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Electron spectrum in cylindrical quantum dot HgS embedded into ZnS
medium is calculated using the variational method with variational param-
eter in Hamiltonian. The dependence of energy spectrum on the quantum
well sizes is established. The electron spectrum calculated in the frame-
work of infinitely deep potential well is compared to the one obtained within
the variational method. It is shown that the first method gives satisfactory
results for the ground level only and at rather big sizes of quantum well.
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Introduction

The progressive development in physics of 2D heterosystems with quantum wells
and their practical utilization in semiconductor lasers attracts many scientists to
investigate the systems with even smaller dimension, namely: quantum wires and
quantum dots. In quantum dots (QD) — “artificial atoms”, the charge carriers are
confined in all three directions and have the totally discrete energy spectra. Since the
lasers produced on the basis of QD would have the superhigh temperature stability
of threshold density of current and generational frequency, small time of ground
level occupation, and, consequently, the high working frequencies [1-3].

Several methods of QD creation have been known so far. The molecular-beam
epitaxy method is used to produce complicated QD of spherical shape [4]. The
transversal etching of quantum wires produces the cylindrical quantum dots. The
pyramidal QD with a rectangular base are obtained in [3].

It is clear that the QD of spherical and cubic symmetry are the best theo-
retically investigated systems because when calculating the electron spectrum the
Schrodinger equation has an exact solution for the potential well with finite depth
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Figure 1. Geometry of cylinder approximated by sphere.

and infinite depth as well. The Schrodinger equation for the cylindrical quantum dot
has an exact solution only in case of infinitely deep potential well in the direction
of cylinder axis. For the QDs of a more complicated shape (pyramid, ellipse eth.)
there are only the approximated methods of energy spectrum calculation. Therefore,
the theory of quasiparticles (electron, hole, exciton, phonon) spectra is developed,
generally, for the spatially confined spherical, cylindrical and rectangular heterosys-
tems. Most of the scientists use the dielectric continuum model for the description
of contacting media and effective mass approximation for the quasiparticles. The
results of exciton spectra investigation in complicated spherical heterosystems [4]
prove the possibility of applying these methods for QD of 30 — 40 A sizes.

In this paper the spectrum and wave functions of quasiparticle in cylindrical
potential well are obtained within the Bethe variational method. Herein, the cylin-
drical potential well is approximated by a spherical well with the radius assumed as
variational parameters. The numerical calculations are performed for the HgS/ZnS
heterosystem. The energy levels dependences on cylinder sizes are analysed.

1. Hamiltonian of the system and solution of Schr  6dinger equa-
tion in zeroth approximation

The nanoheterosystem consisting of HgS semiconductor nanocrystal having the
cylindrical shape with pg radius and 2h height embedded into the ZnS semiconductor
medium is under study. The beginning of the energy starts from the energy of the
bottom of ZnS conductive band since an electron is moving inside the the potential

well
_%7 ngnga _h<z<h7

u(r) = { 0; other region. (1)
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Thus, one has to solve the problem of quasiparticle energy spectrum and wave
functions in rectangular potential well which has the shape of cylinder with finite
height.

The Schrodinger equation has the form

R 1 -
- = Eu(7 2
(5T ¥ 400 ) = B0 )
where
-\ myo; 0<p<p07_h<z<h7
m(r) = { my; other region, (3)

Equation (2) with the potential (1) and masses (3) cannot be solved exactly. There-
fore, using the Bethe variational method, cylinder is approximated by a sphere with
ro radius, playing the role of the variational parameter. The approximated potential
is written as

_ ) Vo 0<r <o,
VS(T)_{O; ro <1 < 00 (4)
and approximated mass
: <r<
ma(r) = { zof S \<Tr\<rgé> (5)
1, 0 .

The Hamiltonian of the system is given as

H = Hy+ AH, (6)
where
= - L ¢4 v (7)
T2 T m(r) °

is the electron Hamiltonian in approximated spherical heterosystem,

R 1 - ko 1 -
V—V 4+ 2V——V+ U — Vi(r) (8)

AH:_E m(7) 2 my(r)

is the Hamiltonian of perturbation.

It is clear that the energy states in cylindrical quantum well must be located in
the interval between the corresponding states in inscribed and described spherical
quantum wells. Thus, the Hamiltonian of quasiparticle is assumed as a basic part
of Hy Hamiltonian in spherical potential well with certain ro radius the magnitude
of which would be fixed, according to the Bethe variational method, from the func-
tional of the total energy. The Schrodinger equation with H is solved exactly in the
spherical coordinate system and has the form

HO(Tvﬁagb)\I/(Tvﬁagb) - EO\I/(Tvﬁagb)' (9)

Its solution is written as

\Dnlm(rv 197 ¢) = Rnl(r)nm(ﬁv gb) (10)
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The radial functions are given by

R (r) = At (ixar); 7> 10,

2my(Vy — |E)) 2my|E]
]if — \/ hZ ) X = hg : (12)

In the media interface (r = r¢) the following conditions should be satisfied

O (1) — A i (Fr). -
Rnl(r) — { Rnl (T) AO]l(knT>7 rx To, (11)

where

Rgl(T0)|r:m = R}Ll(ro)|r:m )
(13)

1 dR),

mo dr

1 dR),

my dr

r=rg r=rg

From (13) one can get the dispersion equation for defining the quasiparticle
energy spectrum

1 ' 0 1 ht  (ixlir
ol G Rl G v B
Coefficients A; and Ay have the relationship
1 (Kt
m:Aﬁ%&%? (15)
In the case [ = 0, equation (14) has the form
1+ xirg — Z—;(l — k%7 cot(k2rg)) = 0. (16)

The ry variational parameter is found in the framework of variational method
from the minimum condition of the functional built from the basic Hamiltonian H
and perturbation AH averaged on the wave functions (11).

2. Calculation of non-spherical correction

The electron energy spectrum in the first approximation is defined as a solution
of zeroth problem obtained from dispersion equation (14) plus the correction found
on the wave functions of the previous section. Thus

Brim (10) = €m(r0)+ < ndm|AH|nlm > . (17)
The correction to the basic Hamiltonian is convenient to write as

AH = AHy + AHy, (18)

866



Electron spectrum in confined cylindrical nanoheterosystem. ..

where AHy = Ty + Uy is the Hamiltonian operating to the wave function in space
inside the sphere with rq radius but outside the cylinder (Q); AH; = T} + Uj is the
Hamiltonian operating to the wave function in space outside the sphere but inside
the cylinder (€2;). From equation (8) there are

Ay = Oy () {h2 (— _ —) {;:2 _ 1)} + Vo} , (19)

AH, = 0,(7) {hQ (m; — —) {;:2 — l(l; 1>] - Vo}, (20)

where O(7) and O;(7) functions define the region of operation of corresponding
operators and have the form

, 1; 7€ Qo,
@0(1)(7“) = { 0; 7—:¢ 988 (21)

The wave functions (11) are the eigenfunctions of AH operator, then the functional
(17) is transformed to the equation

m
Bunlro) = en(r0) + { (1= e+ 200 L1+ { (1= e = Vo b 10, (22)

1 0

with the following notations

19, = // LR (1) 1Y (6, 6) Pr2dr sin 0106, (23)
JAAE /// IR (1) 2|V (0, ¢)|2r*dr sin d6dp. (24)

Taking into account that

Yim(0,6) = Nuw B (cos 0)e™, (25)
where
(1 = |m)!(20 + 1)
Npp = 2
i \/ Ar(l + |m))! (26)
integrals (23) and (24) can be rewritten as
— (2 1)
@ ol [mPH+ / |RO (1) 2247 | P2 sin 646, (27)
(L + [ml)!
— (2 1)
I _ U |m‘ ” //|R(1 (r)[2r2dr| P | sin 46, (28)

where the integrating regions Sy and .S; for the case p < rg < h are shown in figure 2.
From (27) and (28) one can see that the degeneration over the quantum number
m is taken off and the difference of energy levels with different m characterizes the
magnitude of nanostructure “non-spherical” shape.
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Figure 2. Scheme of integration regions Sy and Sp for the case py < rg < h.

3. Analysis of the results

The calculation of electron spectrum in cylindrical nanoheterosystem HgS/ZnS
is performed using the formulas obtained in the previous sections. The crystals pa-
rameters are given in table 1. The electron spectrum of the same system is calculated
in the model of the infinitely deep potential well for comparison. It is well known
that in this model the electron wave function is

\I[nnpm(pa ¢, 2) = AJm(anmp/pO)f(z)v (29)
where
1
\/;cos <T;—7Z), n=1,3,5,
fley =4 Vi (30)
—sin (@) n=246
h 2h ) ) b

Table 1. Material parameters

Material | m. |a (A)| V. (eV)
ZnS 0.28 | 5.41 -5.0
HgS 0.036 | 5.85 -3.1
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Figure 3. Dependence of electron ground state energy on cylinder radius: curve 1
— electron in cylindrical potential well with finite depth, 2 — electron in sphere de-
scriben around the cylinder, 3 — electron in the sphere inscriben into the cylinder,
4 — electron in infinitely deep cylinder.

The energy spectrum is defined from the equation

E,m= s , 1
’ 2my <4h2 * I (31)

where &, ,, - the zeros of Bessels functions Jm(fnpm).

From physical considerations it is clear that the energy levels from the electron
spectrum in a cylinder of finite sizes must be located between the corresponding
energy levels of the electron in the sphere inscribed into the cylinder and described
around it. Thus, the calculation and analysis of electron spectrum is performed for
both spheres.

The dependence of energy levels on cylinder sizes was obtained at the condition
po = h. The results are shown in figure 3 and figure 4.

From the figures one can see the following features. All energy levels in all models
are shifted to the bottom of the well when the quantum well is widening. At any well
sizes, all energy levels in the model under research are really located between the
respective levels of inscriben and describen spheres models. As far as the model of
infinitely deep potential well is concerned, figure 3 proves that it gives satisfactory
results for the ground level in the wells with a rather big size (pg > 15ap,s). When
po < 1dapes the unexactness of this model sharply increases. It is clear, because
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po/ aHgS

Figure 4. Energy of the electron in state n = 1,/ = 1 as a function of cylinder
radius: 1,2 — electron in cylindrical potential well with finite depth and quantum
number m = 0, 1, respectively; 3(4) — electron in the sphere describen around (in-
scriben into) the cylinder; 5,6 — electron in infinitely deep cylinder with quantum
number m = 0, 1, respectively.

when the height of the potential barrier is rather big (Vo = V25 — VHeS =1 9 eV,
see table 1) the electron has a small probability to tunnel into ZnS medium and,
thus, such states are well described by the model of infinitely deep potential well.
When cylinder sizes become smaller, the energy levels shift into the region of higher
energies and, thus, the probability of tunnelling into the external medium increases
because the barrier effective height decreases. Due to these, the model of infinitely
deep well is rough for the description of such states. Figure 4 proves that the excited
states with [ = 1 are degenerated in both models with spheres. The degeneration
is partly taken off for the model under research and for infinitely deep potential
model. Herein it is clear that the latter one is extremely rough in the region of
quantum dots characteristic sizes (100 = 150 A). The reason for such a situation
was explained before. In the model under research both levels (n =1,l=1,m =0
and n = 1,1 = 1,m = =£1) are located between the corresponding degenerated
levels of inscriben and describen spheres and the magnitude of energy difference
between states with m = 4+1 and m=0 characterizes the “non-spherical” shape of
the quantum dot.
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Finally, we must note that the presented method can be used for the approxi-
mated spectrum calculation for the quantum dots the geometric shape of which does
not permit to obtain the exact solutions.
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CnekKkTp eneKkTpoHa B OOMeXeHi LuniHaAPUYHIn
HaHoreTepocucTeMmi 3i CKiH4eHHOI0 MUOUHOI0
NOTeHUuiasibHOT AMHN

B.A.lTonosaupbkuin, O.M.Bonuexiscbka, M.A.MixanboBa,
M.M.Tkau

YepHiBeLbKMIA HALIOHANTbHUI YHIBEPCUTET,
274012 YepHisui, Byn. KoutobuHebkoro, 2

Otpumano 9 nuctonaaa 2000 p.

Ha ocHoBi BapiauinHoro metony 3 BapiauiiHuMm nepemMeTpoM y ramifb-
TOHiaHi pPO3paxoBaHO EJIEKTPOHHUIA CNEKTP Y UMNIHOPWUYHINA KBAHTOBIN
Touui HQS, po3milleHin y cepenoBulli ZnS. BcTtaHoBNEHa 3anexHiCTb
€HEPreTMYHOro CnekTpy, PO3paxoBaHOro B pamkax Mogeni 6e3mexHo
rMMOOKOT NOTEHUjaNnbHOI MK, 330BiNIbHO NMPALIOE NULLE S OCHOBHOMO
PiBHSA | NPU LOCUTb BEJIMKUX PO3Mipax KBaHTOBOI IMU.

Knio4oBi cnoBa: e/1eKTpoH, KBaAHTOBA TOYKa, HAHOKpUCTasl

PACS: 79.60.jv
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