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We present a brief review of the works devoted to a study of critical phe-
nomena in three-dimensional model systems dwelling on the Yukhnovskii
approach in detail. This approach which is based on the use of non-Gauss-
ian measures allows one to obtain both universal and non-universal quan-
tities. In order to illustrate the advantages of the approach proposed by
I.R.Yukhnovskii we apply it to a study of non-universal quantities, namely:
(1) the phase transition temperature of a 3D one-component lattice model,
(2) the gas-liquid critical point properties of fluid systems.
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1. Introduction

A description of phase transitions as well as critical phenomena connected with
them remains a relevant problem. By now a number of theoretical approaches in this
field have been proposed and the original schemes of numerical calculations of critical
properties of model systems have been developed. A new stage in the development
of the phase transition theory was related to the hypothesis of universality put by
L.Kadanoff [1]. The idea of an ǫ-expansion which appeared to be effective for the
calculation of universal characteristics of statistical systems in the vicinity of their
phase transition points was proposed in [2]. This idea occupied a significant place
in the theory of critical phenomena. Considerable progress towards the calculation
of universal quantities was also made due to the technique of the resummation of
asymptotic series proposed in [3–5]. Among the approaches devoted to the study
of critical phenomena one should distinguish works [6,7] which were not connected
with the use of an ǫ-expansion.
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One of the relevant approaches to the theoretical description of phase transitions
was proposed by K.Wilson in [8] and was developed in his further paper, namely in
[9]. In these works the Kadanoff idea [1] was embodied in the concrete mathematic
formulas. As the result of these investigations the calculation scheme of both critical
exponents and critical amplitude ratios near the phase transition point was proposed.
The theory was constructed by means of the moments of the Gaussian distribution.
As is known these moments tend to the infinity when the system approaches the
critical point. Consequently, the approach by K.Wilson did not allow one to obtain
the explicit expressions for non-universal characteristics of the model systems under
consideration. However, one can get reliable results for many universal quantities
using the effective methods of the asymptotic series resummation (see [10]).

In this work we present some results of the latest calculations of non-universal
characteristics for statistical models of the phase transition in the critical region us-
ing the approach proposed by I.Yukhnovskii [11]. This approach similar to Wilson’s
work is based on the hypothesis of universality [1]. The distinction between these
approaches consists in using different basic distribution types. The Wilson method is
based on the use of the Gaussian basic measures and therefore, results in the emerg-
ing of diverging diagrams near the phase transition point [12]. In contrast to Wilson’s
works the Yukhnovskii approach is based on the use of the non-Gaussian measures.
As a result, there arise no diverging diagrams in the calculating of the critical be-
haviour of three dimensional models. This approach allows one to calculate both
the universal and non-universal quantities for a number of phase transition mod-
els. Among the systems investigated by the Yukhnovskii method is the Ising model
[13–14], the n-component model [15–18], the hierarchical model [19], the cluster fer-
roelectric model [20], the fluids in the vicinity of their critical points [21–23] and
others. The construction of the phase transition theory for each of these models has
some special features.

In contrast to lattice systems, the description of phase transitions in continu-
ous systems has a number of the important peculiarities. On the one hand, as one
usually does in the liquid state theory, we should distinguish a reference system
describing the behaviour at short distances. This will allow us to take into consid-
eration the short-range and long-range interactions simultaneously. On the other
hand, the grand canonical ensemble (GCE) should be used in order to describe the
processes relating to the phase transitions in multi-component fluids in which the
composition fluctuations play a crucial role (e.c., the gas-gas and liquid-liquid equi-
libria in binary fluid mixtures). The task of the development of the CV method for
the case of the GCE is also caused by the problem of a selection of the CV phase
space which includes the variable connected with the order parameter. Therefore, it
is necessary to introduce the GCE in the CV method in the studies of the gas-liquid
critical point in a one-component fluid.

We present herein the main aspects of the CV method with a reference system
for a multi-component continuous system in the GCE as well as some results for
simple and binary fluids obtained using the Yukhnovskii approach.

Yukhnovskii’s approach is the synthesis of several basic constituents. First this is

608



Description of critical behaviour of model systems (Yukhnovskii’s approach)

a choice of a phase space in which the system is described by means of a certain type
of collective variables (CV) [11]. For a magnetic system the CV are the variables
connected with spin density fluctuation modes; for a ferroelectric they are connected
with cluster state fluctuation modes; for a charged-particles system, with generalized
charge fluctuation modes; for a binary alloy, with modes of one-particle distribution
function; for a one-component fluid, with particle density fluctuation modes and etc.
The description of phase transitions is connected with collective effects. Choosing the
collective variables specific for a certain physical model we obtain a set of variables
the averaged values of which are related to the order parameters. In this approach
it is not necessary to introduce the quantities from the “outside” for a description
of the ordering in the system. The following constituent of Yukhnovskii’s approach
is justifying and then using the non-Gaussian density measures as the basic ones
[12]. This feature distinguishes this approach from the widely known methods of the
phase transition description based on the use of the Gaussian moments. It allows one
to obtain the explicit analytical expressions for main thermodynamic functions near
the phase transition point as the final result. The following and basic constituent
of Yukhnovskii’s approach is the way of calculating the partition function near the
phase transition point. Although this original calculation method [24] as well as
Wilson’s approach exploit the renormalization group (RG) ideas, it is based on the
use of the non-Gaussian measures. This allows one to obtain a qualitatively new form
of the recurrence relations (RR) between the coefficients of the block Hamiltonians.
In the limiting case (corresponding to the Gaussian basic density measure) these
RR reduce to the Wilson RR [9]. As was shown in [25], while this limiting case does
not allow one to perform the calculation of the expression for the free energy of the
system under consideration, it provides reliable results for the critical exponents of
thermodynamic characteristics.

Hereafter we apply the Yukhnovskii approach to the description of non-universal
quantities, namely: (1) the phase transition temperature for a 3D one-component
lattice model, (2) the gas-liquid critical point properties both of a one-component
fluid and a binary mixture.

2. A partition function in the CV representation for a one-co m-
ponent lattice model

Let us consider a simple one-component system of spins on a three dimensional
crystal lattice with a period c. The Hamiltonian of such a system can be written as

H = −1

2

∑

ij

Φ̃(rij)SiSj. (1)

The interaction potential Φ̃(rij), where rij = |~ri−~rj | is chosen in the following form

Φ̃(rij) = A exp(−rij/b), (2)
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where b is the effective interaction radius of the potential. The Fourier transform of
(2) has the form [27]

ΦN (k) = Φ(0)(1 + b2k2)−2, Φ(0) = A08π

(

b

c

)3

. (3)

In the case of a simple cubical lattice with a period c we have the Brillouin zone 1

B =

{

~k = (kx, ky, kz)|ki = −π
c
+

2π

c

κi

Ni
; κi = 1, 2, ..., Ni

}

, (4)

where i = x, y, z, N is the total number of particles (N = NxNyNz).

In the region of small values of the wave vector ~k we shall use the parabolic
approximation for (3)

Φ(k) = Φ(0)(1− 2b2k2), (5)

which takes place for k 6 B ′. The quantity B ′ is found from the condition Φ(k) = 0
and is equal to

B′ =
1

b
√
2
. (6)

Let us introduce the parameter S0 determining the size of interval (B ′, B]

S0 = B/B′ = π
√
2

(

6

π

)1/3
b

c
. (7)

Corresponding to (7) we have S0 > 1 and hence b > bmin, where

bmin =
c

π
√
2

(π

6

)

≈ 0.181413c. (8)

For most models of statistical physics the quantity b is considerably larger than bmin.
Let us write a partition function of the model (1) in the CV representation [28]

Z =

∫

exp





1

2

∑

~k∈B

βΦ(k)ρ~kρ−~k



 J(ρ)(dρ~k)
N , (9)

1The calculation of (3) is performed using spherical coordinates. For a lattice system the fol-
lowing condition should be satisfied

1

N

∑

k∈B

1 = 1.

In the spherical coordinates this condition can be rewritten in the form

1

N

∑

k∈B

1 =
1

N

V

(2π)3
4π

∫ B

0

k2dk,

where

B =
π

c

(

6

π

)1/3

.
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where the module of the wave vector ~k is changed within the interval (−B,B]2, J(ρ)
is a Jacobian of the transition. Variables ρ~k and ρ~l are related by the relations

ρ~k =
1√
N

∑

~l∈Λ

ρ~l e
−i~k~l, ρ~l =

1√
N

∑

~k∈B

ρ~ke
i~k~l. (10)

We assume that

J(ρ) =
∏

~l∈Λ

J(ρ~l), J(ρ~l) =
1

2

[

δ(ρ~l + 1) + δ(ρ~l − 1)
]

, (11)

as it is in the case of Ising-like systems.

We shall calculate (9) according to the method proposed in [27]. This method
is based on the Wilson approach [8] which consists in the layer-by-layer calculation
of a partition function by means of the successive exclusion of short-wave-length
fluctuations from consideration. This is the realization of the Kadanoff idea of the
construction of effective block lattices described in detail in [9]. The essence of
the calculation of (9) reduces to a certain approximation for the potential Φ(k)
by its replacement with a set of constant values Φn, different for each interval of
k ∈ (Bn+1, Bn]. Such a procedure allows one to calculate the free energy of the
system in the non-Gaussian measure approximation and to describe the critical
behaviour without using the traditional methods, particularly, an ǫ-expansion. As
a result, within the framework of a unified scheme one can perform the calculation
of the full expressions for thermodynamic functions and thus obtain both universal
and non-universal characteristics of the model under consideration.

2.1. Calculation of the partition function

The long wave-length fluctuations (which correspond to small values of the wave

vector ~k) play an important part in determining critical properties of the model.
For this reason the Fourier transform of the potential ΦN (k) can be replaced by its
parabolic approximation (5). However, values of the phase transition temperature Tc

depend on how accurately an effect of Φ(k) is taken into account (especially for large
values of the wave vector). Here we cannot restrict our consideration to small values

of ~k. Therefore we use the following approximation for the interaction potential

Φ(k) =

{

Φ(0)(1− 2b2k2), ~k ∈ B0,

Φ(0)Φ̄ = Φ0, ~k ∈ B\B0.
(12)

Here

Φ̄ = 〈Φ〉+ Φ∞, (13)

2In our calculation we shall use “spherical” analogue of the Brillouin zone, where the wave
vector ~k (in contrast to (4)) will be written in spherical coordinates.
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Now we integrate in (9) over variables ρ~k for k ∈ B\B0. For this we present Z in
the form

Z =

∫

exp





β

2

∑

~k∈B0

(Φ(k)− Φ0)ρ~kρ−~k +
1

2
βΦ0

∑

~k∈B

ρ~kρ−~k





∏

~l∈Λ

J(ρ~l)dρ~l. (14)

We pass from variables ρ~k (in the first term of (14)) to variables η~k by means of the
transformation

exp





β

2

∑

~k∈B0

(Φ(k)− Φ0)ρ~kρ−~k



 =

∫

R1

dη~kδ(η~k − ρ~k)e
1

2

∑
k∈B0

(Φ(k)−Φ0)η~kη−~k (15)

and use the integral representation for delta function δ(η~k − ρ~k)

δ(η~k − ρ~k) =

∫

R1

exp



2πi
∑

~k∈B0

(η~k − ρ~k)ω~k



 dω~k. (16)

The integration in (15) and (16) is performed over the N ′ variables, where N ′ =
∏d

i=1Nν . The Brillouin zone corresponding to the crystal lattice with the period c ′

(c′ = cS0) and with N ′ cites is determined by means of the relations

B0 =

{

~k0 = (k
(1)
0 , ..., kd0)|kν0 =

2π

c′
κ

ν

Nν

; κν = 1, 2, ..., Nν

}

,

Λ0 =
{

~l0 = (l
(1)
0 , ..., ld0)|lν0 = c′ · nν , nν = 1, 2, ..., Nν

}

. (17)

In further calculations we shall use the spherical coordinates system. We obtain from
(14), taking into account (15) and (16)

Z =

∫

RN

dρ~k

∫

R′

dη~k

∫

RN′
dω~k exp





1

2
β
∑

~k∈B

(Φ(k)− Φ0)η~kη−~k

+ 2πi
∑

~k∈B0

(η~k − ρ~k)ω~k





∏

~l∈Λ

J1(ρ~l). (18)

Here the following notation is introduced

J1(ρ~l) = e
1
2
βΦ0ρ2l J(ρ~l). (19)

It should be noted that the transformation (15) was first used in [28]. In the following
the modification of this transformation proposed in [19] will be used. Following this
work we introduce the variable

ω̄~k =

{

ω~k, k ∈ B0,
0, k ∈ B\B0.

(20)
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We have the relations for ω̄~k

ω̄~k =
1√
N

∑

~l∈Λ

ω̄~l e
−i~k~l; ω̄~l =

1√
N

∑

~k∈B

ω̄~ke
i~k~l. (21)

Taking into consideration (20) we can write
∑

~k∈B0

ω~kρ~k =
∑

~k∈B

ω̄~kρ~k =
∑

~l∈Λ

ω̄~l ρ~l. (22)

Let us integrate over variables ρ~l. We introduce the notation

Q(ω̄~l) =

∫

RN

dρ~l e
−2πi

∑
~l∈Λ

ω̄~lρ~l
∏

~l∈Λ

J1(ρ~l).

Taking into account (11) we find

Q(ω̄l) = exp

(

1

2
βΦ0N

)

∏

~l∈Λ

cos(2πω̄~l). (23)

It is known that cos(2πω̄l) is the Fourier image of the probability measure δ(x2−1).
According to Martsynkevich’s theorem [29], the function exp[P (ω)] (where P (ω)
is a polynomial within powers of ω) can be the exact Fourier transformation of
a probability measure if P (ω) is the Gaussian type polynomial, namely P (ω) =
P2(ω) = −a2ω2. Therefore, function exp(Pn(ω)), where Pn(ω) is a higher order
polynomial, is not an exact Fourier transformation of the probability measure.

On the other hand, it is proved that Gaussian type distributions do not allow
one to describe correctly the behaviour of three dimensional systems in the critical
region. The higher order correlation functions play a crucial role in the vicinity of
Tc and one should describe the physical processes using non-Gaussian distributions
of fluctuations.

For small ω~l the Fourier image of the probability measure δ(x2 − 1) can be
presented in the following form:

cos(2πω̄~l) = exp

[

∑

n>0

(2πi)n
1

n!
Mnω̄

2
~l

]

. (24)

We find for cumulants Mn: M0 = M2n+1 = 0; M2 = 1, M4 = −2, M6 = 16,
M8 = −272, and etc. The relation (24) is an exact one for small ω̄~l -values. For small
ω̄~l -values the Fourier image of the probability measure δ(x2 − 1) can be written
in the form exp(P2n(ω̄l)), where P2n =

∑

n>0(2πi)
n 1
n!
Mnω

n
l is the non-Gaussian

polynomial of an infinite order. Let us perform an analytical continuation of P 2n.
The coefficients standing at all the powers of ω̄l in the exponent (24) are negative.
Such a function is analytical, finite and it decays rapidly if ω̄ l increases. We choose
the function

Q̄(ω̄l) = exp

(

m0
∑

n=0

(2πi)2n
M2n

(2n)!
ω̄2n
l

)

(25)
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as a Fourier image of some measure. This measure will be considered to correspond
to some three-dimensional lattice system with a one-component order parameter. It
is easy to verify that such a measure corresponds to a model with an unbounded
spin and the Fourier transform of this model is given by (25).

Such an approximation took place implicitly in a series of the works, namely in
[13–16]. The work [30] is also devoted to similar problems.

We use (25) as a Fourier transform of the measure and write the partition func-
tion (18) in the form

Z = C

∫

RN′
dη~k exp

[

β/2
∑

k∈B0

(Φ(k)− Φ0)η~kη−~k

]

∫

RN′
dω̄~k e

2πi
∑

~k∈B
ω̄~k

η̄~k

×
∏

l∈Λ

exp

(

m0
∑

n=1

(2πi)2n

(2n)!
M2nω̄

2n
~l

)

.

Here C = exp(1
2
βΦ0N), ω̄l is found from (20)–(22) and certain type relations for η̄k

hold. Let us perform some transformation
∑

~l∈Λ

ω̄2
~l

=
∑

~k∈B0

ω̄~kω̄−~k,

∑

~l∈Λ

ω̄2n
~l

=
1

Nn−1

∑

~k1,...,~k∈B0

ω̄~k1
...ω̄~k2n

δB~k1+...+~k2n
,

where δB~k1+...+~k2n
is a Kronecker symbol on the lattice with Brillouin zone B. We

assume that
δB~k1+...+~k2n

= δB0

~k1+...+~k2n
.

It allows us to pass to a new (block) lattice with Brillouin zone B0 (17). This con-
ventional approximation [8,11,15] is the realization of the Kadanoff’s idea [1] about
the block structure generation in the vicinity of the phase transition point. As a
result,

Z = C

∫

RN′
dη~k e

β/2
∑

~k∈B0
(Φ(k)−Φ0)η~kη−~k

∫

RN′
dω~k e

2πi
∑

~k∈B0
ω~k

η~k

× exp



−
m0
∑

n=1

(2π)2n
1

(2n)!
(N ′)1−nM′

2n

∑

~k1,...,~k2n∈B0

ω~k1
...ω~k2n

δB0

~k1+...+~k2n



 ,

where

M′
2 = M2, M′

4 = −M4S
−d
0 , M′

6 = M6S
−2d
0 , M′

8 = −M8S
−3d
0 , . . . .

Let us calculate the integral over ω. For this we pass to the ω~l-representation

ω~k =
1√
N ′

∑

~l∈Λ0

ω~l e
−i~k~l; ω~l =

1√
N ′

∑

~k∈B0

ω~k e
i~k~l.
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We have

∏

~l∈Λ0

∫ ∞

−∞

dω~l e
2πiω~lη~l exp

[

−(2π)2
M′

2

2!
ω2
~l
− (2π)4

M′
4

4!
ω4
~l
− (2π)6

M′
6

6!
ω6
~l
− (2π)8

M′
8

8!
ω8
~l

]

.

(26)
Integrals of this type were calculated in [27]. Expression (26) can be presented in
the form 3

ea
′
0N

′
∏

~l∈Λ

exp

[

−1

2
a′2η

2
~l
− 1

4!
a′4η

4
~l
− a′6

6!
η6~l

]

,

where

ea
′
0 =

∫ ∞

−∞

f(ω)dω; f(ω) = exp

(

−
4
∑

n=1

(2π)2n
M′

2n

(2n)!
ω2n

)

(27)

and we find for the coefficients a2n

a′2 = (2π)2Q2, a′4 = (2π)4[−Q4 + 3Q2
2], a′6 = (2π)6[Q6 − 15Q4Q2 + 30Q3

2], (28)

where

Q2n =

∫ ∞

−∞

ω2nf(ω)dω
/

∫ ∞

−∞

f(ω)dω.

Since the coefficients a′2n depend on the values of the renormalized cumulants M ′
2n

they are functions of b/c. We have for b/c large enough

a′0 = −0.918939, a′2 = 1.000,

and a′2n are all zero at n > 2.
For large values of interaction radius b we can use the function

f ′(ω) = exp(−ω2 − gω4 − fω6 − kω8)

instead of the function f(ω) from (27), where

g =
M′

4

6M′2
2

= g0S
−d
0 , f =

M′
6

90M′3
2

= f0S
−2d
0 , k =

M′
8

2520M′4
2

= k0S
−3d
0 .

Here g0 = 1/3, f0 = 8/45, k0 = 34/315, the quantity S0 is presented in (7). We find
for the coefficients a′2n

a′0 =
1

2π

√

2

M′
2

T0, a′2 =
2

M′
2

T2 ,

a′4 =
4

M′2
2

[

−T4 + 3T 2
2

]

, a′6 =
8

M′3
2

[

T6 − 15T4T6 + 30T 3
2

]

, (29)

3Although there are the higher order terms with respect to η~l in the exponent we shall restrict
ourselves below to the ρ6 model approximation.
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where

T2n =

∫ ∞

−∞

ω2nf ′(ω)dω/T0; T0 =

∫ ∞

−∞

f ′(ω)dω.

Formulas (29) are equivalent to (28). The existence of the small parameter S−d
0 in

(29) (for large values of b/c) makes them more advantageous ones than (28).
We perform the approximate calculation of the coefficients a ′

2n from (29) taking
into consideration that S−d

0 is the small quantity. We have

J2n =

∫ ∞

−∞

ω2n exp

[

−
4
∑

m=1

(2π)2m

(2m)!
M′

2mω
2m

]

dω

=

(

2

M′
2

)n+ 1

2
(

1

(2π)2

)n+ 1

2
∫ ∞

−∞

ν2ne−ν2−gν4−fν6−kν8dν.

We find for the small S−3
0 -values (it corresponds to the large b/c-values, b/c > 0.5)

J2n =

(

2

(2π)2M′
2

)n+ 1
2
[

Γ

(

2n+ 1

2

)

− gΓ

(

2n+ 5

2

)

+
1

2
g2Γ

(

2n+ 9

2

)

− fΓ

(

2n+ 7

2

)

− 1

6
g3Γ

(

2n+ 13

2

)

+ gfΓ

(

2n+ 11

2

)

− kΓ

(

2n + 9

2

)

+ ...+O(S−2d
0 )

]

.

Introducing the notation
Q2n = J2n/J0,

we have (with an accuracy to O(S−4d
0 ))

Q2 = (2π)−2

[

1− 3g + 24g2 − 45

4
g − 297g3 +

1125

4
gf − 105

2
k

]

,

Q4 = (2π)−4

[

1− 8g + 99g2 − 75

4
g − 1632g3 + 1335gf − 210k

]

,

Q6 = (2π)−6

[

1− 15g + 267g2 − 339

4
g − 5706g3 +

16407

4
gf − 1113

2
k

]

.

According to (28) we find

a2s = 1− S−d
0 +

2

3
S−2d
0 +O(S−4d

0 ),

a4s = 2S−d
0 (1− 3S−d

0 + 4S−2d
0 ) +O(S−4d

0 ),

a6s = 24S−2d
0 (1− 5S−d

0 ) +O(S−4d
0 ). (30)

The values of the coefficients a2s can be calculated for each value S0 and therefore
for each b/c (S0 = π

√
2( 6

π
)1/3b/c).

In table 1 the values of the coefficients a′2s from (30) as well as their values
obtained from (29) are presented. As is seen, the approximate formulas (30) allow
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us to obtain these coefficients with reasonable accuracy even with the comparatively
small values of b/c. Therefore, for all b/c > 0.5 we can use the approximate formulas
(30) for the calculation of the coefficients a2n.

The partition function can be written as

Z = e−
1
2
βΦ0N

∫

RN′
dη~k e

β/2
∑

~k∈B0
(Φ(k)−Φ0)η~kη−~k

× ea
′
0N

′

exp



−
∑

n>1

a′2n
(2n)!

(N ′)1−n
∑

~ki∈B0

η~k1...η~k2nδ
B0

~k1+...+~k2n



 ,

where coefficients a′2n are determined by (28) or by (29). For b/c > 0.5 the coefficients
a′2n can be calculated by means of the approximate formulas (30).

Table 1. Coefficients of the partition function functional (a2g, a4g, a6g) and their
approximate values (a2s, a4s, a6s)

b a2s a4s a6s a2g a4g a6g
0.20 0.624568 2.961750 – 0.586520 0.207385 0.424144
0.25 0.624568 2.961750 – 0.586520 0.207385 0.424144
0.30 0.715424 0.435715 – 0.723583 0.235174 0.462759
0.35 0.811503 0.246542 –0.759899 0.815973 0.215523 0.355297
0.40 0.873682 0.185498 0.040187 0.875252 0.176854 0.225781
0.45 0.912515 0.141203 0.090953 0.913029 0.138264 0.132073
0.50 0.937343 0.107616 0.064275 0.937514 0.106562 0.075758
0.55 0.953758 0.082734 0.040262 0.953817 0.082342 0.044024
0.60 0.964973 0.064421 0.024909 0.964995 0.64270 0.026281
0.65 0.972869 0.050869 0.015643 0.972877 0.050808 0.016183
0.70 0.978575 0.040728 0.010049 0.978578 0.040702 0.010276
0.75 0.982796 0.033038 0.006614 0.982797 0.033026 0.006714
0.80 0.985981 0.027125 0.004456 0.985982 0.027120 0.004502
0.85 0.988430 0.022519 0.003068 0.988430 0.022516 0.003090
0.90 0.990341 0.018884 0.002156 0.990341 0.018883 0.002167
0.95 0.991855 0.015982 0.001543 0.991855 0.015981 0.001548
1.00 0.993069 0.013639 0.001123 0.993069 0.013639 0.001126
1.05 0.994053 0.011729 0.000830 0.994053 0.011728 0.000831
1.10 0.994860 0.010156 0.000622 0.994860 0.010156 0.000623
1.15 0.995528 0.008851 0.000472 0.995528 0.008851 0.000473
1.20 0.996085 0.007759 0.000363 0.996085 0.007759 0.000363

2.2. Calculation of the phase transition temperature

We use the results for the coefficients a′2n obtained above for calculating the
phase transition temperature. Using the results of the work [31] we can write the
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partition function in the ρ4-model approximation

Z = C ′ea
′
0N

′

∫

exp

(

−1

2

∑

~k∈B0

d(k)ρ~kρ−~k

−
∑

n>2

a′2n
(2n)!

(N ′)1−n
∑

~k1...
~k2n

~ki∈B0

ρ~k1 ...ρ~k2nδ~k1+...+~k2n

)

(dρ)N
′

, (31)

where d(k) = a2 − βΦ(k).
The coefficients a′2n obtained in [31] are functions of temperature (see formulas

(14)–(16) in [31]). This is due to the calculation method proposed in [31]. The
constant C ′ also depends on temperature.

Using the calculation method for the coefficients a ′2n proposed in this work we
obtain the only temperature depending coefficient, namely a2. All the rest coefficients
with n = 0 and n > 2 do not depend on temperature. This result is achieved due to
the extension of the collective variable phase space (equation (20)) proposed first in
[19].

Let us use the values of the initial coefficients a2, a
′
4 from (31) for the calculation

of the phase transition temperature. The quantities entering into (31) have the form

C ′ = exp

(

−1

2
βΦ0N

)

exp(a′0N
′),

a2 = a′2 + βΦ0,

where a′2 and a′4 are determined from (29) or from (30). Consider the coefficient a2
in detail. According to (12)–(13) we have

a2 = a′2 + βΦ(0)Φ̄.

For the calculation of the phase transition temperature we use the equation written
in [31]:

a2 − βcΦ(0)− r∗(Tc)− R(Tc)(a
′
4 − u∗(Tc)) = 0.

Here r∗ and u∗ are the coordinates of the fixed point of the recursion relations
between the coefficients a

(l)
2n of the two successive block structures

r∗ = −f0βΦ(0), u∗ = ϕ0(βΦ(0))
2, (32)

where the quantities f0 and ϕ0 are calculated in [31]. For α′ = 1.00 we find

f0 = 0.5426, ϕ0 = 0.6894.

In [31] it is also found that
R = R(0)(u∗)−1/2, (33)

and R(0) = −0.5333. Taking into consideration (32) and (33) we obtain the equation
for βcΦ(0)

A(βcΦ(0))
2 +BβcΦ(0) +D = 0, (34)
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Figure 1. The values for the phase transition temperature for the exact (curve 1)
and approximate (curve 2) values of the partition function coefficients.

where
A = 1− 〈Φ〉, B = −a′2, D = a′4R

(0)ϕ
−1/2
0 .

Using the above expressions for the coefficients from (34) we obtain the value of
temperature βcΦ(0) as a function of b/c. The results of this calculation are presented
in figure 1.

3. Functional representation of a grand partition function of a
multi-component continuous system

Let us consider a classical multi-component continuous system of interacting
particles consisting of Na1 particles of species a1, Na2 particles of species a2, . . . and
Nam particles of species am. The system is in volume V at temperature T .

Let us assume that an interaction in the system has a pairwise additive charac-
ter. The interaction potential between particle γ at ~ri and particle δ at ~rj may be
presented as a sum of two terms:

Uγδ(rij) = ψγδ(rij) + φγδ(rij),

where ψγδ(r) is a potential of a short-range repulsion that can be chosen as an
interaction between the two hard spheres σγγ and σδδ. φγδ(r) is an attractive part
of the potential which dominates at large distances.

Let us start with a grand partition function

Ξ =

∞
∑

Na1=0

∞
∑

Na2=0

. . .

∞
∑

Nam=0

am
∏

γ=a1

z
Nγ
γ

Nγ !

∫

(dΓ) exp

[

−β
2

∑

γδ

∑

ij

Uγδ(rij)

]

, (35)
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where (dΓ) =
∏

γ dΓNγ , dΓNγ = d~rγ1d~r
γ
2 . . .d~r

γ
Nγ

is an element of the configurational

space of the γth species; zγ is the fugacity of the γth species: zγ = exp(βµ
′

γ),

µ
′

γ = µγ + β−1 ln[(2πmγβ
−1)3/2/h3]; β = 1/kBT , kB is the Boltzmann constant,

T is temperature; mγ is mass of the γth species, h is the Planck constant. µ
′

γ is
determined from

∂ ln Ξ

∂βµ′

γ

= 〈Nγ〉,

where 〈Nγ〉 is the average number of the γth species.
Further consideration of the problem is done in the extended phase space: in the

phase space of the Cartesian coordinates of the particles and in the CV phase space.
An interaction connected with the repulsion (potential ψγδ(r)) is considered in the
space of the Cartesian coordinates of the particles. We call this multi-component
hard-spheres system a reference system (RS). The thermodynamic and structural
properties of the RS are assumed to be known. Although it is known that mixtures
with only repulsive interactions might undergo a phase transition [32], we assume
that in the region of temperatures, concentrations and densities we are interested in,
the thermodynamic functions of the RS remain analytic. The interaction connected
with an attraction (potential φγδ(r) ) is considered in the CV space.

Let us introduce the grand partition function of the RS

Ξ0 =

∞
∑

Na1=0

∞
∑

Na2=0

. . .

∞
∑

Nam=0

am
∏

γ=a1

exp (βµγ
0Nγ)

Nγ!

∫

(dΓ) exp

[

−β
2

∑

γδ

∑

ij

ψγδ(rij)

]

,

(36)
where µγ

0 is the chemical potential of the γth species in the RS.
Then the grand partition function (35) can be written as [22,33]:

Ξ = Ξ0Ξ1, (37)

where Ξ0 is given in (36).
The part of the grand partition function which is defined in the CV phase space

has the form of a functional integral:

Ξ1 =

∫

(dρ) exp[β
∑

γ

µγ
1ρ0,γ −

β

2V

∑

γδ

∑

~k

φ̃γδ(k)ρ~k,γρ−~k,δ]

× J(ρa1 , ρa2 , . . . , ρam). (38)

Here,
1) φ̃γδ(k) is a Fourier transform of the attractive potential φγδ(r). ki = 2πni/L

with L = V 1/3, ki = kx, ky, kz, and ni = 0,±1,±2, . . . , the thermodynamic limit
L→ ∞ is assumed. The function φ̃γδ(k) satisfies the following requirements: φ̃γδ(k)

is negative for the small values of ~k and lim~k→∞
φ̃γδ(k) = 0. The behaviour of φγδ(r)

in the region of the core r < σγδ should be determined from the conditions of optimal
separation of the interaction.
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2) µγ
1 is a part of the chemical potential of the γth species

µγ
1 = µ

′

γ − µγ
0 +

β

2V

∑

~k

φ̃γγ(k)

and is determined from the equation

∂ ln Ξ1

∂βµγ
1

= 〈Nγ〉.

3) J(ρ) = J(ρa1 , ρa2 , . . . , ρam) is the Jacobian of the transition to CV averaged
on the RS:

J(ρ) =
1

Ξ0

∞
∑

Na1=0

∞
∑

Na2=0

. . .
∞
∑

Nam=0

am
∏

γ=a1

exp (βµγ
0Nγ)

Nγ !

∫

(dΓ)

× exp

[

−β
2

∑

γδ

∑

ij

ψγδ(rij)

]

am
∏

γ=a1

δ(ρ0,γ − ρ̂Nγ (0))

×
∏

~k 6=0

′

δ(ρ~k,γ − ρ̂Nγ (
~k)), (39)

where ρ̂Nγ (~k) is a Fourier transform of the particle number density operator

ρ̂Nγ (~k) =

Nγ
∑

j=1

exp(−i~k~rγj ),

δ(· · ·) is the Dirac delta function. The prime means that the product over ~k is
performed in the upper semi-space.

ρ~k,γ = ρc~k,γ − iρs~k,γ are collective variables of the γth species, where the indices c

and s denote the real part and the coefficient of the imaginary part of ρ~k,γ. ρ~k,γ
describes the value of the ~k-th fluctuation mode of the number of γ-th species
particles. Each ρc~k,γ and ρs~k,γ takes all the real values from −∞ to +∞. (dρ) is a

volume element of the CV phase space:

(dρ) =
∏

γ

dρ0,γ
∏

~k 6=0

′

dρc~k,γdρ
s
~k,γ
.

ρ~k,γ is related to ρ̂Nγ (~k) by means of the relations

ρ̂cNγ
(~k) =

∫

ρc~k,γδ(ρ
c
~k,γ

− ρ̂cNγ
(~k))dρc~k,γ,

ρ̂sNγ
(~k) =

∫

ρs~k,γδ(ρ
s
~k,γ

− ρ̂sNγ
(~k))dρs~k,γ.
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Substituting into (39) the explicit forms for delta functions, we obtain

J(ρ) =

∫

J(ν)
∏

γ

exp(i2π
∑

~k

ν~k,γρ~k,γ)(dν),

where the variables ν~k,γ are conjugate to the CV ρ~k,γ:

ν~k,γ =
1

2
(νc~k,γ + iνs~k,γ),

~k 6= 0

and

(dν) =
∏

γ

dν0,γ
∏

~k 6=0

′

dνc~k,γdν
s
~k,γ
.

J(ν) is a Fourier transform of the Jacobian of the transition J(ρ)

J(ν) =
1

Ξ0

∞
∑

Na1=0

∞
∑

Na2=0

. . .
∞
∑

Nam=0

am
∏

γ=a1

exp (βµγ
0Nγ)

Nγ !

×
∫

(dΓ) exp

[

−β
2

∑

γδ

∑

ij

ψγδ(rij)

]

∏

γ,~k

exp(−i2πν~k,γ ρ̂Nγ (~k)). (40)

Applying the cumulant theorem [34] to 〈exp(−i2π
∑

~k,γ ν~k,γ ρ̂Nγ (~k))〉, we can present
J(ρ) in the form [22,33]:

J(ρ) =

∫

(dν)
am
∏

γ=a1

exp



i2π
∑

~k

ν~k,γρ~k,γ





× exp





∑

n>1

(−i2π)n

n!

∑

γ1...γn

∑

~k1...~kn

Mγ1...γn(
~k1, . . . , ~kn)ν~k1,γ1 . . . ν~kn,γn



, (41)

where the nth cumulantMγ1...γn(
~k1, . . . , ~kn) is connected with Sγ1...γn(k1, . . . , kn), the

n-particle partial structure factor of the RS, by means of the relation

Mγ1...γn(
~k1, . . . , ~kn) =

n
√

Nγ1 . . . NγnSγ1...γn(k1, . . . , kn)δ~k1+···+~kn
,

where δ~k1+···+~kn
is a Kronecker symbol.

In general, the dependence of Mγ1...γn(
~k1, . . . , ~kn) on wave vectors ~k1, . . . , ~kn is

complicated. Since we are interested in the critical properties, the small-~k expansion
of the cumulants can be considered. Hereafter we shall replace Mγ1...γn(

~k1, . . . , ~kn)
by their values in the long-wavelength limitMγ1...γn(0, . . . , 0). We have a recurrence
formula for Mγ1...γn(0, . . . , 0) [8].
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3.1. A one-component fluid

For the case of a one-component continuous system of the N classical particles
equations (36)–(41) reduce to the forms [21,23,36]:

Ξ0 =
∞
∑

N=0

exp(βµ0N)

N !

∫

(dΓ) exp

[

−β
2

∑

ij

ψ(rij)

]

, (42)

where µ0 is the chemical potential of the particle in the RS;

Ξ1 =

∫

(dρ) exp[βµ1ρ0 −
β

2V

∑

~k

φ̃(k)ρ~kρ−~k]J(ρ). (43)

Here

J(ρ) =

∫

(dω) exp



i2π
∑

~k

ω~kρ~k





× exp





∑

n>1

(−i2π)n

n!

∑

~k1...~kn

Mn(~k1, . . . , ~kn)ω~k1
. . . ω~kn



 (44)

andMn(~k1, . . . , ~kn) = NSn(k1, . . . , kn)δ~k1+...+~kn
, where Sn(k1, . . . , kn) is the n-partic-

le structure factor of the RS. One can obtain the following expressions for Sn(0, . . ., 0)
(n 6 4) [37]:

S2(0) = kBT
N

V
κT ,

S3(0) = (S2(0))
2 + ηS2(0)

∂S2(0)

∂η
,

S4(0) = (S3(0))
3 + 4η(S2(0))

2∂S2(0)

∂η
+ η2S2(0)

(

∂S2(0)

∂η

)2

+ η2(S2(0))
2∂

2S2(0)

∂η2
.

Here the CV ρ~k is connected with the density fluctuation modes.

3.2. A binary fluid mixture

Now let us consider a two-component system consisting of Na particles of species
a and Nb particles of species b (γ1, γ2, . . . , γn = a, b in (37)–(41)). Having passed in
(38) to CV ρ~k and c~k by means of the orthogonal linear transformation

ρ~k =

√
2

2
(ρ~k,a + ρ~k,b), c~k =

√
2

2
(ρ~k,a − ρ~k,b),
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we obtain for Ξ1:

Ξ1 =

∫

(dρ) (dc) exp
[

βµ+
1 ρ0 + βµ−

1 c0 −
β

2V

∑

~k

[Ṽ (k)ρ~kρ−~k

+ W̃ (k)c~kc−~k + 2Ũ(k)ρ~kc−~k]
]

J(ρ, c). (45)

Here the following notations are introduced:

ρ~k and c~k are CV connected with the total density fluctuation modes and the
relative density (or concentration) fluctuation modes respectively.

Functions µ+
1 and µ−

1 have the forms:

µ+
1 =

√
2

2
(µa

1 + µb
1), µ−

1 =

√
2

2
(µa

1 − µb
1) (46)

and are determined from the equations

∂ ln Ξ1

∂βµ+
1

= 〈N〉, (47)

∂ ln Ξ1

∂βµ−
1

= 〈Na〉 − 〈Nb〉. (48)

Functions Ṽ (k), W̃ (k) and Ũ(k) are combinations of Fourier transforms of the initial
interaction potentials φ̃γδ(k):

Ṽ (k) = (φ̃aa(k) + φ̃bb(k) + 2φ̃ab(k))/2,

W̃ (k) = (φ̃aa(k) + φ̃bb(k)− 2φ̃ab(k))/2,

Ũ(k) = (φ̃aa(k)− φ̃bb(k))/2. (49)

J(ρ, c) =

∫

(dω) (dγ) exp
[

i2π
∑

~k

(ω~kρ~k + γ~kc~k)
]

J(ω, γ), (50)

J(ω, γ) = exp
[

∑

n>1

∑

in>0

(−i2π)n

n!

∑

~k1...~kn

M (in)
n (0, . . . , 0)

× γ~k1 . . . γ~kinω~kin+1

. . . ω~kn

]

, (51)

where

ω~k =

√
2

2
(ν~k,a + ν~k,b), γ~k =

√
2

2
(ν~k,a − ν~k,b).

Index in indicates the number of variables γ~k in the cumulant expansion (51). Cu-

mulantsM
(in)
n are expressed as linear combinations of the partial cumulants Mγ1...γn

(see (41)) and are presented for n 6 4 in [22].
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4. Gas-liquid critical point: a one-component fluid and a bin ary
fluid mixture

Gas-liquid critical points of both a one-component fluid and a binary symmetrical
mixture were studied using the approach proposed for the 3D Ising model. Hereafter
we present some results of this investigation.

4.1. A one-component fluid

The gas-liquid critical point of a one-component continuous system was studied
within the framework of the CV method with a RS in [21,23,36–38]. Based on the
relations (42)–(44) the expression for the grand partition function in the vicinity
of the gas-liquid critical point was obtained [21,37]. In this case the form of this
expression is similar to (31). But the main difference is the presence of odd powers of
CV ρ~k in the exponent. In the vicinity of the gas-liquid critical point ρ~k is connected
with the density fluctuation modes.

Using the layer-by-layer integration method [27] for the calculation of the parti-
tion function of a one-component fluid in the vicinity of the gas-liquid critical point
the following results concerning the non-universal quantities were obtained [36,38]:

• the equation of state for T > Tc and T 6 Tc;

• the equation for the parameters of the critical point;

• the chemical potential isotherm and the equation for the density jump below
Tc.

4.2. The microscopic Ginsburg-Landau-Wilson (GLW) Hamilt onian for a bi-
nary fluid mixture

In order to derive the partition function of a binary fluid mixture in the vicinity
of their phase transition points we should first find the CV connected with the order
parameter. To this end we restrict ourselves to the consideration of the Gaussian
approximation of the functional integral (45)–(51) by setting n = 2 in (50)–(51).
While this approximation yields the classical critical behaviour, it provides the cor-
rect qualitative picture of the phenomenon under consideration. In order to deter-
mine the phase space of the CV connected with the order parameter we introduce
independent collective excitations by diagonalizing the square form by means of the
orthogonal transformation:

ρ~k = A(k)η~k +B(k)ξ~k, c~k = C(k)η~k +D(k)ξ~k,

where A(k), B(k), C(k) and D(k) are certain functions of the microscopic parame-
ters, temperature, density and concentration of the system (see appendix B in [35]).
As a result, we obtained the following expression for the square form:

−1

2

∑

~k

(ε1(k)η~kη−~k + ε2(k)ξ~kξ−~k).
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The explicit expressions for ε1(k) and ε2(k) are given in [35]. The detailed analysis
of the coefficients ε1(k) and ε2(k) allows us to draw the following conclusions:

1. Only one of the two quantities, ε1(k) and ε2(k), is critical, no matter whether
the system approaches the gas-liquid or mixing-demixing phase transition
point. This is branch ε1(k).

2. Because ε1(k) has the minimum at |~k| = 0, the CV connected with the order
parameter is the variable η0 in the case of the gas-liquid critical point, as well
as in the case of the mixing-demixing phase transition. The particular form of
η0 for each of these phenomena can be determined by means of the relations
between the microscopic parameters, temperature, density and concentration
of the system or by means of the thermodynamic relations.

3. In the plane (ρ0, c0) we distinguished two directions: the direction of strong
fluctuations η0 and the direction of weak fluctuations ξ0. The direction of
strong fluctuations (the order parameter) is determined from the equation

tan θ =
C(0)

A(0)
, or tan θ = δ̂,

where θ is the rotation angle of axes η0 and ξ0 in the (ρ0, c0) plane, δ̂ =
ρ(va − vb), vi = ( ∂V

∂Ni
)T,P,Nj 6=i

is a partial volume.

Based on the Gaussian distribution we have determined the critical branch and,
correspondingly, CV η0 connected with the order parameter. Now we can accomplish
the second important task, namely, we can derive the basic density measure with
respect to η~k. To this end we shall follow the program: (i) having passed from CV ρ~k
and c~k to CVη~k and ξ~k in (45), we shall integrate over irrelevant variables ξ~k (which
do not include the variable connected with the order parameter) with the Gaussian
density measure; (ii) then we shall construct the effective GLW Hamiltonian (we
shall restrict our consideration to the η4-model).

The result of the first step of the proposed program is the functional with respect
to the variables η~k (and χ~k conjugate to η~k):

Ξ = Ξ0Ξ
G
ξ ∆

ξ

∫

(dη) exp
[

µ̃1η0 −
1

2

∑

~k

η~kη−~kP (k)
]

J(η) (52)

where ΞG
ξ and ∆ξ are the results of integrating over ξ~k which do not include χ~k,

P (k) =
β

V
(A2Ṽ (k) + C2W̃ (k) + 2ACŨ(k)).

J(η) has the form:

J(η) =

∫

(dχ) exp
[

i2π
∑

~k

χ~kη~k − i2πM1(0)
∑

~k

χ~kδ~k +
(−i2π)2

2!
M2(0)

∑

~k

χ~kχ−~k

626



Description of critical behaviour of model systems (Yukhnovskii’s approach)

+
(−i2π)3

3!
M3(0, . . .)

∑

~k1~k2~k3

χ~k1
χ~k2

χ~k3
δ~k1+~k2+~k3

+
(−i2π)4

4!
M4(0, . . .)

∑

~k1~k2~k3~k4

χ~k1
χ~k2

χ~k3
χ~k4

δ~k1+~k2+~k3+~k4

]

. (53)

Here
Mn(0, . . .) = M̄ (n)

n (0, . . .) +△Mn(0, . . .).

△Mn(0, . . .) are corrections obtained as a result of integrating over ξ~k.
It can be shown that the behaviour of function P (k) in the neighbourhood of the

point of phase transition is similar to the behaviour of the initial potential Φ̃γδ(k):

P (k) takes both negative (at small |~k|) and positive (at large |~k|) values. In the

region |~k| > B we can integrate over χ~k and η~k with the Gaussian measure density
as the basic one. As a result, we obtain the similar expression for Ξ in which the
summation is performed over |~k| 6 B and coefficients M2(0), M2(0), and M4(0)
are replaced by new coefficients M̄2(0), M̄2(0), and M̄4(0) [35]. Similar to the one-
component system we consider the quantity B as the size of the first Brillouin zone
of the block lattice.

After the integration over χ~k we can present (53) in the form (within the frame-
work of the η4-model):

Ξ = C

∫

exp[E4(η)](dη)
NB ,

where the effective GLW Hamiltonian E4(η) has the form:

E4(η) = hη0 −
1

2〈NB〉
∑

~k

d2(k)η~kη−~k

− a4
4!〈NB〉3

∑

~k1...~k4

η~k1η~k2η~k3η~k4δ~k1+~k2+~k3+~k4
, |~ki| 6 B (54)

Here the following notations are introduced:

h = µ̃1 − P (0)M̃1 +
M̄3

M̄4

,

d2(k) = a2 + P (k), a2 =

√

12

|S̃4|
〈NB〉
〈N〉 K(z),

a4 = 36
〈NB〉
〈N〉

1

|S̃4|

[

K2(z) +
2

3
K(z)− 2

3

]

,

K(z) = U(1, z)/U(0, z), z = S̃2

√

3

|S̃4|
〈N〉
〈NB〉

,

S̃n = 2n/2M̃n/〈N〉.
U(a, z) is the parabolic cylinder function. The radius B in (54) is found from the
condition P (k = B) = 0 and it is considered as the size of the first Brillouin zone of
a certain block lattice.
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E4(η) has the form analogous to the basic density measure of the 3D Ising model
in an external field. But the main difference is the dependence of coefficients a0, a2
and a4 on the microscopic parameters of the system.

4.3. Gas-liquid critical temperature of the symmetrical sq uare-well mixture

We consider a binary symmetrical fluid mixture, i.e., a system of equal-size
particles interacting via the same attractive potentials between “like” particles
(φaa(r) = φbb(r) = φ(r)) and via different attractive potentials between “unlike”
particles (φ(r) 6= φab(r)). The concentration x = 0.5 is a critical one for this model
mixture. Notwithstanding its simplicity, the symmetrical mixture exhibits all the
three types of two-phase equilibrium which are observed in real binary fluids: gas-
liquid, liquid-liquid and gas-gas.

We consider the binary symmetrical mixture in the vicinity of the gas-liquid
critical point. In this case the basic density measure has the same form as (54) but
the main quantities from (54) are reduced to the following ones [26]:

η~k = ρ~k, P (k) = Ṽ (k), h = βµ+
1

and the cumulants are reduced to the cumulants of a one-component system. The
interaction in the system was described by the potential

Uγδ(r) =







∞, r < σ,
−ǫγδ, σ 6 r < λσ,
0, r > λσ.

where σ is a hard sphere diameter, λ is a range of the potential, and ǫγδ is a well-
depth of the interaction between the particles of types γ and δ.

For a symmetrical mixture the following relations occur: ǫaa = ǫbb = ǫ 6= ǫab. We
introduce parameter r measuring the relative strength of the interaction between
the “like” and “unlike” particles: r = ǫab/ǫ. The case r = 1 corresponds to a one-
component fluid.
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Figure 2. The gas-liquid critical temperature as a function of the microscopic
parameter r at λ = 1.5 (left) and λ = 2.0 (right) [26].
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Table 2. Critical properties of a symmetrical binary mixture, calculated by the
CV method and MC simulations (r = 1.0 corresponds to a one-component sys-
tem).

λ r TCV
c TMC

c ηCV
c ηMC

c

1.5 0.72 1.055 1.06(1) [39] – –
2.0 1.0 2.753 2.684(51) [40] 0.129 0.123(43) [40]

Using the expression for the GLW Hamiltonian and the method of layer-by-layer
integration proposed for the three dimensional Ising model [27, 31] we calculated
the critical parameters (critical temperature and critical density) of the symmetrical
mixture square-well mixture [26]. The results are presented in figure 2 as well as in
table 2.
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Опис критичної поведінки модельних систем,

використовуючи негаусові міри (підхід

Юхновського)

М.П.Козловський, О.В.Пацаган

Інститут фізики конденсованих систем НАН Укpаїни,

79011 Львів, вул. Свєнціцького, 1

Отримано 11 травня 2000 р.

Ми представляємо короткий огляд робіт, присвячених вивченню кри-

тичних явищ у тривимірних модельних системах, детально зупиня-

ючись на підході Юхновського. Цей підхід, який грунтується на ви-

користанні негаусових мір, дозволяє отримати як універсальні, так і

неуніверсальні величини. Щоб проілюструвати переваги підходу, за-

пропонованого І.Р.Юхновським, ми застосовуємо його для вивчен-

ня неуніверсальних величин, а саме: (1) температури фазового пе-

реходу тривимірної однокомпонентної граткової моделі, (2) власти-

востей критичної точки газ-рідина флюїдних систем.

Ключові слова: фазовий перехід, критичні властивості, негаусова

міра, тривимірна однокомпонентна граткова модель, критична

точка газ-рідина

PACS: 05.70.Fh, 05.70.Jk, 65.10.+h
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