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A family of nonequilibrium statistical operators (NSO) is introduced which differ by the system lifetime

distribution over which the quasiequilibrium (relevant) distribution is averaged. This changes the form of

the source in the Liouville equation, as well as the expressions for the kinetic coefficients, average fluxes,

and kinetic equations obtained with use of NSO. The difference from the Zubarev form of NSO is of the or-

der of the reciprocal lifetime of a system.

PACS: 02.50.–r Probability theory, stochastic processes, and statistics;
05.70.Ln Nonequilibrium and irreversible thermodynamics;
31.70.Hq Time-dependent phenomena: excitation and relaxation processes, and reaction rates.
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In work [1] the new interpretation of a method of the

Nonequilibrium Statistical Operator (NSO) [2,3] is given,

in which NSO is treated as averaging of the quasi-equilib-

rium (or relevant [4,5]) statistical operator on the system

past lifetime distribution and NSO rewritten as

ln �(t) =

0

�

� pq(u) ln �q(t – u, – u)du,

ln �q(t,0) = – �(t) –

n

� Fn(t)Pn;
(1)

ln �q(t, t1) = exp { – t1H/i�} ln �q(t, 0) exp {t1H/i�};

�(t) = ln Sp exp { –

n

� Fn(t)Pn},

where H is hamiltonian, ln �(t) is the logarithm of the

NSO, ln �q(t,0) is the logarithm of the quasi-equilibrium

distribution; the first time argument indicates the time de-

pendence of the values of the thermodynamic parameters

Fm; the second time argument t2 in �q(t1, t2) denotes the

time dependence through the Heizenberg representation

for dynamical variables Pm from which �q(t,0) can depend

[1–3]. In [1] the function pq(u) = � exp {– �u} from [2,3]

was interpreted as the probability distribution density of

the lifetime of a system from the random moment t0 of its

birth till the current moment t; u = t – t0. This time period

can be called the time period of getting information about

system from its past. Instead of the exponential distribu-

tion pq(u) in (1) any other sample distribution could be

taken. The arbitrary kind of lifetime density distribution

pq(u) enables to write down a general view of a source

in the dynamic Liouville equation, which thus accepts

Boltzmann–Prigogine form and contains dissipative ef-

fects [4,5]. It is known [2,3] that the Liouville equa-

tion for Zubarev’s NSO contains the source J = Jzub �
� �� [ln �(t) – ln �q(t,0)] which tends to zero after taking

the thermodynamic limit and setting ��0, � = <t – t0>
–1

,

which in the spirit of the paper [1] corresponds to the infi-

nitely large lifetime value of an infinitely large system.

For a system with finite size this source is not equal

to zero. Besides the Zubarev’s form of NSO [2,3],

Green–Mori form [6,7] is known, where one assumes

the auxiliary weight function [5] to be equal W(t, �t ) = 1 –

– (t – �t )/	; w(t, �t ) = dW(t, �t )/d �t = 1/	; 	 = t – t0. After

averaging one sets 	��. This situation at pq(u = t – t0) =

w(t, �t = t0) coincides with the uniform lifetime distribu-

tion. The source in the Liouville equation takes the form

J = ln �q/	. In [2] this form of NSO is compared to the

Zubarev’s form.

One could name many examples of explicit defining of

the function pq(u) in (1). Every definition implies some

specific form of the source term J in the Liouville equa-

tion, some specific form of the modified Liouville opera-
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tor and NSO. Thus the family of NSO is defined. In [8] it

was shown that the lifetime t – t0 distribution, the «age»

of a system, at big t‘s tends to the exponential form. In

NSO [2,3] the influence of the past on the current moment

is taken into account. The lifetime distribution need not

be exponential. For example, one may choose the pq(u)

function in (1) as

pq(u) = �2
u exp {– �u}, u = t – t0, (2)

that is in the form of gamma-distribution p uq ( ) �
� � � 
 ��( u k exp {– �u}/�(k), (�(k) is gamma – function) at

k = 2. In this case the distribution (2) coincides with the

special Erlang distribution of the order 2 [9]. The loga-

rithm of NSO in this case has the form

ln �(t) =

0

�

� pq(u) ln �q(t – u, – u)du =

=

0

�

� �2
u exp { – �u} ln �q(t – u, – u)du =

= ln �q(t ,0) +

0

�

� 
(t – u, – u) (1 + �u) exp {– �u}du =

= ln �zub(t)+

0

�

� 
(t – u, – u)� u exp {– � u}du;

�(t – u, – u) = d ln �q(t – u, – u)/du, (3)

where

ln �zub(t) = ln �q(t,0)+

0

�

� �(t – u, – u) exp { – �u}du =

=

0

�

� ln �q(t – u, – u)� exp { – �u}du

is the Zubarev’s form of the NSO,

�(t) = � ln �q(t – u, – u)/� u� u = 0 = – � ln �q(t, 0)/� t

is the entropy production operator [2]. The source in

the rhs of the Liouville equation equal J = – � [ln �(t) –

� ln �zub(t)], that is the system relaxes not towards

ln ( , )�q t 0 , like it is the case of Zubarev’s NSO, but to-

wards ln �zub(t).

The physical results obtained with use of correlation

(3) contains additional terms in comparison to Zubarev’s

NSO. The additional terms describe the influence of the

lifetime finiteness on the kinetic processes. The expres-

sions for average fluxes [2] averaged over (3) have the

form

<j
m

(x)> = <j
m

(x)>zub +

��
���
t

n

�(t – �t ) �

� exp {�( �t – t)}(j
m

(x), j
n
( �x , �t – t))Xm( �x , �t )d �t d �x , (4)

where

<j
m

(x)>zub = <j
m

(x)>l +

�

��
��� exp

t

n

{�( �t – t)}(j
m

(x), j
n
( �x , �t – t))Xm( �x , �t )d �t d �x

are fluxes in the form obtained by Zubarev [2], j
n

are flux

operators, Xm are corresponding thermodynamical forces;

(j
m

(x), j
n
( �x , t)) =

= �–1

0

�

� <j
m

(x) (j
n
( �x , t, i	) – <j

n
( �x , t)>l)>l d	

are quantum time correlation functions,

j
n
( �x , t, i	) = exp { – �–1

A	}j
n
( �x , t) exp {�–1

A	};

A = F x t P x dxm m

m

( , ) ( )�� .

The collision integrals of the generalized kinetic equation

[2] averaged over (3) have the amendments also. The

same is valid for the generalized transport equations [2],

kinetic coefficients etc. Thus the selfdiffusion coefficient

(or, to be exact, its Laplace transform over time and

space) obtained in [3] in the form

D(�, q) = q
– 2�(�, q)/[1+�(�, q)/(i� – �)], (5)

where

���� q) �

� � � � � ��

�

��� dt i t n n t i d n n iq q q qexp {( ) } � � ( ) / (� � � � �

�

� �

00

� �

�

) ,�� d

0

nq = 
n(x) exp {i(qx)} = exp

j

� {i(qxj)},

n x x x j

j

( ) ( )� ��� ,

after use of (3) takes on the form

D(�, q) =

q
– 2

[ �(�, q) + �d �(�, q)/d(i�)]/{1 + �(�, q)/(i� – �) +

+ �[d �(�, q)/d(i�) – �(�, q)/(i� – �)]/(i� – �)}. (6)

At � � 0, for infinitely large system in the thermody-

namic limit this expression (6) coincides with (5) at � � 0

[3]. For finite size systems (as well as for the case � � 0)

the results differ.

If one chooses as pq(u) in (1) the special Erlang distri-

bution with k = 2,3,4,...,n and Pq(x) = 1 – exp {– �x}�
� [1 + �x/1! +…+ (�x)

k–1
/(k – 1)!]; dPq(x)/dx = pq(x); � =

= k/<�>, which depends only on the average value of

� � � u = t – t0 >, that is on the age of the system, in our

case (if k = 1 the result coincides with the exponential dis-
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tribution) at k = n we obtained that the amendment to ln

�zub(t) contains n – 1 terms, the iteration procedure is per-

formed. As it is indicated in [9] in this case the failure oc-

curs after k stages, and the durations of those stages are

independent random values distributed exponentially.

Thus the multistage model of the system past is intro-

duced. Nonequilibrium processes typically proceed on

different stages, each characterized by a proper time scale

[10]. In the distribution (2) the account for two stages is

performed. Other distributions may account for some

other peculiarities of the system past. The corresponding

amendments will enter the expressions for the fluxes, col-

lision integral and kinetic coefficients. The expression for

the source in the rhs of the Liouville equation has the form

J = – �[ ln �n,�(t) – ln �n–1,�(t)], that is n-distribution re-

laxes towards (n – 1)-distribution. In general case any

functions pq(u) the source is:

J = pq (0) ln �q ( t, 0) +

0

�

� (� pq(u) /� u) ( ln �q (t – u, – u)) du.

The use of some other explicit forms of the lifetime

distributions as pq(u) in (1) (namely, logarithmic logistic

distribution with pq(u) = k�k
u

k–1
/[1+(u�)

k
]
2
, complex ex-

ponential distribution, obtained if the parameter of the in-

tensity of the exponential distribution itself is a random

value [11] which gives the Pareto distribution pq(u) =

= k(k/�0 )
k
/(u+k/�0 )

k+1
, and so on) makes us to state that

the deviation of the distribution of ln �(t) obtained with

use of those distributions from ln �zub(t) is of the order

1/<�>, as in (3), (4), (6).

Thus in big systems their state in the current time mo-

ment is influenced only by the existence of the past of the

system, its duration, that is the age of a system, and the

peculiarities of the system history have only minor influ-

ence. The distribution of a form � �u exp {– �u} correctly

describes behaviour of system at small times, existence of

some minimal lifetime, as in the case (2) the system has

low probability to die at small values of u, contrarily to

the exponential distribution where this probability is

maximal. Any system exist during at least some minimal

time.

During evolution the system passes various stages (ki-

netic, hydrodynamic, etc [10]). Lifetime can end at any

stage. At different stages the functions �q accept a various

kind. Therefore and expression for NSO (1) becomes

complicated:

ln �(t) =

0

�

� pq(u)�q(u)du ,

�q(u) =

i

n

�
�

0

ln �qi(t – u, – u)�
ti��;

�
ti = 1, u�
ti, �
ti = 0, u�
ti; �� = 1,

j

i

�
�

1


tj � �, �� = 0,

j

i

�
�

1


tj > �;


t0 = tchaos – t0; 
t1 = tkin – tchaos;


t2 = tgydr –tkin; 
t3 = teq – tgydr ; 
t4 = tf – teq ,

where tchaos is the end moment of the chaotic stage, tf is

random moment of system death etc. Generally a problem

is complex: it is necessary to know values 
tj, �, ln �qi,

pq(u). For specification of the description it is possibly to

consider various functions pqi(u) for different 
ti .

The choice of distribution of the lifetime in NSO is

connected in view of influence of the past of system, his

physical features, on the present moment, for example, to

the account only of age of system, as in Zubarev NSO, or

with more detailed characteristic of past evolution of the

system. The additives to Zubarev results are of the order

of the reciprocal past lifetime of a system and are essen-

tial at early stages of evolution of system and to systems

with small lifetime, where one should not neglect the

value <�>
–1

. Chosen of Zubarev the form of distribution

for the lifetime represents limiting distribution.
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