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The critical phenomena and peculiarities of phase transitions in the con-
fined fluid systems are investigated. A system with the geometry of a plane-
parallel layer is chosen in order to discuss the influence of the space limita-
tions on the critical characteristics of fluids. The main ideas of the Munster
iteration procedure were used to find the pair and the direct correlation
functions. Such an important characteristic of the system as the corre-
lation length was found and correspondent results were analyzed in the
terms of the scaling theory. Special attention is paid to the calculation of
the shifts of the critical parameters (critical temperature and density). The
three-moment approximation is used to investigate anisotropic liquids. The
system of the Ornstein-Zernike (OZ) integral equations is involved to in-
vestigate the correlative properties of the binary fluid mixtures. It is shown
for the fluids with the isomorphic character of the interaction that the ap-
proximation may be used that makes the system similar to the OZ one-
component liquid model.

The asymptotic formulae for the pair correlation functions are found and the
validity of the Munster method for the binary mixtures is considered. The
peculiarities of critical light opalescence for the systems with the special
geometry are considered.

Key words: critical phenomena, phase transitions, confined system,
correlation function
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A number of achievements of the modern theory of critical phenomena and phase
transitions are connected with the application of powerful methods of statistical

© A.V.Chalyi, K.A.Chalyi, L.M.Chernenko, A.N.Vasil'ev 335



A.V.Chalyi et al.

physics, namely the method of collective variables by I.R.Yukhnovskii and his col-
laborators [1].

The space limitation is one of the main factors determining the critical behaviour
of the fluid systems undergoing phase transitions. In general case the whole set of the
main results for the critical region may be received using only the pair correlation
function of the order parameter fluctuations of the system. So it is crucial to get the
information about the pair correlation function for the finite-size systems in order
to use it hereafter. As it is well known, the pair correlation function of the density
fluctuations may be expressed in the case of the space infinite one-component liquid
system with a scaling formula [2]:

Go(r) = Aexp(—r/Re) /rHm, (1.1)

where 1 = 0.034 is the critical exponent and R. is the correlation length. Due to
the long-ranged correlation at the critical point the correlation length demonstrates
an anomalous growth. For many practical and theoretical purposes the OZ model of
free fluctuation field [3] could be used. In the framework of this model it is possible
to find the asymptotic formulae for the correlation functions and the corresponding
correlation length and calculate the shifts of the critical parameters. Namely, for the
abovementioned system the zeroth approximation for the pair correlation function
is equivalent to the (1.1) when n = 0:

Go(r) = Aexp(—r/R.)/r. (1.2)

Unfortunately, this asymptotic expression has a singularity when its argument is
approaching to zero. Therefore, it would be better to solve this problem using the
Munster method. The main idea of this method is an application of the integral
and differential OZ equations (or systems of OZ equations in the case of binary
mixtures system) and corresponding iteration procedure in order to obtain new
correct expressions for the correlation functions [4]. It is important to stress that
even after the first step of iteration process the singularity [5] of the pair correlation
function disappears.

Let us consider the one-component liquid system. The OZ integral equation has
the following form [3,6,7]:

Go(ry,ra) = f(ry,re) + /p(r’)f(rl,r’)Gz(r’,rz)dr’. (1.3)

As a rule the direct correlation function f(ry,r’) differs significantly from zero only
when the distance |r; —r’| between the interacting particles is small. So in the case of
an isotropic system when f(ry,r’) = f(|r; —r'|) and Ga(r1,r’) = Go(|r; —1'|) one can
transform the equation (1.3) using the Taylor expansion for the direct correlation
function to the differential OZ equation [4]:

(V2 — k) Galr) = —%). (1.4)
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Here, the so-called two-moment approximation was used With two spatial moments of
the direct correlation function Cy = [ p(r) f(r)dr, Cy = 5 L[ p(r )r’dr, and ?

(1 —Cy)/Cs, p(r) is the local density. When the system is con51derably amsotroplc
one must take into account the first spatial moment of the direct correlation function.
For this situation the differential OZ equation is

3
0?Gy(r,
Z aij(rQ)M - 61 : ﬁ)GQ(I‘l, 1“2) - (1 - CO)GQ(rla TQ) =

= —f(ry,12), (1.5)

where the following definitions were used: ﬁl(rQ) = [ p(r)f(r,r2
aji(ry) = 5 fp x1, Ta, T3) f (21, T2, x3|r2)z;2; drydaedes and Cy =

rdr, a;;(ry) =
s(an + az + ass).
Lets assume that a;;(r) = Cy = const, ﬁl(r) = ﬁl and p(r) = (p) = const. Then
we can get from (1.5)

a2 ais Q23 f
NGy + Gy Core B 4 Goy B — GV Gy — K2Gy = 1.6
2+ 2y02+ 2 C’+ 2y02 2 — K'Gg = 02 (1.6)
where vector @ ﬁ 1/C5. This equation may be simplified for the systems with a

special symmetry.

2. Plane-parallel layer system

Let us consider the system with the geometry of a plane-parallel layer of the
thickness 2h. Such systems have a significant practical importance because many
real physical and biological systems are spatially finite-sized and their geometrical
form may be taken as a plane-parallel [8].

2.1. The correlation functions

Taking the zeroth boundary conditions to satisfy the limiting transition to the
infinite system one may find the direct and the pair correlation functions in the
following form [8,9]:

z) = Z Gy (p) cos (W(m + O.5)z/h> (2.1)

and

= Z fimy(p) cos (ﬂ(m + 0.5)z/h>. (2.2)

Using the zeroth approximation for the direct correlation function f©(r) = Cyé(r)/
(p) and taking into account that

bIH

Z cos( 2m+1) —), (2.3)
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one has the following equations for the harmonics of correlation functions from the
integral (1.3) and differential (1.4) OZ equations:

Gato(9) = Fi (1) + 1lp) [ Fin(00)Gaon (7 = DT (24)
and Cod(p)
V2 — 12) G (p) = —202) 2.5
( m) 2( )(p) <p>h02 ( )
where k2, = k* + 7%(2m + 1)?/4h%. These equations may be used for the calculation

of the correlation functions by the iteration procedure. So from the (2.5) one can
find the asymptotic formula for the pair correlation function [5,8,9]:

GW(p,z) = ﬁg)@ mZOKO(p/@m) cos(w(2m + 1)/2h>. (2.6)

Using then the integral OZ equation (2.4) it is possible to calculate the first approx-
imation for the direct correlation function [5]:

Co

FD(p, 2) = STRIC, 3" Kolpy/r2, + Co/Ch) COS(W(Qm n 1)/2h>. (2.7)

Then one may find the first iteration for the pair correlation function [5] from equa-
tion (2.5):

G;l)(p’ z) = W Z[Ko(p/{m) — Ko(phinm)] cos(w(?m + 1)/2h), (2.8)

m=0

where R, = \/k2, + Cy/C5. As it was stressed above the first iteration of the pair
correlation function has no singularities and is more realistic than the asymptotic
expression.

2.2. The correlation length

It is natural to determine the correlation length as the normalized second spatial
moment of the pair correlation function [8,9]:

[ Gy(r)r2dr
R. =, /W’ (2.9)

From (2.10) one can find, after integrating and leaving only the first harmonics in
the (2.8), the following expression for the correlation length:

R} =R, + RZ, (2.10)

where 4 A
R = + 2.11
R R g o
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and

8
R? = (1 - P) h?. (2.12)
As it is seen from the (2.10)—(2.12) at the bulk critical point (k = 0) the correlation
length has a finite value. Thus the space limitation causes the shifts of the critical
parameters [5,8].

2.3. The shifts of the critical parameters

According to the scaling-law theory, parameter x may be presented in the fol-
lowing form [2]:

k=T i (Lp/™) = D folr) 7). (2.13)

Here 7 = (T'—T.)/T. and Ap = (p—p.)/p. are the deviations of the temperature and
density from their critical values respectively, v = 0.625, = 0.325 and ( = 1.923
are the critical exponents. The asymptotic behaviour of a scaling functions f;(u)
and fy(u) are as follows:

fi(u = 0) = Ko = const, fi(u — 00) ~u’ (2.14)

and

fo(u — 0) = kg = const,  fo(u — 00) ~ u”. (2.15)

Thus using the expressions (2.10)—(2.12) for the correlation length and dependence
of the parameter xk on the temperature and density one can find the shifts of the
critical parameters with respect to its values at the bulk critical point. The new
critical temperature is

TC

T = 2.16
© = 11 (mohl) 1 (2.16)

and the new critical density is

*x pC
Pe = 1 (kohA)-1/C

(2.17)

where A = /1 + 8/m2 + 16/(72 + 4h2Cy/Cy). These results are in good agreement
with the experimental data by Lutz [10].

3. Anisotropic systems

In many cases the real systems are essentially anisotropic and it leads to some
considerable effects. Let us consider such systems.
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3.1. The spatially nonfinite system

In the case of a spatially infinite system the asymptotic formula for the pair
correlation function of the order parameter fluctuations [11] can be found from the
equation (1.6):

AV (r) — Co  exp(arcos§/2 —ry/k? + a?/4)
i A (p)Cy r
_ _ G ew(ez/2-ryk ta?/d) (3.1)
 An{p)Cy r ' :

Here the direction of the z-axis coincides with the direction of the vector @ and 6
is the angle between the vectors 7 and @. The following iterations may be found
from the integral OZ equation (1.3). The first iteration for the direct correlation
function is

Co exp(arcos /2 — r\/k2 + a2 /4 + Cy/Cy)

fom) = Am(p)Cy r
_ Co exp(az/2 — /K2 + a2 /4 + Cy/Cy) (3.2)
47t (p)Cy r '
and the first iteration for the pair correlation function is
GOy = 1 exp(arcos/2 —ry/k* +a*/4)
A (p)Cy r
1 exp(arcos0/2 — r\/k2 + a2 /4 + Cy/Cy)
47 (p)Cy r
1 exp(az/2 —ry/k?+ a?/4)
a A (p)Cy r
1 exp(az/2 — /K2 + a2 /4 + Cy/Cy) (3.3)
47 (p)Cy r ' '

The last formula presents the dependence of the correlative properties of the system
on the angle # and may be used to investigate the correlation length and shifts of
the critical parameters [11].

3.2. The correlation length

Let’s find the correlation length of the spatially infinite anisotropic system. Tak-
ing into account (2.13) and from (3.1) one has the following formula [11]:
1
K24+ a?/4 —acosf/2
Ry
T2 4+ a?R2/4 — aRycos0/2

R.(1) =
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Here Ry = Ky ! Tt is clearly seen that critical temperature in this case depends on
the direction and thus the anisotropy of the system causes the change in the critical
parameters in comparison with the isotropic system.

3.3. The new critical parameters

The new critical temperature T may be found from the formula (3.4) for the
correlation length:

T = L (3.5)
© 1+ (Roasin®(0/2))1/v '
In the same way one may find the new critical density:
* pC
o= : (3.6)

1+ (Roasin®(0/2))5/v

The maximal shift of the critical parameters takes place when 6 = 7 and there is no
shift (in comparison with isotropic system) when 6 = 0.

3.4. Plane-parallel layer

Let us consider the anisotropic system with a geometry of a plane-parallel layer.
In the situation when @ = (0,0,a) one may find, using the (1.3) and (1.6), the
asymptotic expression and the first iterations for the direct and the pair correlation
functions. So the asymptotic formula for the pair correlation function is

Coexp(% (m+0.5)zm
W;Kop /{2 +a2/4)COS(T .

The first approximation for the direct and pair correlation functions are as follows:

Y (r) = (3.7)

fYr) = % Z Ko(p\/R2, + a?/4) cos (W) . (3.8)
G(r) = ijff@ mz |Kolpy/i%, + @24) = Kolpy/R2, + @2/
X COS <(m +i(z) 5)Z7T) (3.9)

In the case when vector @ has no z-component one may accept without any restric-
tion of the generality that @ = (0,a,0) and get, similar to the previous situation,
the asymptotic formula for the pair correlation function

Coexp(% m+0.5)z7r) . (3.10)

(
i 2 2

_27rhC E Ko(p\/ K2, +a/4)cos< :
The first approximation for the direct correlation function is

e >—§ST%ZKO VT s (IR )
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And the first approximation for the pair correlation function
o

V() = exp(7)>Z[Ko<p w2+ a@/4) — Kolpy/a2, + a2/4)]

27Th02<p

X COS (W) . (3.12)

When the vector @ has an arbitrary direction the situation is much more com-
plicated. In this case one may take @ = (0,asinf,acosf). So the equation (1.6)
transforms as follows:

82G2 8G2 an f
—asinf-—— —a-cosf - —— — KGy = — = 3.13
00 asin o a-cosf - —= — K'Gy o (3.13)
where s = ag3/y\/a2s - 33 ~ ag3/Cy. Making the substitution x — z, y — (y —
(s2)/2)/+/1 — s%/4, z — z and using new variables z, u, z one has the follow equa-
tions from (1.3) and (1.6)

AG2+S

0G, 2asinf — ascosO| 0Gs ) ¥
A2 N - =—= 14
Gy —acost % [ i ]8u K Gy 02 (3.14)
and
52
Gy(z,u,z) = f(x,u,2)+ (p) 1_Z

X /f(x’, u', 2 )Go(x — 2 u— ', 2z — 2)da’du’d2’. (3.15)

The solution of this problem is as follows:
1) For the pair correlation function the asymptotic formula may be presented in
such a way

Co - exp [(az(Q cosf — s -sinf) + ay(2sinf — s - cos 0))/(4 — 52)]
2hCy(p)+/1 — s?/4

S K <\/ (124 U= (g 4 0 ~_sinz<2e>/2>)>
X cos (W) | (3.16)

2) The first approximation for the direct correlation function

Co - exp [(az(Q cosf — s -sinf) + ay(2sinf — s - cos 0))/(4 - 32)}
2rhCy{p)+/1 — s%/4

x i Ky <\/(x2 n (QZ - ;2)2) <,€;n At _Z -_sisr;(%)/?)))

X oS <W) . (3.17)

FO(r)
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3) The first approximation for the pair correlation function
exp [(az(Q cos — s-sinf) + ay(2sinf — s - cos 0))/(4 - 32)]
2rhCy{p)+/1 — s%/4

X g:o [KO <\/<x2 n (2Z - 222)2) <,{gn L ea —2;51;(29)/2))>
~ K, <\/(x2 n (QZ - Z)Q) (m% At —z -_si8112(29)/2))>]

X COS (W) . (3.18)

G (r)

In the case when the anisotropy vector has its direction along the z-axis the corre-
lation length may be found as follows:

16 8
R./h)* = 1 —
( / ) + 4/*{2h2+71'2 a2h2+ﬂ'2
8ah tanh(ah/2) N 16a*h?
a?h? + 2 (a?h? 4+ 72)2
In the limiting transition — 0 it gives the zeroth approximation of the correlation
length of the isotropy system [8,9].

(3.19)

4. The binary fluid mixture

The integral OZ system for the binary mixture has the following form:

fzg + Z Pk / zk r— rl)fk:](rl)drlu (41)

where f;;(r) = f;(r) and G;;(r) = Gj;(r) are the direct and the pair correlation
functions of the components i and j respectively, (py) is the average density of the
component k and ¢, j, k = 1,2. It is also possible to find the asymptotic expressions
for the correlation functions from the OZ differential system:

mi {%(A - “’27”)0””(1")} = _fé—(:) (4.2)

Here Ajj=(p;) [ fi;(r)dr, By=((p:)/6) [ fi;(r)r*dr and &3,=r% = (65 — Ai;)/By;.

4.1. The zeroth approximation

In order to receive the asymptotic formulae for the pair correlation functions let
us take the Dirak delta-function as the zeroth approximation for the direct corre-
lation functions. Taking in (4.2) f;;(r) = A;;é(r)/(p;) one may get the asymptotic
formula for the pair correlation functions:
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1) For the spatially infinite system

Gij(r) = 4;22% (S5 — at) exp(—qur) — (S5 — ¢3) exp(—qar)]. (4.3)

2) For the system with the geometry of a plane-parallel layer

Gis(p.2) = Y Giyomy(p) cos (W(m + 0.5)z/h> (4.4)

and

2rhAg?

Gijm) =

m2(2m 4 1)2
(S7 — ai) Ko <P\/CJ% + 4—hQ>

— (S — @) Ko (p\/CJ% + WQ(T—;;W)] . (45)

Here the following definitions are used:

P, = KT+ K3y — 267K, 14 ./1— 4(5%1’452 — Rip)(1 - &) (4.6)
b2 2(1-¢%) (kT + K3y — 282k%,)% |7 .
R _ 1 . A11/Bi1 — Aga/Bas . B
2 1-— 52 By — By <P1>
_ 1 ) Ay1 /By — Ag/Bas ) By, (4.7)
1-— 52 By — By <P2>’ .
1 A1 /By + £2k3,
R = . 4.8
H 1—&2 </)1> ( )
1 Ago/Bag + 52/4%2
R = . , 4.9
2T e ) (49)
A — A
5122 _ 11 22 (4.10)

Ay1Bay — Ay By’
Aoy ) Bo) 2 2.4
S2 = (A11/Bi1)kgy + 52"@12’ (4.11)
Ay1 /By + &2k
(Aga/Bas) ki) + 251,

Ago/Bag + 52/4%2

and A¢* = g5 — ¢i, §* = B12Ba1/Bi1 Ba.

At the critical point, the main singular part of the correlation length is deter-
mined as follows:

1) For the infinite system

R — 1 1 o “%1*“%2—252’{%2 41
e = 3T 5= 2 .2 _ 2,4 (4.13)
S Ki1K3e — §%K1o
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2) For a plane-parallel layer

1 1
Rl=———%+—5—= (4.14)
@i+ a2 Gtz

The latter formula may be used to obtain the new critical temperature. It is
obvious that in the case of a binary mixture system with the geometry of a plane-
parallel layer the values of the critical parameters depend on the thickness of the
layer as it was before for the one-component system.

4.2. The approximation of asymptotic behaviour

Let us make the following substitution in the system (4.1): G;;=(p)/\/{p:){p;) 9ij
and f;; = (p)//(pi){p;)Ci;- The density (p) may be taken in any convenient way.

The system of equations (4.1) transforms to the form as follows:

gii(r) = Ci;(r) + () Y / gir(r — 11)Cyj(r1)dry . (4.15)

Taking into account the physical sense of the integrals in the (4.1) it is natural to
accept that

/glg(r — rl)CH(rl)drl = /gn(r — rl)Clg(rl)drl (416)

and

/glz(]ﬁ' — I'l)CQQ(I'l)dI'l = /922(1' — I'1)C1z(r1)d1'1- (417)
Let us take into account the function

_ J g —11)Cn(r)dry _ (pa) [ Gra(r —11) far(r1)dr
fgu(r - 1'1)012(1'1)(11“1 <P1> f Gn(r - I“1)f12(1“1)d1'1.

V(r) (4.18)

It is natural to suppose that the function V(r) weakly depends on the r ei. V =
const. In this case one has

g22(r) = Vgi1(r), Ca(r) = VCii(r) (4.19)

and

g12(r) =VVagn(r),  Cu(r) = VVCi(r). (4.20)

Therefore, the system of the integral equations separates on the three equations
similar to the OZ equation for one-component liquids:

gi;(r) = Cy(r) + (pij) /C’Z-j(rl) - g3 (r —1r1)dry, (4.21)

where {(p;;) = (p)(1+V)/V+i=2/2 S0 one can find the pair and the direct corre-
lation function for the binary mixture. Thus for the spatially infinite system:
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1) The asymptotic formula for the pair correlation function

(i+j-2)/2 _
Gy (r) = CoV  oxp(onr) (4.22)
ArCo(L+V)/{pi) (ps) r
2) The first iteration for the direct correlation function
(i+j-2)/2 —F
A p— g i) (.23
AnCo(1+V)/(pi) (ps) r
3) The first iteration for the pair correlation function
GS)(I') _ v (+i=2)/2 _exp(—kr) — exp(—/%r)' (4.24)
ArCy(1+V)/(pi)(ps) r

Here Cy = (p1) [ fu1(r)dr, Co = (1/6)(p1) [ fi1(r)r?dr, s = [1 — (1 4+ V)Co]/(1 +
V)CQ and /~€2 = HJQ —+ Co/CQ.

In the case of a plane-parallel layer one has:

1) The zeroth iteration for the pair correlation function

OV (i+i=2)/2 > mz(2m+ 1)
GEQ)(r) = 0 Ko(pkm) cos <7) . (4.25)
’ 2rhCo(1 + V)\/{pi)(ps) 1;::0 2h
2) The first iteration for the direct correlation function
(i+7—-2)/2 0 2 1
fi(l)(r) = CoV Z Ko(pFm) cos (M> : (4.26)
2mhCo(1+ V) (i) (03) s 2h
3) The first iteration for the pair correlation function
Gﬁl)(r) _ Vi+i-2)/2
? 2mhCa(1+ V)v/{pi) ;)
- _ mz(2m + 1)
x ) _Ko(pim) = Ko(pRm)] cos { ——— . (4.27)
m=0

The shift of the critical temperature AT, in this case in comparison with the
critical temperature T, of the one-component liquid is determined as

T,
1+ (VR%CO/CQ)_UQV .

AT, = (4.28)

The latter formula (4.28) may be used to find the parameter V' from the correspond-
ing experimental data.
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4.3. The diagonal form of the OZ system

In the matrix form the integral OZ system may be presented as follows:
3(6) = Cw) + ) [ Clegle s (4.29)

Here the following definitions are used: g(r) = ( gu(r) gra{r) ) and C(r) =

g21(r)  gaa(r)
< Ci1(r) Cia(r)
Cor(r) Cap(r)

). After the Fourier transforming one has

i(a) = C(a) + (n)C(a)g(a). (4.30)
Let us cor}51der the arbitrary matrix S(q) a and G(q) = S(q) (@)S7(q) F(q) =
S(q)C(q)S71(q). Then for the new functions G(q) and F(q) the equation (4.30)
has got just the same form:

Ga) = F(a) + {p) F(a)G(a). (4.31)

It makes possible to find the S in such a way that matrix G will have a diagonal
form. For this reason let us calculate the eigenvalues of GG from the equation:

Det [gi;(q) — A(q)dy;| = 0. (4.32)
It gives

Ay — g (a) + g2(q) 4 \/92 (q) + <911(Q)
, 12 5

The matrix S may be taken as follows:

- gQQ(q)>2. (433)

dpy — L WIFs(@?=s(@] 1
0= o ( 1 - yiTs ) 0
where
- g11(q) — g22(q) _ Ci1(q) — On(q)
s(q) = ol - 20a@ (4.35)
Thus one has
Cha(q) = g11(q) ;922((1) + g1a(q) /T + 5(q)2 (4.36)
and
o) = U 4 0@ T (P (437)

The system of integral equations (4.29) splits into two integral equations similar to
the OZ equation for the one-component liquid system:

Gia(r) = Fia(r) + (p) /FLz(rl)GLQ(r —1p)dr;. (4.38)

The Munster scheme may be applied to the equation (4.38) in order to calculate
the consequent iterations of the correlation functions because the initial iteration
for the direct correlation function is commonly used as the delta-function.
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4.4. The Munster method for binary mixtures

For the general case of binary systems, the Munster method is available for the
investigation of the pair correlation functions. Let us consider the differential OZ
system in the matrix form:

Ag(r) = C3 1 (E = Co)g(r) = =C5 ' C(r). (4.39)

Here were used the definitions Cy = (p) fé’(r)dr, Co = (1/6)(p) fé’(r)err and
E is the unit matrix. It allows us to find the zeroth approximation for the matrix
of the pair correlation functions using the initial iteration for the direct correlation
functions from (4.39) C©(r) = (Cy/(p))é(r). So, one has got

Ni(r) — G5 (B — Co)ilr) = —CZ@C 0

For the spatially infinite system the Fourier transformation of the zeroth approxi-
mation for the matrix of the pair correlation functions g(q) is

5(r). (4.40)

. P CyCo
§a) = [a*E + Cy (B - — (4.41)
The first iteration for the direct correlation functions may be found using the equa-
tion (4.30). It gives

-1
CO(q) = [@E + Gy (E — Co) + Gy Col ™ ijf 0

It is important to stress that for conserving the initial symmetry of the integral
system (4.29) the following equation has to take place:

(4.42)

C5Co = CoCs. (4.43)

Then from the (4.39) one can get the first iteration for the pair correlation functions

V@) = [@E+CN(E - G

_1Q
(p)

Then, considering the system with the geometry of a plane-parallel layer, one can
calculate the correlation functions in the following form:

~ ~ ~ N ~ 1/\

— [@?E + Cy (B — Cy) + C; 1 Cy] (4.44)

#p.2) = Gy (p) cos (ﬂ(m + O.5)z/h) (4.45)
and .
Clp, 2) = Z é(m) (p) cos (W(m + O.5)z/h> : (4.46)
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The integral OZ equation (4.30) gives

~

Gn() = fin(q) + 1{p) fin(q) G (). (4.47)

And differential equation for the harmonics

) s oA m2m 12 T ;0
B ) — |C(B = o)+ ZER L B gy ) = -2 50 000 (a9

Thus, using the analogy with the previous situation, one can find:
1) The zeroth approximation for the matrix of the pair correlation functions
harmonics

m2@m+1)2 . o 17 GG
e N

2) The first approximation for the matrix of the direct correlation functions
harmonics

Gom (@) = [qQE + . (4.49)

. S mRmA e s s ] T CFNC
C’((;))(q): {q2E+%E+ SN (E—Co) + 5t 0} ;<p>0' (4.50)

3) The first approximation for the matrix of the pair correlation functions har-
monics

G (@) = {q2E+
~—1

L omRmA2 a1 Gy
— |q°E ﬂ(—E s HE — O Cyt 2
e AR I

Comparing the equations (4.41), (4.42), (4.44) and (4.49), (4.50), (4.51) respec-
tively, it is possible to make the following conclusion: the consequent iterations for
the correlation functions could be expressed by the asymptotic formulae for the
pair correlation functions. Just the same result was received for the one-component
systems [11].

.(4.51)

5. Critical parameters and spatial insufficiency

Let us consider a one-component liquid, which is filled in a cylindrical sample of
the radius a that extends infinitely along the z-axes, i.e. 0 < z,y < a, —00 < 2z < 0.
Reduced geometry of the system leads to the change of critical characteristics while
the cylinder radius became smaller. Thus the declination of the critical temperature
T7, density p? and viscosity n* for finite-size near-critical liquid system takes place.
The geometric factor set the characteristic of spatial limitation and defined as K =
a/ R, where R, is the amplitude of the correlation length. The new values of
critical parameters may be defined at the point of the correlation length maximum.
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Figure 1. Dependence of the new critical temperature T2 (K) on geometrical
factor K. Here, the assumed critical temperature for bulk system 7, = 300 K,
critical exponent v = 0.5.

To determine such an important characteristic of a liquid as viscosity the scaling
formula for the correlation length of finite-size cylindrical system has to be used.
Correlation length R, in a spatially limited system of cylindrical geometry appears
dependent not only on thermodynamic variables (temperature, density, etc.), but
also on the geometrical factor K, having the sense of molecular layers number, which
is possible to arrange along the radius of the cylinder. The longitudinal component
of the correlation length (R.), along the cylinder axes allows us to determine the
new critical temperature 7(K). For a sufficiently close vicinity of critical isochore
where Ap < 78, p ~ p. and T > T, one can get the following formula for the critical
temperature of liquid in the small volume with a cylindrical geometry:

TH(K) = T[1+ (v /K)] 7 (5.1)

From formula (5.1), it naturally follows that under transferring to the spatially
unlimited system when the radius of the cylinder aspires to infinity a — oo accom-
panied by geometrical factor K — oo, a new critical temperature T*(K) becomes
equal to the bulk critical temperature T, i.e. there is no shift. Figure 1 illustrates
the dependence of a new critical temperature 7.7 (K) on the geometric factor K for
a cylindrical sample with a homogeneous (zeroth) boundary condition of the first
type with the mean-field value of exponent v = 0.5 and the assumed bulk criti-
cal temperature 7, = 300 K. The analysis of formula (5.1) shows that the shift
of critical temperature for the cylindrical sample TF(K) in comparison with the
critical temperature T, of volumetric phase may be very considerable. For exam-
ple, in the case of geometric factor K = 100 difference of critical temperature is
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Figure 2. Dependence of the new critical density p}(K) on geometrical factor
K. Here, the assumed critical density for bulk system p. = 300 kg/m?, critical
exponent § = 3.

AT, = T, — TX(K) = 0.173 K. It corresponds to the shift of critical point on
A, =6.4-107° lower than bulk location.

Using just the same way as for the temperature, one can consider the changing
of a new critical density p*(K) in a spatially limited system of cylindrical geometry
contrary to the value of critical density p. for an unlimited volumetric phase. Then
in the vicinity of critical isotherm, where Ap > 77, for single-component liquid, the
new value of critical density becomes equal to:

pi(K) = pell + (1 /)Y D] (5.2)

From formula (5.2) follows that under transferring to the spatially unlimited sys-
tem (K — 00), pi(K) — p. the shift of density is absent. Figure 2 illustrates the
dependence of the new critical density pf(K) on the geometric factor K under a
mean-field value of the critical exponent § = 3 and p. = 300 kg/m?. The analysis
of formula (5.2) shows that the shift of the critical density for a cylindrical sample
might be very significant. So, in the case of geometric factor K = 1000 and S = 0.5
(2/(6 — 1) = B/v) the shift of the critical density is p. — pi(K) = 0.72 kg/m3.
It means that the shift of the critical point on A, = 21072 lower than the bulk
location. Using the above results, one could investigate the change of viscosity 7.
Combining the scaling relation for viscosity in the absence of shear

n = n"(QoRe)X (5.3)

and formula for the correlation length, the equation for viscosity n* of a spatially-
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Figure 3. Dependence of the dimentionless viscosity n*(/)/(n®A) on geometrical
factor K. Here, the assumed critical exponent v = 0.5 and x = 0.06, temperature
declination 7 = 107°.

limited liquid cylindrical system in near-critical state may be received
W~ P AKX (KT 4 ) 2, (5.4)

where 1P is a background viscosity, ¥ = 0.06 is the critical exponent and A =
(QoReo)X is the system-dependent constant. As it is seen from (5.4), the viscosity in
spatially limited system of cylindrical geometry depends not only on thermodynamic
variable but also on the geometric factor K. In comparison with the spatially infinite
system, for which according to the formula

n/n°~ 77, (5.5)

viscosity increases at the critical temperature point (7" — T, 7 — 0) up to infinity
(¢ = 0.41 is the critical exponent), for the cylindrical sample of radius @ when 7 — 0
the maximum value of viscosity is realized:

n (1 = 0) ~ 0.95aX7° QY. (5.6)

Limiting transition to a case of a spatially unlimited system at K — oo has to be
realized. From the formula (5.4) it could be seen, that this transition takes place,
ie. n ~ 77X for K — oo. Figure 3 demonstrates the dependence of viscosity n* on
the geometric factor K at temperature deviation 7 = 107°. It is possible to make
a conclusion that viscosity became smaller when reducing the size of the system.
Figure 4 illustrates temperature dependence of n* at K = 300. Calculations show
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n“(K) /(n® A)

P05 #4100 610 ° 810 ° 0

T
Figure 4. Temperature dependence of the dimentionless viscosity n*(K)/(n®A).
Here assumed critical exponent v = 0.5 and y = 0.06, geometrical factor K = 300.

that the anomalous growth of viscosity appears not at the bulk critical temperature
T =T, (1 = 0) but, as it was to be expected, at the new critical temperature 77 (K),
which is the same as determined from formula (5.1). This fact gives an opportunity
to define a new critical temperature in one of the two ways — from maximum of
correlation length or from maximum of viscosity.

6. Light scattering

The study of light scattering, as it is well known, is a very fruitful method in
molecular physics. Using the existing theoretical approaches and precision experi-
mental data, it is possible to receive a reliable information about various equilibrium
and kinetic properties of liquids in a broad interval of thermodynamic parameters
modification including the critical region.

The description of propagation of the electromagnetic waves (in particular —
light) in near-critical liquids, is based on the well known conclusions, which are
obtained within the framework of the main concepts of the critical light opalescence
theory. To understand the specific features of the light scattering it is important to
take into account the concept of spatially unlocal fluctuations in the proximity of
the critical point that was suggested for the first time in the theory of OZ critical
opalescence. The main point of this idea is the significance of the correlation length of
fluctuations. From the standpoint of modern theories of phase transitions and critical
phenomena, the OZ model actually corresponds to a model of free (noninteracting)
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fluctuations and consequently cannot give an adequate account of interactions of
the order parameters, which are strongly fluctuating in immediate proximity to the
critical point. However, the modern experiments prove that for the light scattering in
liquids that are close to the critical point the deviations of the data from predictions
of the OZ theory are minor. In many experimental and theoretical studies of critical
light opalescence, the approximation of single scattering is used. The traditional
description of critical opalescence in an approximation of single scattering is based
on the known bound between the integral light intensity /; and the Fourier-image
of conjugate correlation G5(q).

Of special significance are the studies of critical light opalescence in individual
liquids and liquid mixtures conducted under the natural conditions of the acting
external gravitational field, which results in a sharp redistribution of physical prop-
erties of a liquid depending on height. Strictly speaking, critical phenomena isomor-
phic to phase transitions of the second type in such liquid systems in the presence of
gravitational field happen in a rather narrow transitional stratum (inter-phase). The
linear size of this transitional stratum appears to be about a correlation length. This
important circumstance allows us to assert that the critical phenomena in liquids
in conditions of the acting gravitational field (the so-called “gravitational effect”)
happen, as a matter of fact, in spatially limited systems.

Let us proceed immediately to the research of dispersing properties of a spatially
limited liquid system near the point of phase transition and consider a spatially
limited system, which has the form of a plane-parallel stratum (—oco < x,y < oo,
—h < z < h). So, the description of light scattering near the critical point in the
approximation of single scattering is based on the following expression:

I ~ Re // Ga(p, z) exp[—i(kyyp + k.)]pdpdz, (6.1)

where p = /22 + y2. One must take into account the main contribution in G5 for the
plane-parallel stratum, which is set by the formula G2 (p, 2) = Ko(p/K? + 712/4h?) X
cos(mz/2h), where k = R7' = R'7" is the inverse significance of a correlation length
of spatially unlimited medium, R = kg is the amplitude of correlation length, K
is the McDonald’s function, 7 = (7' — T¢.)/T.. Then executing an integration of
expression (6.1) one receives

(m/h) cos(k,h)

I ‘9:1: 79z ~ )
1(7: Ozy, 02) (K2 + m2/4h2 + k2,) (72 /Ah% + k2)

(6.2)

where k;, = (47/X)sin(0,,/2), k., = (47/X)sin(6,/2) is the components of wave
vector modification during scattering. By setting the components of the correlation
length in a plane of the stratum (R.),, = 1/+/K% + 72/4h? and in a perpendicular
direction, i.e. along the axes Oz, (R.), = 2h/m, it is possible to transform the formula
(6.2) to the following form:

(4h) cos(k.h)
(r* + 72 /4h?) (1 + (Re)Z,k2,) (1 + (Re)2k2)

Ty Ty

11(7_7 Harya Hz) ~

(6.3)
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Figure 5. Temperature dependence of the light scattering intensity at the small
angles in the finite-size liquid system with the plane-parallel geometry.

It is easy to see, that for h — oo this result is in agreement with the formula which
define intensity of scattering light in a spatially infinite system, which follows from
main predictions of the OZ theory Ioz(k) = I(k — 0)/(1 + R?k?).

From the formula (6.2) follows, that for zero scattering angles and for the crit-
ical temperature of volumetric (spatially unlimited) phase, i.e. for T = T, when
k — 0, the intensity of scattering has no singularity, and it appears proportional to
a power of cube of the characteristic size of the system (to an element of dispersing
volume) in the direction of space limitlessness (in the considered case — cube of a
thickness of the stratum): I1(0,0,0) ~ (16/73)h3. From the formula (6.2) follows,
that in the direction of very small scattering angles 6,, ~ 0 associated with the
bounding surface. In the experiment, the anomalous growth of integral intensity of
light scattering (critical opalescence) should be observed when the (R 72 4712 /4h?)
becomes equivalent to zero, i.e. not for the bulk critical temperature T = T.. This
fact gives an opportunity to define experimentally the new critical temperature for
a spatially limited plane-parallel system from the maximum in temperature depen-
dence of light intensity scattering. Figure 5 demonstrates the dependence of the light
scattering intensity on temperature variable 7 for the plane-parallel stratum with
the thickness equal to 100R.y, 150R.y, 200R.y, with a corresponding geometrical
factor K = 2h/Ry is equal to 100, 150, 200 and for very small scattering angles
Oy, 0, = 1073,

Using the similar way as above for a plane-parallel stratum we can now study
another spatially limited system, which has got a geometry of cylinder. Taking into
account the main contribution to the pair correlation function of a system with a
cylindrical geometry at zeroth boundary condition, given by the formula

Ga(pr2) = D1 Jy(jusp/a) exp [— R u%/aQ\ZI] (6.4)
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Figure 6. Temperature dependence of the light scattering intensity at the small
angles in log-log scale for the finite-size liquid system with a cylindrical geometry.

and executing an integration, one can get

[1(7—7 k:l?y7 kz) ~
N Ji(p1) 1
Var3r + 2 (L+ (a2/2)[(1 — 4/p)kS, + (a®k5T> + pi)kZ])’

where Jy — cylindrical function of zero order, p; = 2.4048 is the first naught of
the zero order cylindrical function. From this formula follows in particular, that the
intensity of the light scattering remains final even for 7 = 0, i.e. for the critical
temperature of the volumetric phase. Figure 6 demonstrates the dependence of the
light scattering intensity on the temperature variable 7 with geometrical factor K =
a/ Ry is equal to 100, 300, 1000. When reaching the new critical temperature 7 (a) of
the liquid with a cylindrical form, the expression which defines component intensities
in the direction of z-axes has a the following form:

(6.5)

(I), ~ {Re/exp(—ikzz) exp(—\/n%T*Q” + p3/a?z) dz [I{OT*V/(H(Q)T*QV + krz)]

(6.6)
From this follows, that at k, — 0 and 7% — 0 the intensity of scattered light
increases unlimitedly. This conclusion, as well as in the case of the plane-parallel
stratum, could be explained for the direction of limitlessness (along z-axes for the
cylinder or in the planes which are parallel to the boundary surface for the stratum)
the correlation of the density fluctuations ceases decreasing exponentially at the new
critical temperature 77 and, as a corollary, only in these directions in the experiment
a divergence of a correlation length and critical opalescence should be observed. In
the above considered examples, the limited systems have the final sizes in fact only
in one (for the stratum) or two (for the cylinder) directions. The availability of lim-
itlessness even in one direction is the strongly requested condition for realization
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of a defining indication of the critical condition — the divergence of the correlation
length. However, in the system having the form of a sphere, i.e. a comprehensively
limited system, the mentioned condition cannot be satisfied. The correlation length
under such a geometry remains constant and could reach its maximum value, equal
to the sphere’s radius s. Therefore in such systems the critical state (in its usual
understanding) is absent. Accordingly, the critical state’s most characteristic mani-
festations — critical opalescence of light — should not be observed.

7. Conclusions

As it is shown, the Munster iteration procedure may be applied to the wide class
of the systems: spatially infinite and finite-sized, one-component liquids and binary
mixtures, isotropic systems and the systems having anisotropy. It allows us to cal-
culate the nonsingular expressions for the pair correlation functions of the order
parameter fluctuations, the correlation length and the shifts of the critical parame-
ters. The abovementioned systems have a great practical application and, therefore,
theoretical results received in the paper and especially the results of the critical light
scattering might be used for the discussion of the corresponding experimental data.
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KputuyHa noBegiHka 00OMeXeHnx cuctem
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O.M.Bacunbes?
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IHCTUTYT Ximii noBepxHi HAH Ykpainn,
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dDi3nyHUN pakynbTeT,
KniBcbkuii HaLjoHanbHWin yHiBepcuTeT iM. T.LLeB4yeHka,
03022 Kwuis, npocn. [nywikoBa, 6

Otpumano 23 niotoro 2000 p.

JocnipxeHo KpUTUYHI sBuLLa Ta 0co6aMBOCTI pa3oBUX Nepexonis B 06-
MEXEHUX piakux cuctemax. [ns 3’acyBaHHSA xapakTepy BrjanMBy NPOCTO-
POBOi OOMEXEHOCTi Ha KPUTUYHI XapakTepuUCTUKU pianHM obpaHa cu-
cTemMa 3 reoMeTpIelo NI0CKOro napanenbHOro NpoLapky. 3 METOK 3Ha-
XOIDKEHHSI MapHUX Ta NMPSMUX KOpenauiiHux dyHKLi 6yno BUKopucTa-
HO ipei iTepaujiHoro metoaoy MioHcTepa. OTpuMaHo BMpa3 ans pagiy-
ca kopengauji onykTyauiri napameTpa Nopsaky i BianoBigHi pesynstatu
npoaHanisoBaHi B TepMiHax rinoteau nogioHocTi. OkpeMy yBary npugine-
HO PO3paxyHKy 3CYBY KPUTUYHUX NapamMeTpiB (TeMmneparypu Ta ryctum-
HW). na [oCAigXEeHHS aHi30TPOMHUX CUCTEM BUKOPUCTAHO TPUMOMEHT-
He HabNVKEeHHS. AHani3 KOpensuinHUX BNacTUMBOCTEN BiHAPHUX PiaKNX
CyMiLler NpoBOAVBCS 3 BUKOPUCTAHHSAM CUCTEMMU iHTErpasibHUX PiBHSAHb
OpHwrTenHa-LepHike (OL). NokasaHo, o ansg pigvH 3 isoMmopdHUM xa-
pakTepoOM MIXMOJIEKYNISIPHOI B3aeEMOLii Moxe OyTW BUKOPUCTaHE Ha-
ONMXKEHHS, iKe cnpoLLye 3ada4y 40 Moaeni 0AHOKOMMNOHEHTHOT pianHu.
3HaligeHo acMMNTOTUYHI GOPMYIM AN NAPHUX KOPENALINHUX QYHKLINA
i MoKa3aHo NPUHLMNOBY MOXIJIMBICTb 3aCcTOCyBaHHA MeToay MioHCTepa
ons po3rnsay 6iHapHMX cymiwein. Po3rnsHyTo 0cobanBOCTI KPUTUYHOI
onanecLeHuii CBiTna 4ss CUCTeEM 3i CrewjiasibHOK reoMeTpIEID.

Knio4voBi cnoBa: kputnyHi seua, pa3osi nepexoam, ooMexeHa
cucrtema, kopesnsuiviHa QyHKLs

PACS: 05.70.Fh, 05.70.Jk
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