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Finite-temperature properties of the Falicov–Kimball model on the square lattice have been studied in

the perturbative regime, i.e. for t/U �� 1, where t is the hopping constant and U denotes the Coulomb interac-

tion strength. In our study, we have determined the phase diagram of the model in the second-order of the

perturbation theory, where the antiferromagnetic Ising model in the magnetic field emerges. In the fourth-or-

der, where our model constitutes the Ising model with more complicated frustrated antiferromagnetic inter-

actions, the sketch of the phase diagram was established. The Monte Carlo method was employed and the be-

havior of Binder cumulants based on the order parameters was analyzed to determine the type of ordering

and phase boundaries in the diagram.

PACS: 71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model
systems;
75.10.Hk Classical spin models;
75.30.Kz Magnetic phase boundaries;
75.40.Mg Numerical simulation studies.
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1. Introduction

The Falicov–Kimball model (FKM) [1] is one of sim-

plest possible lattice model of itinerant interacting fer-

mions. In this model, two sorts of particles are present:

classical («heavy») particles described by occupation

number wx , which can take two values: 0 and 1, and quan-

tum itinerant spinless fermions, described by creation and

annihilation operators c cx x
†, . The Hamiltonian, defined

on the subset � of the lattice, is

H wx� ({ }) �
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� �

�
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In the formula above, t xy are hopping constants and we as-

sume here that they are equal to t, if x y, are nearest-neigh-

bors (nn) and zero otherwise. � � , � � are chemical poten-

tials for heavy and itinerant particles, respectively.

This model has been used to describe numerous phe-

nomena in solid state physics: semiconductor–metal tran-

sitions, appearance of ordering(s) in mixed-valence com-

pounds and binary alloys, non-resonant Raman scattering

(for exhaustive review, see [2]).

Moreover, the behavior of the FKM can serve as a

guide and a source of hints in investigation of more gen-

eral models, such as the Hubbard model, where exact re-

sults still are rare. On heuristic grounds one can expect

that there are interrelations between certain phenomena in

both models (for instance, the segregation observed in

FKM would correspond to ferromagnetism in the

Hubbard model [3]).

There exist numerous both rigorous and numerical re-

sults on the area of the FK model. Most of them concern or-

derings in ground states and in low temperatures (for repre-

sentative sample of rigorous results see [4]). However,

temperature-driven phase transitions are much less known.

This opportunity motivated us to investigate this prob-

lem. We begin the study from the simplest non-trivial

case, i.e. two-dimensional model at half-filling in the

perturbative regime (i.e., when the hopping constant t is
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much smaller than the strength of Coulomb interaction

U ). In this range of parameters one can use perturbation

expansion and the FKM is equivalent to the Ising-like

model. In the second order of perturbation theory, one ob-

tains the antiferromagnetic nn Ising model with the

Hamiltonian:

H h s
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(si in the formula above is related to wi by: s w /i i� �1 2).

In the fourth order one obtains the Ising model with com-

plicated frustrated short range (up to two lattice spacings)

interactions:
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(P4,ijkl is a unit square plaquette spanned by sites i j k l, , , ).

We study this effective model with the use of Monte Carlo

method — perhaps the most universal method in the area

of spin systems. Ground state orderings [5] presented in

Fig. 1 are our reference point.

It is worth noting that one can apply the quantum

Monte Carlo method to the FKM, as the famous mi-

nus-sign problem for fermions does not appear here. This

method is applicable for arbitrary filling (no limitation to

half-filled case) and arbitrary value of t/U . The price paid

is however the amount of computer time (2–4 orders of

magnitude larger to obtain the precision comparable to

our approach) [6].

2. The Monte Carlo simulations

The MC simulations presented here are adapted from

the simulations presented in [7]. We have generated equi-

librium configurations of the finite-size square spin sam-

ples of the size L L� (L � 54) for fixed values of the model

parameters, using the Metropolis algorithm. Periodic

boundary conditions were imposed and thermalization of

the initial configurations of the length of 10 5 to 10 6

Monte Carlo steps (MCS) was applied, depending on the

size of a sample. The 48-bit random number generator

was used. Each MC run was split into k (6 40� �k ) seg-

ments consisting of 10 7 MCS to calculate partial aver-

ages. In the calculation of the partial averages only every

ith MC step contributes (6 10� �i ), to avoid correlations

between sampled configurations of spins in the system.

To find the phase transition points, the Binder

cumulant [7] Q M / ML L L� � � � �� �
2 2 4 was used. Here

� �M n
L� denotes the nth power of the � spins order param-

eter, averaged over an assembly of independent samples

of the size L L� . For T Tc� and L �� �, where � denotes the

correlation length, QL tends towards 1/3 which corre-

sponds to a Gaussian distribution, whereas for T Tc� and

L �� �, QL tends to 1. For L �� �, the common intersection

point of the curves QL appears, which should be identi-

fied with the phase transition point. This analysis we call

the intersection method.

Assuming t/U /�1 10 and applying this method, we ob-

tained the phase diagram of the model with Hamiltonian

(2) (i.e., in the second order of the perturbation theory)

which is presented in Fig. 2. Together with the ground

state orderings [5] (Fig. 1), it makes the reference point

for investigation of the model with Hamiltonian (3) (i.e.,

in the fourth order of the perturbation theory). In our

study of the latter model, we started from the calculation

of the phase transition point at h � 0. Using the intersec-

tion method, we obtained the critical value k BT �
= 0.3280(2), marked with (�) in Fig. 3. To determine the

way of ordering in the system, we investigated the behav-

ior of the Binder cumulant with the use of each of the two

alternative sublattices (see Fig. 1,b), which implied the
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Fig. 1. The ground state orderings for effective Hamiltonian

(3) in the fourth order of the perturbation theory. The configu-

rations of the heavy particles (marked by bold dots (�)) in

parts (a), (b), (c), (d) and (e) correspond to the phases referred

as (0), (1), (2), (3) and (4), respectively.
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Fig. 2. The phase diagram of the 2D Falicov–Kimball model

on a square lattice in the second order of perturbation theory.

h denotes the difference of the chemical potentials �� and ��
for heavy and itinerant particles, respectively. The points, for

which the calculations were performed within this paper, are

marked with (�) and the lines are drawn to guide eyes. Labels

of phases are explained in the caption of Fig. 1.



presence of phase (1). This fact was confirmed by the be-

havior of the cumulant Q determined with the use of each

of the three alternative sublattices (see Fig. 1,c). We ob-

served only the parallel horizontal curves for each value

of the system size L. Analogously we determined the criti-

cal values of k TB for the phase transitions at h � 01. to

0 45. . The behavior of the cumulant Q with the use of each

of the three alternative sublattices gave no evidence of

phase (2) illustrated in Fig. 1,c.

Only for h � �0 4 0 45. . in the phase transition region we

observed small oscillations of the values of the Binder

cumulants having divided the lattice into two sublattices

or into three sublattices, signalizing an increase in the

contribution of the further terms in Hamiltonian (3) to the

interaction energy of degrees of freedom, although in the

latter case the lines for different L’s still did not intersect,

which ment that phase (2) was not realized.

We univocally detected phase (2) and the next ones

presented in Fig. 1 only in the simulations for h � 0 48. .

Figs. 4 and 5 show the exemplary k TB dependence of the

Binder cumulants Q at h � 0 5. . Having in mind the above

mentioned properties of the Binder cumulant, we can con-

clude that for k TB � 0 025. phase (1) appears. It follows

from the dependencies Q k TB( ) for various L, with the use

of each of the two alternative sublattices, as illustrated in

Fig. 4. The increase in the values of Q and the appearance

of intersections of the dependences Q k TB( ) for L � 39 and

51 (odd values, which are divisible by 3, because of the

periodic boundary conditions), illustrated in Fig. 5, show

that phase (2) appears whose upper boundary point can be

estimated as about k TB � 0 045. . For higher values of k TB

between 0 045. and 0 075. phase (3) appears. Its appearance

is reflected by the increase in values of Q presented in

Fig. 4. This region ends at k TB � 0 075. above which the

disordered phase (0) appears. It is evident that the appear-

ance of phases (3) and (4) influences the behavior of the

cumulants explained in the captions of Figs. 4 and 5

which allowed us to estimate the boundaries of these

phases. Strict investigation of these phases needs a con-

struction of other Binder cumulants for more complicated

situation illustrated in Figs. 1,d and 1,e, but the computer

program and the analysis of the results would be very

complex.
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Fig. 3. The sketch of the phase diagram of the 2D

Falicov–Kimball model on a square lattice in the fourth order

of perturbation theory. The points, for which the calculations

were performed within this paper, are marked with symbols

and the lines are drawn to guide eyes. Labels of phases are ex-

plained in the caption of Fig. 1.
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Fig. 4. The k TB dependence of two Binder cumulants Q calcu-

lated for the samples with different linear size L, listed in the

legend box, at h � 05. . Each cumulant Q was calculated from

the one of two sublattices shown in Fig. 1,b. Phase (1) is ab-

sent here. L = 30, sublattice A (�); L = 30, sublattice B (�);

L = 42, sublattice A (�); L = 42, sublattice B (�); L = 54,

sublattice A (�); L = 54, sublattice B (+).
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Fig. 5. The k TB dependence of three Binder cumulants Q cal-

culated for the samples with different linear size L, listed in the

legend box, at h � 05. . Each cumulant Q was calculated from

the one of three sublattices shown in Fig. 1,c. Phase (1) is ab-

sent here. L = 39, sublattice A (�); L = 39, sublattice B (�);

L = 39, sublattice C (�); L = 51, sublattice A (�); L = 51, sub-

lattice B (�); L = 51, sublattice C (+).



It is worth noting that for k TB � 0 the ground state

boundaries between phases calculated theoretically by

Wojtkiewicz [8] are used, respectively h � 0 512. , 0 584. ,

0 888. and 0 928. (see Fig. 3). They very well complement

the boudaries obtained here by the Monte Carlo simula-

tions. Thus we may conclude that the ground state bound-

aries calculated by Datta et al. [4] of h � 0 316. , 0 352. ,

0 384. and 0 404. , respectively, are hardly confirmed.

3. Conclusions

This paper presents our MC results which allowed us

to establish the finite-temperature phase diagram of the

Falicov–Kimball model on the square lattice in the

perturbative regime. Although these results in part con-

cerning the phases (3) and (4) are based on indirect con-

clusions, our analysis evidently proves the existence of

stripe ordering also at finite-temperatures in the FKM.

The earlier papers showed their existence at low T but did

not tell anything about the value of the critical tempera-

ture(s). As far as we know, the only exception is the N�el

phase [2], the simplest case of our analysis.

Figure 3 is a sketch of the phase diagram and its more

systematic MC study will be continued. In particular, we

want to explore the dependence of Tc’s for the fourth-or-

der phases as a function of t/U.
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