is always a bonafide KL. In both models
the thermal wave function is given at a finite temperature, so this approach is useful
to analyze the individual realizations of the dissipative system.

The authors thank fruitful discussions with A.A. Budini. AKC thanks a fellow-
ship from CONICET; MOC thanks grant CONICET PIP N:4948.

A. Terwiel and ordered cumulants

In this section we briefly review the theory of the Terwiel cumulants [22] in order
to obtain the Markovian equation (2.8). Using the definitions of the section 1, we
start in the interaction representation:

σ̇T = θLI(t)σT,

and define the projector operator that eliminates the bath variables [6,25]

P[•] ≡ ρB TrB[•],
the reduced density matrix is obtained as PσT = ρB ⊗ σS, projecting at any time

the total density matrix into the tensorial product of the equilibrium distribution
of the bath times the reduced density matrix of S. Then it is possible to write the
evolution equations for PσT and (1− P)σT as

d(PσT)

dt
= θPLI(t)(1− P)σT, (A.1)

d((1−P)σT)

dt
= θLI(t)PσT + θ(1−P)LI(t)(1− P)σT. (A.2)
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Equation (A.2) can formally be solved and its solution be substituted in (A.1) yield-
ing an exact integro differential equation for σS

σ̇S = θ2
∫ t

0

k(t|t′) σS(t
′)dt′ = θ2

∫ t

0

〈LI(t)T (t|t′)LI(t
′)〉B σS(t

′)dt′, (A.3)

where T (t|t′) itself satisfies the Green equation

Ṫ (t|t′) = θ(1−P)LI(t)T (t|t′) (t > t′)

with initial condition T (t|t) = 1. Hence (A.3) is the starting point to perform a
Markovian approximation. First it is possible to express k(t|t ′) =

∑∞

n=2 kn(t|t′)
where k2(t1|t2) = 〈LI(t1)LI(t2)〉B and the general nth order term is given by

kn(t1|tn) = θn−2

∫ t1

tn

dt2

∫ tn−2

tn

dtn−1〈LI(t1)(1− P)LI(t2) · ·LI(tn−1)(1− P)LI(tn)〉B

for n = 3, 4, 5... The term in brackets, inside the integrals, is known as Terwiel’s
cumulant and it can be shown that it vanishes when two successive times fulfil |t i −
ti+1| > τc where τc is the correlation time of the bath, so the nth order contribution
to k(t|t′), in (A.3), is of the order θ(θτc)

n−1 therefore leading to a well ordered
expansion. Equation (A.3) is exact and it still has a non-Markovian behaviour. In
order to find a closed Markovian equation, like in (2.8), it is necessary to take into
account the “memory terms”. Then the final expression is

σ̇S =

∞
∑

n=2

θnKn σS(t).

Note that we have used 〈LI(t)〉B = 0 which is the case in most applications and
Kn(t) is given by (2.7) which is written in terms of the ordered cumulants

〈LI(t)LI(t1) · · · LI(tn−1)〉pB as defined by Terwiel [22], Fox[23] and van Kampen
[6]. Then the Kn contribution is also of the order θ(θτc)

n−1 and when t ≫ τc it
can be written in the form Kn = Kn(∞). In this way we obtain the Markovian
approximation for the evolution of the reduced system, but not precisely a bonafide
KL.

B. Handling the correlation functions

Here we show how to calculate the coefficients (5.3) in terms of the Fourier
transform of the correlation function. Let us use the fact that

∞
∫

0

exp(iωτ) dτ = πD(ω)+iP (ω),

∞
∫

0

τ exp(iωτ) dτ = −iπD′(ω)+P ′(ω), (B.1)
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where D(ω) and P (ω) are distributions acting in the following way

∞
∫

−∞

f(ω) D(ω) dω = f(0),
∞
∫

−∞

f(ω) D′(ω) dω = −f ′(0),

∞
∫

−∞

f(ω) P (ω) dω = VP
∫∞

∞

f(ω)
ω

dω,
∞
∫

−∞

f(ω) P ′(ω) dω = −VP
∞
∫

∞

f ′(ω)
ω

dω,

VP in front of the integrals mean Cauchy principal values. The Fourier transform
of c(−τ) is

h(ω) =

∞
∫

−∞

c(−τ) exp(−iωτ) dτ, c(−τ) =
1

2π

∞
∫

−∞

h(ω) exp(iωτ) dω, (B.2)

h(ω) ∈ Re is a real function because of the stationary property of the quantum
correlation functions c(−τ) = c∗(τ). Now the following half-Fourier transforms are
frequently used in the definitions of QME’s coefficients

∞
∫

0

c(−τ) exp(−iωτ) dτ =
h(ω)

2
+ is(ω), (B.3)

∞
∫

0

τc(−τ) exp(−iωτ) dτ = r(ω) = rR(ω) + irI(ω) (B.4)

with s(ω), rR(ω), rI(ω) ∈ Re. We can find expressions for these real and imaginary
parts of the half-Fourier transform in terms of h(ω); inserting (B.2) in (B.3) and
using relations (B.1) we can write the Kramers-Kronig like relation

s(ω) =
1

2π
VP

∫ ∞

−∞

h(ω′)

ω′ − ω
dω′ =

1

2
H[h(ω′)]ω′=ω ,

where H[ • ] is the Hilbert transform. The real and imaginary part of r(ω) are found
inserting (B.2) in (B.4) and again using some of the relations (B.1)

rR(ω) = − 1

2π
VP

∫ ∞

−∞

h′(ω′)

ω′ − ω
dω′ = −1

2
H[h′(ω′)]ω′=ω, rI(ω) =

h′(ω)

2
.

If c(−τ) are real functions the stationary condition implies c(−τ) = c(τ), leading not
only to a real but also to an even Fourier transform h(ω) = h(−ω) ∈ Re. Because
of this, the imaginary parts of the half-Fourier transform takes, at zero frequency,
the value s(0) = rI(0) = 0 [13].

C. The completely positive condition

In this appendix we show how the inequalities (4.5) can be derived. These condi-
tions on the coefficients of the KL form assure the validity of the structural theorem.
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Following the lines of [21], let us propose phenomenological operators V i = aip+ biq
– with i = 1, 2 and a, b complex numbers – in the KL generator (1.1). Therefore the
dissipative superoperator takes the form

F [•] =
2
∑

i=1

Vi • V †
i =

2
∑

i=1

[

|ai|2p • p+ |bi|2q • q + a∗i bi q • p + b∗iai p • q
]

. (C.1)

The coefficients fulfil
2
∑

i=1

|ai|2 > 0,

2
∑

i=1

|bi|2 > 0

and using the Shwartz inequality we get

∣

∣

∣

∣

∣

2
∑

i=1

a∗i bi

∣

∣

∣

∣

∣

2

=

(

ℜe
[

2
∑

i=1

a∗i bi

])2

+

(

ℑm
[

2
∑

i=1

a∗i bi

])2

6

2
∑

i=1

|ai|2
2
∑

i=1

|bi|2.

Identifying
∑2

i=1 |ai|2 = 2Dqq,
∑2

i=1 |bi|2 = 2Dpp,
∑2

i=1 a
∗
i bi = 2Dqp − iλ~ the above

inequalities lead to the restrictions (4.5) as stated by [21]. This condition can also
be obtained if we consider the operator basis {q, p} and write the matrix [aij ] –
defined in the introduction – corresponding to (C.1) in that basis. Then condition
(4.5) appears if we ask to the matrix [aij ] to be positively definite.
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Квантова дисипація та феноменологічні підходи

A.K. Чатаx 1 , M.O.Касерес 2
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Aв. E. Бустільйо Km 9.5, CP 8400, Барілоче, Aрґентина
2 Атомний центр Барілоче і Iнститут Барсеіро,

КНЕА і Національний Університет Куйо,

Aв. E. Бустільйо Km 9.5, CP 8400, Барілоче, Aрґентина

Отримано 22 червня 1999 р.

Перевіряється придатність використання Тервіелових кумулянтів у

Марковському наближенні для отримання квантового “фундамен-

тального кінетичного рівняння” для системи, що взаємодіє з тер-

мічним середовищем. Проаналізовано друге наближення за слаб-

кою константою взаємодії та подається форма Косаковського–Лінд-

блада для ґенераторів у термінах операторів координат та імпульсів.

Опрацьовано друге наближення за слабкою константою взаємодії

для стохастичної немарковської хвильової функції. Досліджується

модель вільних частинок, що взаємодіють із квантовим термічним

середовищем, у рамках картини Шредінґера–Ланжевена. Для того,

щоб обійти певні труднощі в часовій еволюції для вільночастинково-

го гамільтоніана у другому наближенні, вводиться феноменологічна

точка зору.

Ключові слова: відкриті квантові системи, квантове

фундаментальне кінетичне рівняння, стохастичне рівняння

Шредінґера
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