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We study two-particle systems in a model quantum field theory, in which
scalar particles of different mass interact via a mediating scalar field. The
Lagrangian of the model is reformulated using covariant Green’s functions
to solve for the mediating field in terms of the particle fields. This results in
a Hamiltonian in which the mediating-field propagator appears directly in
the interaction term. The variational method, with a simple Fock-state trial
state, is used to derive a relativistic momentum-space two-particle wave
equation. Non-relativistic and one-particle limits of the equation are deter-
mined and discussed briefly
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1. Introduction

In earlier papers [1, 2], a relativistic wave equation for a scalar particle-antipar-
ticle system, interacting via a mediating scalar field, was derived variationally for
the scalar Yukawa model (which is also called the Wick-Cutkosky model [3-6]). We
consider the complementary problem of two scalar particles with different masses in
the present paper. The model quantum field theory being studied is defined by the
Lagrangian density (h =c=1)

= 3|07k (x) D6k(x) — migh(x)di(x) — grodl()dk() x(2)

k=1
~NlGL@)Ge@)] + 30X D) — @), ()

where ¢1(z) and ¢o(x) are the scalar fields corresponding to the particles of masses
my and my respectively, while g1, g2, A1, A2 are positive coupling constants. The me-
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diating “chion” field can be massive (1 # 0) or massless (u = 0).
The fields ¢, and x satisfy the Euler-Lagrange equations

0”9, x(x) + p*x(x) = p(z), (2)
where p(x) = —glﬁlﬁ(x)ﬁﬁl@) - 92625;(95)@(95%
80,0k (%) + mij ok () + 2\ (8], (2) dr (7)) k() = —grou(x)x (@), (3)

and the conjugates of (3). Equation (2) has the formal solution

x(@) = xol@) + [ da’ D(a — ') pla’), )

where dr = d¥zdt in N + 1 dimensions, and xo(x) satisfies the homogeneous (or
free field) equation (equation (2) with p = 0), while D(z — 2’) is a covariant Green
function (or chion propagator, in the terminology of QFT ), such that

(8"8,, + ,uz) D(x —2') =" (z —2). (5)
Substitution of the formal solution (4) into equation (3) yields the equations

88,05 (x) + m2dp(x) + 22Xk (2) () i () =
= —gx0r(2)X0(2) — grdr(z /dl’ D(x —x )/)(37/)- (6)

Equations (6) are derivable from the action principle § / dx £ = 0, corresponding
to the modified Lagrangian density

= 3 [070l(@) duin(x) — mis)(x)on(x) — guo)(x)n() xol()

k=1

— (B @ ()] + 5 [ Aol Dl — o), ™)

provided that D(z — z') = D(2’ — x). (We suppress the Lagrangian density of the
free chion field.)

The QFTs based on (1) and (7) are equivalent in the sense that they lead to the
same invariant matrix elements in various order of covariant perturbation theory.
The difference is that, in the formulation based on (7), the interaction term, which
contains the propagator leads to Feynman diagrams involving virtual chions, while
the term that contains yo corresponds to diagrams that cannot be generated using
the term with D(z — 2’), such as those with external (physical) chion lines.

The Hamiltonian density corresponding to the Lagrangian (7) is given by

H(w) = He, (2) + Moy (2) + Hy(2) + Hilz) + His (), (8)
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where
Hoo(@) = GL(x)dn(x) + Vol(x) - Vu(a) +m] ol(x)du(a), (9)
Hy(z) = %X% + 1(VXo)2 - %MQXS, (10)
Hix) = z%@, Yola), (11)
Hirlz) =—"/pr D —a')p(a) + X (el (12)
and

dk —ik-(x—2’ 1
Do —) = | G ™ (13)

where dk = dV¥ 'k and k- k = k? = kVk,,.
To specify our notation, we quote the Fourier decomposition of the fields in N +1
dimension:

oule) = [ d¥ql(2m)¥2(t, m)]”

where w(p,m) = vVp2+m?, ¢-x = ¢z, and ¢ = (¢° = w(q,mx),q), that is

2 2
q _mk;7

l\.’)l»—‘

[Ar(@)e™ + Bi(q)e'™], (14)

xole) = [ 0¥k [(20) V2, )] H (k)4 ()] (15)

with k% = p2. The momentum-space operators obey the usual commutation rela-
tions. The nonvanishing operators are

[Ai(p), Al(a)] = [Bi(p), Bl(q)] = 6;6"(p—aq), (16)
[d(p),d'(q)] = " (p—aq) (17)

These operators have the usual interpretation, namely that AL are creation operators
of the (free) scalar particles of mass my, (k = 1,2), B} are the corresponding an-
tiparticle creation operators, while d' is the creation operator of the mediating-field
quantum (which may be massive, x> 0, or massless, u = 0).

The Hamiltonian operator, H = J dN x 'H( ), of the QFTheory is expressed in
terms of the creation and the annihilation operators AL, Ag, B,i, By, df, d in the
usual way. Since we are not interested in vacuum-energy questions in this work, we
commute these operators so that they stand in normal order in the Hamiltonian.

2. Two-particle trial state and variational equations

We seek approximate two-particle states variationally by evaluating the expec-
tation value of the Hamiltonian operator of the QFT given in equation (8). The
simplest possible two-particle trial state is

[ 2) = [ d¥p1d¥ps F(p1, p2) Al (p1) Ab(p2) | 0), (18)
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where |0) is the vacuum state annihilated by all the annihilation operators, Ay, By, d,
of the theory, and F'(p;, p2) is an adjustable function to be determined variationally.
Note that the commutation properties of the operators, together with the definition
of [¢hs), imply that F'(p1,p2) = F(p2. P1)

We shall consider the simplified case with A, = 0 in this paper. The relevant
matrix elements needed to implement the variational principle are

(s |: ﬁqbl +ﬁ¢2 +Hx | o) =

= /de1 d"py F*(p1, p2) (1, p2) [w(P1, 1) + w(p2, mo)|, (19)
(tz |- Hy 2] 12) = 0, (20)

and
(o |: Hyp o] o) =
ngQN /de qu de/ qu/ F»k(p/7 q’)F(p, q) 5N<p 4 q-— p/ . q/>
1

% e i@’ m1)—w(Pmi)+w(@’,me)—w(a,ms))t

\/W<P/a my) w(p, m1) w(q', me) w(q, ms)

X [ ! 4 ! ] (21)
1= Py — ) 12— (g — 4@2)*]

where pg) = (w(p, M), P) -

We have normal-ordered the entire Hamiltonian, since this circumvents the need
for mass renormalization which would otherwise arise. Not that there is a difficulty
with handling mass renormalization in the present formalism (as shown in various
earlier papers; see, for example, [6] and citations therein). It is simply that mass
renormalization has no effect on the two-body states that we obtain in this paper.
Furthermore, the approximate trial state (18), which we use in this work, is incapable
of sampling loop effects.

We now specialize to the rest frame of the two-particle system. The momentum
operator of this quantum field theory is given by

[ |t + 3 (@@ s Bln)]. )

The requirement that : P : [¢,) = 0 implies that

F(p1,p2) = f(p1)5N<P1 + p2) (23)

in the rest-frame of the two-particle system. Then, the matrix elements (19) and
(21) reduce to

(W |: oy + gy + T o ) = 6V(0) [ 4¥pf(9)1(0) [w(p, 1) + w(p,ma)], (24)
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and

(b |: Hir 2| o) =

9192 N N AN px (!
=~y (0) [ @pa™ f(0')f(p)

X e_i(w(p, 7m1)_w(p7m1)+w(p, 7m2)_w(p7m2))t

1

V(@' m) w(p, my) w(p',ma) w(p, mo)

! 4 ! ] , (25)

X
12 = (ply —pw)?* 12— (Ply — Pe)?

where pfj) = mj .
We evaluate the matrix elements at ¢ = 0, and choose f(p) in accordance with

the variational principle R

(o] - H : [tha)
(¥22)

whereupon we find that f(p) must be a solution of the momentum-space wave
equation

5 =0, (26)

|w(p,m1) + w(p,ma) — E| f(p) =

g

. 192 N 1 f(p)
- 8(27r)N/d b Jo

p, ml)w(plv ml)W(p, m2)w(p/7 mQ)

1
8 [/ﬂ +(p' —p)? — (w(p,m1) — w(p’',m1))?
1

T 0 PP~ (@(poma) — (P ma)?

, (27)

where the Lagrange multiplier £ represents the total rest-frame energy of the two-
particle system, that is the total mass of a bound two-particle system. Note that the
kernel (momentum-space potential) in this equation contains terms corresponding
to one-chion exchange (this is perhaps more obvious from the manifestly covariant
terms in equation (25)).

3. Nonrelativistic and one particle limit

In the nonrelativistic limit, p?/m? < 1, equation (27) reduces to

1) = g [ )

27717« 27T)Nm1 mo

1
p+(p' —p)?
where m, = myms/(my + my) and € = E — 2m. In coordinate space, equation (28)

is the usual time-independent Schrodinger equation for the relative motion of the
two-particle system:

: (28)

1
2m,,

V2(r) + V(r)i(r) = ei(r). (29)
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The potential V' (r) is an attractive Yukawa potential (due to one-chion exchange).
In 341 dimensions it is, explicitly,

e Hr
V(r) = —a—, (30)
r
9192 . . . . .
where o = ———— is the effective dimensionless coupling constant.
16mmime

In the limit when one of the particles becomes very heavy, say m; — 0o, equation
(27) becomes, in 3 + 1 dimensions,

Q 3 7 ’ ma m2 !
[w(P,mQ) - €}f(p) =5 /d pIp )\/w(p,mz) w(p/, m2) LLQ +(p' —p)?

— 1 (w(pva) _w(plva))Q :|’<31>

2[1* + (p' = )] [* + (P’ — P)* — (w(p, m2) — w(p',m2))?]

where ¢ = E—m;. This is a Salpeter-like equation, with a Yukawa-like potential and
retardation terms in the kernel. In the non-relativistic limit, this equation reduces
to the usual one-particle momentum-space Schrédinger equation with a Yukawa
(1 > 0) or Coulombic (= 0) potential.

4. Concluding remarks

We have used the variational method to derive a relativistic two-particle wave
equation (27) from the underlying scalar quantum field theory (the scalar Yukawa, or
Wick-Cutkosky, model). The momentum-space potential describing the interaction
between the two scalar particles corresponds to one-chion exchange (the mediating,
or “chion”, field is also a scalar field). The equation has only positive-energy solu-
tions, that is, it is free of any negative-energy pathologies. It has the Schrodinger
equation for the relative motion of the two particles (with a Yukawa interparticle
potential) as its non-relativistic limit. It has a Salpeter-like equation, rather than a
Klein-Gordon equation, as its one-body limit. That is not surprising, since the Klein-
Gordon equation has negative-energy solutions, which do not (and should not) arise
in the present formalism, since we use the standard Dirac (“filled-negative-energy-
sea”) vacuum.

The two-particle equation (27) cannot be solved analytically, even for a massless
mediating field (= 0), for either bound or scattering states. Nevertheless, approx-
imate numerical or variational solutions can be readily obtained, as was done in
the case of particle-antiparticle equations [1,2]. However, approximate solutions of
equation (27) will be presented in a separate work.
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BapisiLniiHe ABO4YaCTUHKOBE XBUJIbOBE PIiBHAHHA Y
CKanspHi KBaHTOBIN Teopii nons

0. Oapesny

Bigain ¢isvku i actpoHomii, Mopkcbkuii YHiBepcuTer,
KaHapa, TopoHTO

Otpumano 29 ksiTHa 2000 p.

Mw BMB42EMO OBOYACTMHKOBI CUCTEMW B MOLESIbHIN KBAHTOBI Teopii No-
N4, B SKil1 CKaNsapHi HaCTMHKM Pi3HOT Macu B3aEMOLIIOTb Yepes nocepes-
KOBe ckanspHe none. BukopucTosyloun koBapiaHTHI gyHKLji I'piHa Ans
pPO3B’A3KYy NOCEPEnKOBOro Noss B TEPMiHAX YaCTUHKOBMKX MOAIB, Nepe-
dopMynbLOBaHO ngarpaHxiaH mogeni. B pesynbtaTi B raMinbTOHISAHI BU-
HVYKae npornaraTtop NocepeakoBoro nons nPAMo B 4YJeHi, 9KUin onmcye
B3aemogito. BapiauiiHa meToga 3 NnpocTUM NPo6HUM HOKOBUM CTaHOM
BUKOPUCTOBYETbLCS ASIS TOrO, W06 BUBECTUN PENSTMBICTUYHE ABOYACTUH-
KOBE XBUJIbOBE PIBHSAAHHSA B iMNynbC-nNpocTopi. OaepXyoTbes i 06roBo-
PIOIOTBECS HEPENATUBICTUYHI | 0AHOYACTUHKOBI MPaHML LIbOrO PIBHAHHS.

KniouoBi cnoBa: kBaHTOBa T€0pIsi roJisl, ABOYaCTUHKOBE XBUJ/IbOBE
PIBHSIHHSI

PACS: 71.10.Qr, 11.10.5t
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