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The path integral formalism is used to describe the statistical properties of
an ideal gas of spinless particles. It is shown that the quantum paths exhibit
the same properties in non-relativistic and relativistic domains provided the
creation of new particles is avoided. Some quantities associated with the
paths are introduced, they have a simple meaning if the quantity β~ , where
β is the reverse of the temperature, is considered as an ordinary time. The
relation between the velocity on the path and the momentum is not the
usual one, an extra term appears showing that the thermostat can not fix
the average value of this velocity although all the thermodynamic quantities
have their traditional values. The paths describe fluctuating trajectories on
which the particles do not follow the equation of motion. For time intervals
much shorter than β~ we recover the properties of the Brownian motion.
The trajectories are located in space in a volume restricted by the Compton
wavelength for the short distances and the thermal de Broglie wavelength
for the largest ones. It is shown that the time-energy uncertainty is verified
on the quantum paths. This suggests that the density matrix obtained by
quantification of the classical canonical distribution function via the path in-
tegral formalism should not be totally identical to that obtained via the usual
route. Strong arguments are given showing that β~ can be considered as
an ordinary time and not as a formal quantity having the same dimension
as time. This paper shows that for a time scale of 10 femtoseconds a to-
tally new physics can be expected at room temperature. In addition it is
suggested that the ratio ~/kB may play a decisive role in the foundation of
a covariant statistical physics.
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1. Introduction

It is a real pleasure for me to dedicate this paper to Professor I.R.Yukhnovskii
for his 75th anniversary. Due to him and to the scientists of his Institute, all my
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visits in Lviv were very fruitful and exciting in Sciences and also in many other
respects.

Fractals and chaos represent two new frontiers in physics [1]. The concept of
fractals has proven to be very useful to simulate irregular structures which can be
self-similar or self-affine if different scalings have to be used for different variables.
Fractals are associated with curves which are nowhere differentiable. The Brownian
motion gives us an example of a random fractal [2]. Note that the term of Brownian
motion is sometimes ambiguous since it may be associated with a trajectory in the
plane (a self-similar curve) or with a trace (a self-affine curve) which represents the
time history of spatial coordinates. To each one of these descriptions correspond dif-
ferent fractal dimensions [1]. In their seminal work which was published more than
thirty years ago, Feynman and Hibbs [3] showed that the quantum paths exhibit a
fractal character although the concept of fractal was not introduced at that time.
Nowadays there is a tendency to consider the fractal geometry as a fundamental
aspect of the physical world [4]. This point of view leads to two different options:
we may assume that the particles obey a complicated dynamics which takes place
in a simple space-time or, vice versa, that we have a simple dynamics though it
takes place in a space-time having a complicated structure (a fractal structure, for
instance). From a topological analysis of a fractal space-time some strong conse-
quences can be derived as shown in [5].

In this paper, we would like to show that the fractal character of the quantum
paths in quantum statistical physics is of a fundamental nature i.e. it is more than
just a useful mathematical trick.

In what follows we start from the path integral formalism of statistical physics as
given by Feynman [3] and we investigate some physical consequences of this formal-
ism by considering a simple example, the ideal gas. In this case all the calculations
can be performed analytically and the results are mathematically exact but their
interpretation may be questionable. As we shall see these calculations lead to non-
trivial results provided the time interval appearing in the formalism is considered
as an ordinary time i.e. as a physical quantity that we can measure using a clock.
Many aspects of this assumption will be analyzed.

The paper is organized as follows. In section 2 we recall some results obtained
in [6]. Here, we insist on their physical meaning but not on their mathematical
derivation which is rather simple. We investigate two specific properties of the paths:
one is the mean square value of the velocity and the other one shows the correlation
in the velocities. First derived in the non-relativistic case the results are extended to
the relativistic domain. The consequences of relativistic dynamics are investigated
while staying in the one-particle formalism. The properties of the paths are analyzed
like in the non-relativistic case. In section 3 we discuss the physical meaning of the
results. The results are first analyzed in terms of fluctuating trajectories and we
consider the time-energy uncertainty relation associated with the paths. Then we
reconsider the results by using some general arguments which are beyond the scope
of the path integral formalism. In the last section the main conclusions of the paper
are summarized.
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2. Path integral formalism of statistical mechanics

2.1. The non-relativistic domain

In the path integral formalism, the partition function, Z, can be written [7]

Z =
1

(2π~)d

∫
Dx(t)

∫
Dp(t) exp

[
−
1

~
A{x(t),p(t)}

]
, (1)

where d is the dimension of space, x(t) and p(t) are the position and momentum
vectors at time t on a given trajectory, the symbols Dx(t) and Dp(t) mean that
we have to perform a functional integration. In equation (1), A{x(t),p(t)} is the
Euclidean action. For the ideal gas, it is given by [7]:

A{x(t),p(t)} =

∫ β~

0

dt

[
−ip(t)ẋ(t) +

p2(t)

2m

]
, (2)

in which m is the mass and β the reverse of the absolute temperature T , β = 1/kBT .
In the calculation of Z we have to consider the cyclic paths for which x(0) = x(β~);
this is reminiscent of the fact that the partition function is determined by the trace
of the density matrix in standard quantum physics. In principle, in (1) there is an
extra term related to the bosons statistics, we have dropped this term which is
irrelevant in this work.

Using the usual procedure [7] the functional integral in (2) is transformed into a
Riemann sum and the integrals in (1) will acquire a meaning in the limit t n+1− tn =
∆t→ 0 where tn and tn+1 are two successive values of t such as 0 6 tn < tn+1 6 β~.
In addition to the position and momentum variables a third quantity ẋ(t) appears
in equation (2), it is defined according to ẋ(t) = (x(tn+1) − x(tn))/∆t, it can be
considered as the velocity on the path. However, it is important to note that ẋ(tn) is
disconnected from the set of values {p(ti)} taken by the momentum. Accordingly, on
the quantum paths, no simple relation is expected between velocity and momentum.

If we consider some properties only related to the momentum we can perform the
integration over the positions x(t) and we get the well known form of the partition
function:

Z =
V

(2π~)d

∫
dp exp

[
−β

p2

2m

]
, (3)

where V is the volume of the sample. According to the equation (3) any function
of the momentum will have the same value as in the classical case, in particular
〈p2〉/2m = d/(2β). From (3) we can see how the momenta are distributed at the
thermal equilibrium. However, from (3) we have no information about the distribu-
tion of velocities. This can be illustrated by considering the velocity on the path.
After a partial integration over the momentum we get

Z =
1

(2π~)d
A

∫
Dx(t) exp

[
−
1

~

∫ β~

0

dt

(
1

2
m[ẋ(t)]2

)]
, (4)
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where A is a well known normalization constant [3]. Instead of Z we may define a
more general quantity defined according to

K(xb − xa; tb − ta) =
1

(2π~)d
A

∫
Dx(t) exp

[
−
1

~

∫ tb

ta

dt

(
1

2
m[ẋ(t)]2

)]
(5)

in which the position xb and xa associated with the times ta and tb respectively, are
different. A more explicit form of K(xb − xa; tb − ta) can be obtained, we have [7]:

K(xb − xa; tb − ta) =

(
m

2π~(tb − ta)

)d/2
exp

[
−
m(xb − xa)

2

2~(tb − ta)

]
, (6)

or in momentum representation

K(xb − xa; tb − ta) =
1

(2π~)d

∫
dp exp

[
−
p2(tb − ta)

2m~
+

i

~
p(xb − xa)

]
. (7)

K(xb − xa; tb − ta) corresponds to the transition amplitude of a free particle for an
imaginary time. K(xb − xa; tb − ta) verifies the group law [8]

K(xb − xa; tb − ta) =

∫
K(xb − xc; tb − tc)K(xc − xa; tc − ta)dxc. (8)

and Z is now given by Z = V K(0; β~). Moreover, it is easy to check that K(xb −
xa; tb− ta) verifies the standard diffusion equation with a diffusion coefficient ~/2m.
From K(xb − xa; tb − ta) we can calculate any average quantity.

If we consider β~ as an ordinary time, then we can define the velocity as the
change of position δx corresponding to a given finite time interval δt provided δt 6
β~. For a free particle 〈δx/δt〉 vanishes due to the symmetry of space and hereafter
we focus on 〈(δx/δt)2〉. This quantity is given by:

〈(
δx

δt

)2
〉

=
1

Z

∫
dxadxbdδx K(xb − xa; tb − 0)K(δx; δt)

×

(
δx

δt

)2

K(xb − xa + δx; β~− tb + δt), (9)

from which we can derive the following exact result

〈(
δx

δt

)2
〉

=

[
β~

δt
− 1

]
〈p2〉

m2
=

[
β~

δt
− 1

]
d

βm
(10)

which shows the relation between 〈(δx/δt)2〉 and 〈p2〉.
In what follows, to be short, we callK(xb−xa; tb−ta) a propagator although this

term is improper since, as shown by (9), it is not sufficient to calculate an average.
This is obvious since K(xb − xa; tb − ta) does not contain the temperature. Due to
this, (10) does not correspond to the analytic continuation for an imaginary time of
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the transition amplitude calculated in [3]. A detailed analysis of this point will be
given in a subsequent paper.

We can also characterize the path by studying the thermal average of the change
of velocity at a given point (x2, t2) of the path. In order to do that we consider the
quantity 〈[(x2−x1)/δt][(x3−x2)/δt]〉 in which the positions x1, x2 and x3 are taken
at times t1, t2 and t3 respectively, we must have 0 < t1 < t2 < t3 < β~. We can
write the average 〈[(x2−x1)/δt][(x3−x2)/δt]〉 in a form similar to equation (9) and
using (7) we derive the following exact result

〈[
x2 − x1

δt

] [
x3 − x2

δt

]〉
= −

〈p2〉

m2
= −

d

βm
, (11)

which shows that the path is not differentiable at any time whatever the value of
δt provided δt < β~. In [6] it has been shown why the quantity calculated in (11)
is negative. If the temperature goes to zero the r.h.s. of (11) goes to zero and then,
on the trace of the motion, the velocity just before the time t is uncorrelated with
the velocity just after this time. At a non-vanishing temperature the role of the
thermostat is, in average, to reverse the velocity in agreement with the fact that
only closed paths are considered in statistical physics. This induces the negative
correlation observed in (11).

The relation (10) shows that 〈(δx/δt)2〉 grows indefinitely when δt goes to zero
but from the theory of relativity we know that [〈(δx/δt)2〉]1/2 cannot exceed the
velocity of light, c. Thus we have to start again our calculations in the scheme of
special relativity.

2.2. The relativistic domain

Due to the special relativity we must change the Hamiltonian by introducing the
relativistic dynamics and take into account that new particles can be created. In
what follows we will stay in the one-particle formalism and only the change in the
Hamiltonian is considered. The details of the calculations which have been given in
[6] will be not reproduced here.

For spinless particles, the Klein-Gordon (KG) wave equation is an acceptable
starting point for a relativistic approach but the definition of operators in the one-
particle formalism is not a trivial task (see for instance [9–11]). In order to define a
meaningful position operator, first we put the KG equation in a Schrödinger form.
The price that we have to pay in such a transformation is that the wave function ψ
is now a two-component vector. Secondly, we introduce the Feshbach-Villars (FV)
representation [10] which transforms ψ into ϕ according to ϕ = Ûψ where Û is not a
unitary matrix in the usual sense [11]. In this representation, the position operator
is defined as usual and its eigenstates of positive and negative energy are given by

ϕ+
x (p) =

1

(2π~)d/2

(
1
0

)
exp

(
i

~
p.x

)
, ϕ−

x (p) =
1

(2π~)d/2

(
0
1

)
exp

(
i

~
p.x

)
. (12)

In this ϕ-representation we can define the so-called even operators for which there
is no mixing between states of positive and negative energy. The expectation 〈A〉 of
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an operator A is defined according to [10,11]

〈A〉 =

∫
dxψ†τ3Aψ =

∫
dxϕ†τ3Aϕϕ, (13)

in which τ3 is a Pauli matrix (for definition see for instance [10,11]) and Aϕ= ÛAÛ−1.
By analogy with (13), we suggest to define the partition function as:

Z =
1

(2π~)d

∫
dpdxψ†

x(p)τ3 exp (−βHψ(p))ψx(p) (14)

in which Hψ is a 2 × 2 matrix which contains a combination of the momentum
operators and mc2 via the Pauli matrices. In FV representation we have

Z =
1

(2π~)d

∫
dpdxϕ†

x(p)τ3 exp (−βHϕ(p))ϕx(p) (15)

in which the Hamiltonian is a 2× 2 matrix given by

βHϕ(p) = τ3σ

√
1 +

(
p

mc

)2
, σ = βmc2

and ϕx(p) corresponds to ϕ+
x (p) given by (12). Using the properties of the matrix

τ3, it is easy to see that Z is given by

Z =
V

(2π~)d

∫
dp exp

[
−σ

(√
1 +

(
p

mc

)2
)]

, (16)

which is a natural extension of (3). Such an expression corresponds to 1/(2π~)d times
the classical partition function introduced by Pauli [12]. In the FV representation
we define a propagator according to

K(xb − xa; tb − ta) =

∫
dpϕ†

xa(p)τ3 exp [−(tb − ta)Hϕ(p)/~]ϕxb(p). (17)

Using the explicit expression of ϕx(p) and the properties of τ3, we can write (17) as

K(xb − xa; tb − ta) =

∫
dp

Ep

1

(2π~)d/2
eip.xb/~E1/2

p

1

(2π~)d/2
eip.xa/~E1/2

p e−(tb−ta)Ep/~,

(18)
where Ep = [p2c2 + m2c4]1/2 and we have isolated the Lorentz invariant measure

[dp/Ep]. In (18), the quantity (E
1/2
p /(2π~)d/2)eip.xb/~ is, in p-representation, the

exact form for a state localized at xb for t = 0 in the relativistic domain; this
result has been derived by Newton and Wigner from first principle arguments [9].
It shows that a localized state has a spatial extension given by the Compton wave
length λ = ~/mc . The propagator (18) verifies the composition rule (8) and we
have Z = V K(0; β~). In terms of the dimensionless quantities u = p/(mc); τ =
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t/(β~); r = x/λ. K(xb − xa; tb − ta) becomes K(rb − ra; τb − τa) and takes the
explicit form in the case d = 1

K(rb−ra; τb−τa) =
1

πλ

σ(τb − τa)√
σ2(τb − τa)2 + (rb − ra)2

K1

(√
σ2(τb − τa)2 + (rb − ra)2

)
,

(19)
where K1(z) is a modified Bessel function. A similar result is obtained in the case
d = 3. In the limit c goes to infinite, (19) becomes exp[−mc2(tb − ta)/~] times the
non-relativistic propagator (6). In order to investigate the quantum dynamics of a
relativistic free particle a propagator similar to (18) has been considered in [13], it
corresponds to (18) in the real-imaginary time transformation.

Starting from the propagator (18) and after some straightforward integrations
we get the following exact results:

〈(
δx

δt

)2
〉

=

[
β~

δt
− 1

]〈
p2c4

p2c2 +m2c4

〉
(20)

and 〈
x2 − x1

δt
.
x3 − x2

δt

〉
= −

〈
p2c4

p2c2 +m2c4

〉
. (21)

The equations (20) and (21) represent the generalization of (10) and (11) to the
relativistic domain. As in the non-relativistic case (20) and (21) are not a simple
analytic continuation for imaginary time of the transition elements calculated in [3].

Recently, H.Kleinert [7] introduced a propagator associated with the KG equa-
tion. This propagator can be put in a form similar to (18), for d=1 it is given by

K ′(xb − xa; tb − ta) =

∫
dp

Ep

1

(2π~)−d/2
eip.xb/~

1

(2π~)−d/2
eip.xa/~ e−(tb−ta)Ep/~ (22)

that we can also write as

K ′(rb − ra; τb − τa) =
1

2πλ
K0

(√
σ2(τb − τa)2 + (rb − ra)2

)
(23)

which is clearly in disagreement with our result (19). The origin of the discrepancy
is related to the fact that in (22) we assume that the localized states correspond to
a delta function in real space contrary to what has been established in [9]. The use
of (23) instead of (19) leads to the results which have no clear physical meaning. In
particular, we do not find (16) the expected classical limit.

When δt≪ β~ and, d = 1, we get from (20)

〈(
δx

δt

)2
〉

∼
~

mδt

∫
du(u2 + 1)−3/2 exp [−σ(u2 + 1)1/2]∫

du exp [−σ(u2 + 1)1/2]
. (24)

A similar result is obtained for d = 3, only the ratio of integrals in the r.h.s. of (24)
is different. In general we can write 〈(δx/δt)2〉/c2 = ~/(mc2δt)f(σ) where f(σ) is
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approximately one for large values of σ. Thus, for δt ≪ β~ we get
〈
(δx)2

〉
= ~

m
δt.

Since
〈
(δx/δt)2

〉
/c2 must be smaller than one, the time interval δt must be such

as δt > ~/mc2 which is an expected result since we are in a regime with a fixed
number of particles. For a smaller time interval the uncertainty relation δtδE = ~

shows that we could create new particles. Thus δt must be large enough to avoid
the creation of particles by quantum fluctuations. This constraint on δt implies that
we must have β~ > δt > ~/mc2 leading to σ = βmc2 > 1 which means that no
particle can be created by thermal excitation. Thus the relation (20) is exact in the
one-particle formalism.

For the smallest time interval δt = ~/(mc2) we get the smallest value of 〈(δx)2〉:

〈(δx)2〉 = λ2
(
βmc2 − 1

)〈 p2c2

p2c2 +m2c4

〉
(25)

which shows the interplay between the Compton wavelength, λ, and the properties
of the thermostat. At a very low temperature 〈(δx)2〉 tends to λ2, as expected. In
addition the largest value of 〈(δx)2〉 corresponds to

〈(δx)2〉 =

(
β~

2

)2〈
p2c4

p2c2 +m2c4

〉
. (26)

For large values of σ this quantity is the square of the thermal de Broglie wavelength
Λ = 2πβ~2/m. Thus with the path integral formalism, at the thermal equilibrium,
we explore some distances larger than λ but smaller than Λ, this is also an expected
result. We can note that (20) does not lead to the pure relativistic regime for which
we expect 〈(δx)2〉 ∼ (cδt)2.

3. Analysis of the results

The comparison of (20) and (21) with (10) and (11) shows that the quantum
paths have similar properties in non-relativistic and relativistic cases provided we
stay in the one-particle formalism. This first extension was needed in order to show
the that fractal behaviour is something general.

3.1. Fractal character of the paths

In statistical physics the paths are closed and due to this the particles do not
perform the standard Brownian motion. The relations (21) and (11) show that, in
average, there is no derivative on the paths but (20) and (10) do not correspond to
the relation between 〈(δx)2〉 and δt which exists in the Brownian motion. In order
to recover this relation we have to take the limit δt ≪ β~. In [6] an analysis of the
quantum paths has been performed in the pure quantum domain i.e. starting from
the time dependent Schrödinger equation or from the KG equation. This leads to
the investigation of the evolution of a Gaussian wave packet. At t = 0 the particles
are located near the origin, x = 0, with a given initial spatial resolution, δ, and we
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study how 〈(δx)2〉 depends both on t and δ. In the relativistic domain we must have
δ > λ. In the limit δ ≫ λ we get [6] the following result

〈(δx)2〉 =
δ2

2
+

(ct)2

2

(
λ

δ

)2

=
δ2

2
+

1

2

(
~t

m

)2
1

δ2
,

provided λct≫ δ2 ≫ λ2 or mc2t≫ ~ which is also the condition obtained above in
order to observe a Brownian motion in the relativistic domain when the path integral
formalism is used. For time intervals, δt, such as ~t/m ≫ δ 2 we see that 〈(δx)2〉1/2

behaves like 1/δ leading to a Hausdorff dimension DH = 2 as already established in
[9,17] (for a definition of DH see for instance [2]). Note that the spatial resolution
δ leads to a time resolution δt. We may define δt as the shorter time interval we
need to wait in order to see something i.e. to see a displacement of order δ. From
the result given above this leads to 1

2
(~δt/m)21/δ2 ∼ δ2 or ~δt/m = δ2. This result

is reminiscent of the one obtained above in the path integral formalism. It can be
interpreted as follows: δt is the time interval for which the particle may explore by
diffusion a distance equal to the spatial resolution.

3.2. Fluctuations of energy

The interpretation of the results is simple if we give to β~ the meaning of an
ordinary time interval, i.e. a quantity that we can measure using a clock. Then (10)
and (20) relate the average of the square of the velocity to its standard expression
in terms of momentum, however this relation is not the usual one since we have an
extra term [β~/δt−1] which contains a mixture of quantum effects (~) and thermal
effects (β). The thermal effects disappear in the limit δt≪ β~, then only the Planck
constant remains in the formula.

Using the constrains on the time interval ~/mc2 6 δt 6 β~ we have seen in the
previous Section that the particle explores a volume located between two concentric
spheres. The radius of the smallest one is the Compton wavelength (λ) while the
radius of the largest one corresponds to the thermal de Broglie wavelength (Λ ). We
can show that the paths correspond to fluctuating trajectories for which the particles
do not verify the equations of motion. To illustrate this point we start from (4) which
shows that the lagrangian, L, of the particle is given by L = 1

2
m[ẋ(t)]2. From the

Euler-Lagrange equations and the cyclic condition on the trajectory (x(0) = x(β~)),
we conclude that the particle does not move and stays at the origin of the coordi-
nates. This result which corresponds to a mean field approach can not represent the
real physics because, in this case the particle should have a perfectly known posi-
tion and its momentum should be totally undetermined. Not to violate the basis of
quantum physics requires to consider that the particle moves on trajectories which
do not verify the equations of motion. This point illustrates the following important
aspect of the path integral formalism in statistical physics.

In the classical textbooks on statistical physics [14] we first establish the form of
the micro-canonical density matrix ρ and then we put ρ in its canonical form. After
that, using the Lie-Trotter formula [7] we may derive (1). Obviously, the validity of
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this derivation is primarily based on the constraints associated with the existence
of the micro-canonical expression for ρ. In order to define the canonical form of ρ
we avoid large quantum fluctuations of energy δ̃E and thus from the time-energy
uncertainty relation we must restrict our investigations to time interval δ̃t which
are large enough. In (1) no such restriction appears explicitly, for instance in the
non-relativistic case we performed an integration from t = 0 to t = β~ and the
results are meaningful whatever the value of δt. However, we can note that a similar
time-energy uncertainty relation appears at the end of the calculation since we can
rewrite (20) according to

δt
m

2

〈(
δx

δt

)2
〉

=
m

2
(β~− δt)

〈
p2c4

p2c2 +m2c4

〉
(27)

in which the r.h.s. tends to ~ if δt ≪ β~ and σ ≫ 1. It is interesting to note
that m/2

〈
(δx/δt)2

〉
is not the kinetic energy, U , in the thermodynamic sense. This

quantity is defined according to U = −∂ lnZ/∂β and its value is (d/2β), for instance
in the non-relativistic case. The quantity m/2

〈
(δx/δt)2

〉
represents a fluctuating

energy associated with the fact that, on the path integral formalism, the particles
do not follow the equation of motion and then the energy is not constant along the
quantum path as noted in [15]. Thus, we are led to consider that (1) is not strictly
equivalent to the canonical formalism derived by the usual routes but represents a
bit more general result as suggested by Feynman [3].

In what follows based on the general arguments taken outside the path integral
formalism, we will try to see what kind of physics is expected when an ordinary
time interval becomes smaller than the quantity β~ which has the same dimension
as a time. In order to clarify the discussion, the ordinary time interval (that we can
measure using a clock) will be noted τ to avoid the confusion with δt introduced
above.

3.3. Thermal and quantum fluctuations

In standard statistical thermodynamics it is assumed that the quantum fluctu-
ations are negligible compared to the thermal fluctuations. This is quite clear in
usual textbooks where the energy conservation law is expected to hold between the
system under investigation and the reservoir [14]. Now, let us consider that a quan-
tum fluctuation of energy, δE, takes place during a time interval τ . The uncertainty
relation leads to τδE > ~. In order to have βδE 6 1 we must have τ > β~. Thus,
when investigating the domain τ 6 β~ it seems quite natural to observe a very in-
tricate mixture between quantum physics and thermodynamics. If we consider that
τ corresponds to the δt investigated above, it is very tempting to assume that (20)
and (10) give this complicated physics. Moreover from the uncertainty relation it is
clear that δE must behave like 1/τ , of course this is what we find if E is associated
with the kinetic energy on the path. Thus, we see that thermostat fixes the average
value of the momentum and the usual thermodynamics but not the velocity which
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also depends on the time interval “δt” and the Planck constant. Note that β~ corre-
sponds to 10 femtoseconds at the room temperature, a domain that we can explore
nowadays using sophisticated lasers.

3.4. Relativistic invariance and thermodynamics

Let us associate to the system under investigation a given frame in which there
is a clock located at the origin of the coordinates. In this frame we measure a time
interval τ and a temperature T . This system moves with a uniform velocity relative
to another frame where we measure a time interval τ ′ and T ′. If we accept the
usual law of transformation for T given for instance in [12] then we observe that
the product Tτ must be Lorentz invariant. Thus, in order to elaborate a statistical
physics in which the covariance should be manifest, it seems natural to characterize
the thermostat by a variable like Tτ rather than just by T . In the path integral
formalism if we consider β~ as an ordinary time interval τ then we have Tτ = ~/kB.
The product Tτ is not only manifestly Lorentz invariant but we know its value,
~/kB.

Let us recall that the main goal of this paper is to investigate if the fractal char-
acter which appears via the path integral formalism is something fundamental or
just a useful mathematical trick. A similar question has been considered concerning
the Carnot’s principle or the second principle of thermodynamics (for a summary
in this field see [16]). To elucidate this question we have to deal with the famous
Maxwell’s demon. After a careful analysis, Brillouin [16] has shown that the demon
cannot operate proving the fundamental nature of the Carnot’s principle. The main
point of the Brillouin’s analysis is the following: in order to see the molecules in the
vessel, the demon needs a source of light which can be distinguished from the back-
ground of black-body radiation which exists in the vessel. Let be T the temperature
of the vessel and τ the period of the source of light. If Tτ is larger than ~/kB the
demon can not get any information and then he can not violate the second princi-
ple, otherwise he can separate the molecules but the Carnot’s principle is verified.
Thus the ratio ~/kB appears as a critical parameter which determines the domain
in which we can verify that the Carnot’s principle has a fundamental nature and
the time interval at which we can observe the fractal nature of the quantum paths
in statistical physics. From these elements we may conjecture that the ratio ~/kB is
probably a fundamental quantity in the foundation of a covariant statistical physics.

4. Conclusions

Using the path integral formalism of statistical physics we have investigated the
behaviour of an ideal gas of spinless particles. If we focus on the thermodynamics or
on the properties related to the momentum, we recover the standard results including
their extension to the relativistic domain. The temperature which appears in the
partition function fixes the pressure or the kinetic energy but not all the quantities in
the system. The thermostat does not fix the average value of the velocity on the path
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which depends on the time interval on which we investigate the motion of particles.
The particles do not follow the equation of motion but their stochastic behaviour
does not strictly correspond to the Brownian motion since only the closed paths
are considered. For time intervals much shorter than β~ the standard properties of
the Brownian motion are recovered. All the results are exact provided we stay in
the one-particle formalism. This requires working on the time interval larger than
~/mc2 and on the distances larger than the Compton wavelength.

If we consider β~ as an ordinary time, all the results have a simple and meaning-
ful interpretation. For instance, during their motion the particles explore a spherical
volume of radius corresponding to the thermal de Broglie wavelength and on the
paths we may consider a time-energy uncertainty relation which has its usual mean-
ing. More fundamentally we have established a link between the domain in which
we can see the existence of a fractal behaviour and the domain on which we can test
the Carnot’s principle. These two phenomena are conditioned by the ratio ~/kB.
This point requires further investigations and suggests that this ratio may play a
fundamental role in the foundation of covariant statistical physics. It is interesting
to note that β~ is about 10 femtoseconds at the room temperature. For this time
scale we are beyond the thermal physics since thermal and quantum fluctuations
have the same order of magnitude and new physics can be expected.
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Фрактальна поведiнка квантових шляхiв у

статистичнiй фiзицi

Ж.П.Бадiалi

Лабораторiя структури та реактивностi поверхнi,

Унiверситет iм. П’єра i Марiї Кюрi,

Францiя, 75230 Париж, Площа Жюсс’ї

Отримано 29 травня 2000 р.

Використовується формалiзм iнтегралiв по шляхах для опису iдеаль-

ного газу безспiнових частинок. Показано, що квантовi шляхи мають

однаковi властивостi у релятивiстичнiй та нерелятивiстичнiй обла-

стях, за умови, що немає утворення нових частинок. Введено деякi

величини, пов’язанi зi шляхами. Цi величини мають просте значення,

якщо величина β~ , де β – обернена температура, розглядається як

звичайний час. Спiввiдношення мiж швидкiстю на шляху та iмпульсом

не є звичним, появляється додатковий член, який показує, що тер-

мостат не може фiксувати середнє значення цiєї швидкостi. Хоча усi

термодинамiчнi величини приймають традицiйнi значення.

Шляхи описують флуктуацiйнi траєкторiї, на яких частинки пiдкоря-

ються рiвнянням руху. Для iнтервалiв часу, значно коротших за β~ ,

ми вiдтворюємо властивостi Броунiвського руху. Траєкторiї є обме-

женi у просторi мiж об’ємом порядку комптонiвської довжини хвилi

для коротких вiдстаней та об’ємом порядку температурної довжи-

ни хвилi де Бройля для найбiльших вiдстаней. Показано, що неви-

значенiсть мiж часом та енергiєю справджується на квантових шля-

хах. Це вказує на те, що матриця густини, отримана квантуванням

класичної канонiчної функцiї розподiлу, не має бути цiлком еквiва-

лентною до матрицi густини, отриманої звиклим способом. Наведе-

но переконливi аргументи на користь того, що β~ може розгляда-

тись як звичайний час, а не як формальна величина, що має розмiр-

нiсть часу. Ця стаття показує, що для iнтервалiв часу порядку 10 фем-

тосекунд, можна очiкувати цiлком нову фiзику при кiмнатнiй темпера-

турi. Також цi результати наводять на думку, що вiдношення ~/kb мо-

же вiдiгравати вирiшальну роль у побудовi коварiантної статистичної

фiзики.

Ключові слова: iнтеграл по шляхах, статистична фiзика,

флуктуацiї, вiдноснiсть
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