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The critical behaviour of the three-dimensional Ising-like system on a sim-
ple cubic lattice with an exponentially decreasing interaction potential is in-
vestigated within the collective variables method. The solution of the equa-
tion for the phase transition temperature is obtained by taking into account
the dependence of its coefficients on the temperature. The dependence of
the critical temperature on the interaction potential range is studied.
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This paper gives rise into the theory of second order phase transitions in the
approach developed by I.R.Yukhnovskii [1]. In a number of recent papers [2–5],
the explicit expressions for basic thermodynamic functions of the three-dimensional
Ising-like model have been obtained. In particular, the dependence of these functions
on τ (τ = (T − Tc)/Tc, Tc is the phase transition temperature), as well as on micro-
scopic parameters of the model, was studied. On the other hand, the dependence of
Tc itself on microscopic parameters has not been studied deeply enough so far. Such
a study is our aim in this research.

We investigate a system of Ising spins located at the sites of a simple cubic lattice
L:

L = cZ3 = {l = (lx, ly, lz)|li = cκi; κi ∈ Z, i = x, y, z} .
The formal Hamiltonian of the system is

H = −1

2

∑

ij

Φ(rij)σiσj − h
∑

i

σi. (1)

Here h is an external field, rij is the distance between the particles at the sites i and
j, σi is an operator of the z-component of a spin in the i-th site. The interaction
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potential Φ(rij) is

Φ(rij) = A exp
(
−rij

b

)
, A > 0, (2)

where b is the effective interaction range. In a general form its Fourier transform

Φ̃(k) =
∑

ij∈L

Φ(rij) exp(ikrij), k = (kx, ky, kz), ki ∈
(
−π

c
,
π

c

)
, i = x, y, z

is determined as

Φ̃(k) =
Φ̃(0)

(1 + b2k2)2
, Φ̃(0) = 8πA(b/c)3, k = |k|. (3)

Let us consider our model taken in a box

Λ = {l = (lx, ly, lz)|li = cκi; κi = 1, 2, ..., Ni, i = x, y, z} ; |Λ| := N = NxNyNz

with periodic conditions on its boundaries. Accordingly, the set of values of k (Bril-
louin zone) now is

B =

{
k = (kx, ky, kz)|ki = −π

c
+

2π

c

κi

Ni
; κi = 1, 2, ..., Ni

}
.

We replace (3) by approximation

Φ̃(k) =

{
Φ̃(0)(1− 2b2k2), k ∈ B′,

Φ̃(0)Φ̄, k ∈ B\B′,
(4)

where the set

B′ =

{
k = (kx, ky, kz)|ki = −π

c′
+

2π

c′
κ′
i

N ′
i

; κ′

i = 1, 2, ..., N ′

i

}

may serve as a Brillouin zone connected with a box

Λ′ = {l = (lx, ly, lz)|li = c′κ′

i; κ′

i = 1, 2, ..., N ′

i , i = x, y, z}

taken from the block lattice IL′ = c′Z3 with c′ = cs0 (see, for example, [1]). Here
N ′ = N ′

xN
′
yN

′
z, N

′ = Ns−3
0 (s0 > 1). The quantity Φ̄ in our calculations corresponds

to the averaged value of Φ̃(k) given by (3) over the set k ∈ B\B′ [6]. At Φ̃(0) =
2dJ, b = bI = c/(2

√
d) (J is the constant of the interaction between the nearest

neighbours, d is the space dimension) for small values of the wave vectors k, the
parabolic approximation of the Fourier transform of the exponentially decreasing
interaction potential corresponds to the analogous approximation of the Fourier
transform for the nearest neighbour interaction potential [7].

The critical behaviour of the three-dimensional Ising system is studied within
the collective variables (CV) method [1,8]. This method permits to approximately
calculate the partition function of the system and to obtain not only the universal
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quantities (critical exponents) but also analytic expressions for the thermodynamic
functions in the vicinity of the phase transition point. The term CV is the collective
name for a distinctive class of variables, which are specific for a given physical
system. The CV-set includes the variables corresponding to the order parameters.
Due to this, the CV phase space is natural for describing phase transitions. For
magnetic systems, the CV are associated with the modes of the spin moment density
oscillations. The CV ρc

k, ρ
s
k, ρ0 are determined using the following relations:

ρ̂ck =

∫
ρck J (ρ− ρ̂)(dρ)N ,

ρ̂sk =

∫
ρsk J (ρ− ρ̂)(dρ)N ,

ρ̂0 =

∫
ρ0 J (ρ− ρ̂)(dρ)N , (5)

where
J (ρ− ρ̂) = δ(ρ0 − ρ̂0)

∏′

k

δ(ρck − ρ̂ck) δ(ρ
s
k − ρ̂sk) (6)

is the transition operator,

ρ̂ck =
1√
N

∑

j

σj cos(kj),

ρ̂sk =
1√
N

∑

j

σj sin(kj),

ρ̂0 =
1√
N

∑

j

σj (7)

are the spin density oscillation operators. The prime in (6) means that the product
over k is performed in the upper semicube and that k 6= 0, (dρ)N being the volume
element:

(dρ)N = dρ0
∏′

k

dρck dρsk.

For the sake of convenience, we introduce the variables

ρk = ρck − iρsk, (8)

which correspond to the operators

ρ̂k = ρ̂ck − iρ̂sk. (9)

In this paper, the calculations are performed within the microscopic approach to
the description of the critical behaviour of the three-dimensional Ising-like system
[6]. The partition function of the system is evaluated using the non-Gaussian base
measure density, which is represented as an exponential function of the CV the ex-
ponent of which involves the fourth order polynomial (the ρ4 model). The functional
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representation for the partition function in the approximation of the ρ4 model at
h = 0 reads

Z = C ′ea
′
0
N ′

∫
exp

[
−1

2

∑

k∈B′

d′(k)ρkρ−k

− a′4
4!N ′

∑

k1,...,k4
ki∈B′

ρk1
· · · ρk4

δk1+···+k4

]
(dρ)N

′

, (10)

where C ′ = 2N2(N
′−1)/2eM̃0N , δk1+···+k4

is the Kronecker symbol. The coefficients in
expression (10) are given by the relations (see [6])

d′(k) = a′2 − βΦ̃(k),

a′0 = ln

[
(2π)−1/2

(
3

M̃4

)1/4

exp

(
ỹ2

4

)
U(0, ỹ)

]
,

a′2 =

(
3

M̃4

)1/2

U (ỹ) , a′4 =
3

M̃4

ϕ (ỹ) ,

ỹ =
√
3M̃2

(
M̃4

)−1/2

. (11)

For the quantities M̃2l we have

M̃0 =
1

2
α, M̃2 = 1− α,

M̃4 = 2s−3
0 (1− 4α) ,

α = βΦ̃(0)Φ̄
(
1− s−3

0

)
. (12)

Here β = 1/(kBT ) is the inverse temperature, kB is the Boltzmann constant. The
special functions

U(ỹ) =
U(1, ỹ)

U(0, ỹ)
,

ϕ(ỹ) = 3U2(ỹ) + 2ỹU(ỹ)− 2 (13)

are combinations of the Weber parabolic cylinder functions

U(a, t) =
2

Γ
(
a+ 1

2

)e−t2/4

∫
∞

0

x2a exp

(
−tx2 − 1

2
x4

)
dx. (14)

We use the method of layer-by-layer integration of (10) with respect to ρk sug-
gested in [1,8]. The integration begins from the variables ρk with large values of k
(of the order of the Brillouin half-zone boundary) and terminates at ρk with k → 0.
For this purpose, we divide the phase space of the CV ρk into layers with the di-
vision parameter s. In each n-th layer (corresponding to the set of wave vectors 1

1

Bn =

{
k = (kx, ky, kz)|ki = − π

cn
+

2π

cn

κ
(n)
i

N
(n)
i

; κ
(n)
i = 1, 2, ..., N

(n)
i

}
,

where Nn = N
(n)
x N

(n)
y N

(n)
z , Nn = s−3nN ′, and cn = c′sn.
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k ∈ Bn\Bn+1), the Fourier transform of the potential Φ̃(k) is replaced by its average
value (arithmetic mean in the given case). To simplify the presentation, we assume
that the correction for the potential averaging is zero, although it can be taken
into account if necessary [1]. As the result of step-by-step calculation of partition
function, the number of integration variables in the expression for this quantity de-
creases gradually. The partition function is then represented as a product of partial
partition functions Qn of separate layers and the integral of the “smoothed” effective
measure density W (n+1)

4 (ρ) [1,6]:

Z = CnQ0Q1 · · ·Qn[Q(Pn)]
Nn+1

∫
W(n+1)

4 (ρ)(dρ)Nn+1 . (15)

Here Cn = 2N2(Nn−1)/2eM̃0N . The quartic measure density of the (n + 1)-th block

structure W(n+1)
4 (ρ) has the form

W(n+1)
4 (ρ) = exp

[
−1

2

∑

k∈Bn+1

dn+1(k)ρkρ−k

− a
(n+1)
4

4!Nn+1

∑

k1,...,k4
ki∈Bn+1

ρk1
· · · ρk4

δk1+···+k4

]
, (16)

where dn+1(k) = a
(n+1)
2 − βΦ̃(k) and a

(n+1)
2l are renormalized values of the coeffi-

cients a′2l after integration over n + 1 layers of the CV space. The corresponding
renormalization group transformation can be related to the Wilson type [9]. The
main feature is the integration of short-wave modes, which is generally done with-
out using Gaussian perturbation theory. The short-wave modes are described by a
non-Gaussian measure density.

We found explicit expressions for the recurrence relations arising after the step-
by-step integration of the partition function over layers of the CV phase space at
h = 0 and connecting the coefficients of the measure densities of the (n + 1)-th
and n-th block structures (see [6] ). Expansions obtained for these relations contain
powers of a small parameter s−d. The found optimal parameter of division of the
CV phase space on layers s = s∗ = 3.4252 is used in the subsequent calculations.
The obtained solutions of recurrence relations

rn = r∗ + c1E
n
1 + c2REn

2 ,

un = u∗ + c1R1E
n
1 + c2E

n
2 (17)

are used to calculate the free energy of the system. Here rn = s2ndn(0), un = s4na
(n)
4 .

The quantities r∗ = −f0βΦ̃(0) and u∗ = ϕ0(βΦ̃(0))
2 are fixed point coordinates. The

coefficients cl are written as

c1 =
[
a′2 − βΦ̃(0)− r∗ − (a′4 − u∗)R

]
D−1,

c2 =
[
a′4 − u∗ − (a′2 − βΦ̃(0)− r∗)R1

]
D−1, (18)
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where R = R(0)(u∗)−1/2, R1 = R
(0)
1 (u∗)1/2. The temperature-independent quantities

R(0) = R
(0)
12 (E2−R11)

−1, R
(0)
1 = (E1−R11)(R

(0)
12 )

−1 and D = (E1−E2)(R11 −E2)
−1

are determined by elements R
(0)
12 , R11 and eigenvalues El (E1 > 1, E2 < 1) of the

renormalization group linear transformation matrix.
Calculating separately the contributions to the free energy from the short-wave

(FCR) and long-wave modes of the spin moment density oscillations both above and
below critical temperature Tc (FLGR at T > Tc or FIGR at T < Tc), we can find a
complete expression for the free energy of the system

F = F0 + FCR + FLGR(LGR), (19)

the entropy S = −∂F/∂T , internal energy U = F + TS and specific heat C =
T∂S/∂T . Here F0 = −kTN ln 2 is the free energy of N noninteracting spins. The
short-wave modes are characterized by a renormalization group symmetry. They
correspond to the region of critical regime (CR) observed above as well as below Tc.
The renormalization group method is used here. The calculation of the expression
describing the contribution from short-wave modes to the free energy involves the
summation of partial free energies over the layers of the phase space of the CV up
to the point at which the system leaves the CR region. In this case, it is important
to obtain an explicit dependence on the number of the layer. For this purpose the
solutions of recurrence relations are used. The short-wave modes facilitating the
system instability are responsible for the formation of critical exponents and for the
renormalization of the coefficient of the distribution describing the long-wave modes.
The region of the limiting Gaussian regime (LGR) for T > Tc or the region of the
inverse Gaussian regime (IGR) for T < Tc is associated with long-wave modes. The
way in which the contribution from long-wave modes to free energy of the system
is taken into account differs qualitatively from the method of calculating the short-
wave part of the partition function. The calculation of this contribution is based
on using the Gaussian measure density as the base density. We have developed a
direct method of calculations with the results obtained by taking into account the
short-wave modes as initial data. The regular temperature variation of the entropy
and the specific heat positiveness are ensured by the contribution of the long-wave
oscillation modes playing the role of a stabilizing factor. The major results obtained
within the framework of the CV method are presented in [1,5,8].

A distinctive feature of recurrence relations solutions (17) is the specific depen-
dence of one of their coefficients c1 on temperature (c1 = τ c̃1) [1,6,8]. Using the
expression for c1 (18) and the condition c1(Tc) = 0 (then the solutions of recurrence
relations in the CR region rn and un with the increasing number of the layer n tend
to their values at a fixed point r∗ and u∗), we obtain an equation for βcΦ̃(0), which
determines the phase transition temperature Tc [6]:

A
′

c(βcΦ̃(0))
2 +B

′

cβcΦ̃(0) +D
′

c = 0, (20)

A
′

c = 1− f0 − R(0)√ϕ0,

B
′

c = −a20,

D
′

c = a40R
(0)ϕ

−1/2
0 ,
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where a20 = a′2(Tc), a40 = a′4(Tc) (see (11)). The coefficients B
′

c and D
′

c are functions
of temperature βcΦ̃(0). They also depend on the interaction potential range b and
on the quantity Φ̄. The solution of the equation (20) is obtained by taking into
account the dependence of its coefficients on βcΦ̃(0). Results of the calculations are
presented in figure 1. It should be noted that the behaviour of the inverse phase
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Figure 1. Dependence of βcΦ̃(0) on the ratio of the interaction potential range b

to the lattice constant c.

transition temperature with an increasing potential range is also in agreement with
the data for the three-dimensional spherical model [10].

For the nearest neighbour interaction (b = bI , Φ̃(0) = 2dJ) we have βcΦ̃(0) =
1.221 or βcJ = 0.203. Our result for βcJ accords with the results obtained by other
methods, for example, with the value (βcJ)

−1 = 4.5103 (or βcJ = 0.2217) [11,12]
calculated using the high-temperature series data. The similar value is also obtained
using the real space renormalization group method based on the cumulant expansion
(βcJ = 0.22401 [13]) and the Monte Carlo method (βcJ = 0.221654 ± 0.000006
[14], βcJ = 0.2216595 ± 0.0000026 [15–17]). The dependence of the inverse phase
transition temperature βcA = βcΦ̃(0)/[8π(b/c)

3] in units of A (A is a constant
entering the interaction potential (2)) on the ratio of the microscopic parameters b
and c is shown in figure 2.

Let us mention that the proposed method of calculation permits to find not
only the phase transition temperature but also the thermodynamic characteristics
of the system as functions of the microscopic parameters (the lattice constant and
parameters of the interaction potential). There is a possibility to investigate the
dependence of various physical quantities near Tc on the microscopic parameters of
the initial system that makes this method useful in describing the phase transitions
in a wide class of three-dimensional systems. The methods existing at present make
it possible to calculate critical characteristics to a quite high degree of accuracy
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Figure 2. Critical temperature βcA as a function of the microscopic parameters
of the system.

(see, for example [17,18]). The advantage of the method under investigation lies in
the possibility to obtain and analyze expressions for thermodynamic characteristics
and their amplitudes as functions of microscopic parameters of the system [2–5,
19]. It is shown (see, for example, [2,4,20,21]) that the leading critical amplitudes
and the correction-to-scaling amplitudes for the specific heat, average spin moment,
susceptibility of the system can be presented in the form of the product of the
universal part, independent of microscopic parameters, and the nonuniversal factor,
which depends on these parameters.
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Залежність критичної температури від

мікроскопічних параметрів у тривимірних

ізінгоподібних системах

М.П.Козловський, В.В.Духовий, І.В.Пилюк

Iнститут фізики конденсованих систем НАН України,

79011 Львiв, вул. Свєнцiцького, 1

Отримано 21 березня 2000 р., в остаточному вигляді –

5 листопада 2000 р.

В рамках методу колективних змінних досліджується критична по-

ведінка тривимірної iзiнгоподібної системи на простій кубічній грат-

ці з експонентно спадним потенціалом взаємодії. Розв’язок рiвнян-

ня для температури фазового переходу одержано в результаті враху-

вання залежності його коефіцієнтів від температури. Дослiджено за-

лежнiсть критичної температури вiд радiуса дiї потенцiалу взаємодiї.

Ключові слова: ізінгоподібні системи, критична поведінка, фазові

переходи, колективні змінні, температура фазового переходу
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