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We propose a new «toy» dynamical model that permits us to derive analytical expressions for dispersion

of two branches of «bare» propagating collective excitations in binary disordered systems in the whole range

of wavenumbers. These expressions are used for the analysis of dependence of dispersion curves on mass ra-

tio and concentration at fixed density of the system. An effect of hybridization of two branches is discussed

in terms of mode contributions to time correlation functions. This allows us to estimate the regions with

dominant types of coherent or partial dynamics.
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1. Introduction

Neutron and x-ray scattering experiments [1,2] are

main experimental techniques that along with molecular

dynamics (MD) simulations are intensively used for ex-

ploration of dynamical processes of crystals, glasses and

liquids. With a subsequent use of mainly oversimplified

models like damped harmonic oscillator (DHO) the ex-

perimental and MD data on spectral functions can be used

for estimation of dispersion law and damping of collec-

tive excitations. Collective excitations in liquids and

glass-forming systems are extremely difficult for theoret-

ical treatment, when the system is considered on spatial

and time scales comparable with specific atomic scales,

i.e beyond the hydrodynamic description of the system as

a continuum media. Therefore any analytical results that

can shed light on dispersion law of propagating modes in

disordered systems are of great interest. For binary sys-

tems the situation is even more sophisticated — in some

studies [3,4] it was stressed, that for binary liquids there

exist regions of wavenumbers with different types of col-

lective dynamics: «coherent» type in long-wavelength re-

gion and «partial» one in the region of intermediate and

large wavenumbers. The existence of two types of collec-

tive dynamics follows from the shape of current spectral

functions C kL T
�� �, ( , ) with sub-index � representing either

total mass current t, or mass-concentration current x, or

partial currents A B, . It appears [3,4], that in long-wave-

length region the spectral functions C ktt ( , )� and

C kxx ( , )� represent two distinct collective excitations,

while C kAA ( , )� and C kBB ( , )� are very similar and usu-

ally have a single-peak shape.

In this study we will focus on a theoretical treatment of

dispersion law for two types of propagating collective ex-

citations in binary liquids. The current status of theory in

this field is far from being satisfactory. Up to the date

there do not exist analytica1 solutions for theoretical

models with simultaneous treatment of two branches of

collective excitations — only numerical calculations

within the GCM approach [4], memory function formal-

ism [5,6] and numerical analysis of MD data [3,7,8] were

reported for dispersion and damping of two branches of

collective excitations in binary liquids and glasses. The

problems in theoretical treatment are connected with dif-

ferent origin of the two branches of collective excitations:
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hydrodynamic acoustic excitations and kinetic high-fre-

quency excitations. The absence of consistent analytical

solutions for the two branches of collective excitations

causes many confusions in analysis of MD or experimen-

tal data — hence there were reports of existence of exotic

«fast sound» excitations [9] or a hypothetical merger of

dispersion laws of two branches of collective excitations

into a hydrodynamic sound branch by approaching the

hydrodynamic region [10–12]. All these results were

based on some assumptions of absence of coupling be-

tween the two types of collective modes and did not take

into account different asymptotics in long-wavelength re-

gion of contributions from low- and high-frequency exci-

tations, because of absence of relevant analytical results,

which would be a basis for analysis of experimental and

MD data.

There exist in the literature analytical results for a sep-

arated treatment of high-frequency collective excitations

in binary liquids. Based on a three-variable dynamical

model of mass-concentration fluctuations [13] and

two-variable dynamical model of transverse mass-con-

centration current fluctuations [4] it was revealed some

mechanisms of damping of optic-like excitations in liq-

uids. In comparison with the hydrodynamic relaxation

process of mutual diffusion the contribution from op-

tic-like excitations to the mass-concentration time auto-

correlation function contained a pre-factor k 2 and in

long-wavelength limit such a time correlation function

was in complete agreement with hydrodynamic expres-

sion [14].

However, the separated treatment of low- or high-fre-

quency branches in long-wavelength limit cannot explain

many features of dynamics of binary liquids, in particular

a crossover from «coherent» to «partial» types of collec-

tive dynamics by increasing of wavenumbers from hydro-

dynamic region towards the Gaussian regime. Therefore,

the main aim of this study is to propose a simple toy dy-

namical model, which would permit simultaneous analy-

sis of two branches of collective excitations. This allows

us to derive analytical expressions for dispersion laws, to

use them for the study of systems with different mass ratio

and composition, and to analyze on such a basis the cross-

over from «coherent» to «partial» types of dynamics in

dependence on mass ratio of components.

The paper is organized as follows: in the next Section

we discuss our choice of dynamical model and construct a

generalized kinetic matrix needed for subsequent calcula-

tions. In Sec. 3 both analytical and numerical results for

dispersion laws of two branches of propagating collective

excitations are presented and the mass-ratio and concen-

tration dependence of dispersion curves is discussed.

Conclusions of this study are collected in the last Section.

2. Elastic four-variable model for binary disordered

systems

2.1. General definitions

Collective dynamics of binary liquids in a wide range

of wavenumbers is much less studied that in the case of

pure single-component fluids. Partially this is connected

with a fact, that hydrodynamic expressions [15] cannot be

applied for the analysis of MD simulation results, which

clearly indicate the presence of two branches of collective

excitations [4,7]. In order to match hydrodynamic and

MD results Bosse and coauthors [9] proposed existence

of a «fast sound» excitations with a linear dispersion law

in long-wavelength limit, but with propagation speed in

several times higher than for the hydrodynamic acoustic

excitations. Here we are studying the collective propagat-

ing excitations in binary liquids within an approach of

generalized collective modes, based on an eigenmode

analysis of collective processes in a wide region of spatial

and temporal scales.

Let us consider a binary liquid as a mixture of N A par-

ticles with a mass mA and N B particles with mass mB ,

N N NA B� � , which are confined in a volume V and in-

teracting via two-body potentials��� � �( ) , , ,r A Bij � . In-

stantaneous positions and velocities of particles ri t, ( )�
and v i t, ( )� have additional species subindex �. Dynami-

cal variables of partial densities of particles, defined as

n k t
N

i ti

i

N

� �

�

( , ) exp ( ( )),�
�
�1

1

kr , � � A B, , (1)

are connected by continuity equations with longitudinal

components of partial mass-current densities:

dn k t

dt

ik

m
J k tL�

�
�

( , )
( , )� , � � A B, ,

where

J k t
N

m
k

i tL

i

N

i
i� �

�
�

�

( , ) ( ( ))
,

,�
�
�1

1

kv
krexp , � � A B, (2)

are the longitudinal components of partial mass-currents.

The hydrodynamic set of variables A
( )( , )4hyd k t for bi-

nary liquids contains along with total density, total longi-

tudinal current and heat density also an additional dynam-

ical variable n k tc ( , ) in comparison with the case of

simple fluids,

n k t c n k t c n k tc B A A B( , ) ( , ) ( , )� � , (3)

that describes the concentration fluctuations in the mix-

ture and is expressed via partial densities (1), so that

A
( )( , ) { ( , ), ( , ), ( , ), ( , )}4hyd k t n k t n k t J k t h k tt c t

L� . (4)
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Analytical expressions for time correlation functions

and dynamical structure factors of binary liquids valid in

the hydrodynamic limit were obtained in [15,16]. An im-

portant feature of binary liquids in hydrodynamic limit is

a purely relaxation behavior of time autocorrelation func-

tions of concentration density, that corresponds to ab-

sence of any side peaks on the shape of concentration dy-

namical structure factor S kcc ( , )� , i.e. hydrodynamic

approach points out the absence of effects of propagating

modes on concentration fluctuations.

A simplest extension of the hydrodynamic model for

binary liquids A
( )( , )4hyd k t within the GCM approach is a

seven-variable dynamical model (1), that contains among

basis variables the first time derivatives of hydrodynamic

variables:

A
( )( , )7 k t �

�{ ( , ), ( , ), ( , ), ( , ), ( , ), � ( ,n k t n k t J k t h k t J k t J kt c t
L

c
L

t
L t h k t), �( , )}.

(5)

Note, that this model takes into account fast longitudinal

current fluctuations only via the first time derivative of

total current fluctuations. However, one can consider

more general dynamical model, that allows us to treat

both species on the same footing and therefore it requires

the same order of time derivatives of partial currents

A
( )( , ) { ( , ), ( , ), ( , ), ( , ), ( ,8 k t n k t n k t J k t J k t h k tA B A

L
B
L� ),

� ( , ), � ( , ), �( , )}J k t J k t h k tA
L

B
L . (6)

If the coupling with the thermal fluctuations could be

neglected one derives from the eight-variable dynamical

model (6) a viscoelastic model [5] of binary liquids

A
( )( , )6 k t �

� { ( , ), ( , ), ( , ), ( , ), � ( , ), �n k t n k t J k t J k t J k t JA B A
L

B
L

A
L

B
L ( , )}k t ,

(7)

in framework of which one can correctly treat cross-cor-

relations between partial dynamical variables.

2.2. Elastic approximation

The eight-variable generalized hydrodynamic (6) and

six-variable viscoelastic (7) dynamical models are still

too complicate for an analytical analysis. That is why we

consider a simplified model of collective dynamics in a

binary liquid, that can be called «elastic» one because it

does not take into account explicitly the slow thermal and

mutual diffusion processes in liquid, however micro-

scopic quantities connected with the forces acting on par-

ticles (and therefore reflecting elastic properties) are pre-

sent in this model. In this case the basis set of dynamical

variables for longitudinal dynamics includes four vari-

ables

A
( ) . .

( , ) ( , ), ( , ), � ( , ), � ( , )4 k t J k t J k t J k t J k tL L L L�
	
� � � �


�

�


�
,

(8)

where the pair of indexes� �, corresponds to two orthogo-

nal currents, so that � � �J J� � 0. In particular, it is conve-

nient to consider as such pairs of orthogonal currents the

partial mass currents

J v k� � � �

�

�
�
�1

1
N

m t i r t

i

N

i i, ,( ) exp ( ( )), � � A B, , (9)

or the linear combinations of partial currents that describe

the total mass J t k t( , ) and mass-concentration J x k t( , )

currents and are simply related with the partial currents

via relation

J

J

J

J

x

t

B A A

B

x x�

�
��

�

�
�� �

��

�
�

�

�
�
�

�
��

�

�
��1 1

, (10)

where x m N M� � �� / is a mass-concentration, and

M m N m N mNA A B B� � � . Since x xA B� �1, the deter-

minant of transformation matrix to new variables {J t , J x}

is equal to unity.

The basis set of four variables (8) contains only the dy-

namical variables connected with faster processes, which

are defined by velocities and accelerations of particles,

that makes close analogy with the treatment of phonon ex-

citations in solids, where acceleration of particles is de-

fined by effective elastic interactions.

Let us construct a generalized kinetic matrix T
( )( )4 k ,

constructed on the basis set A
( )( , )4 k t for particular pairs

of currents {A B, } and {T X, } introduced above. The ma-

trices of static correlation functions F( , )k t � 0 and zeroth

Laplace-component of time correlation functions
~

( , )F k z � 0 have the following form:

F( , )
� � � �

� �

k t

f

f

f f

f

J J

J J

J J J J

J J

� �0

0 0 0

0 0 0

0 0

0 0

� �

� �

� � � �

� �
f J J� �

� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

(11)

and

~
( , )F k z

f

f

f

f

J J

J J

J J

J J

� �
�

�

�

�

�
�
�
�

0

0 0 0

0 0 0

0 0 0

0 0 0

� �

� �

� �

� �
�

�

�

�
�
�
�
�

. (12)

By the definition [18,19] the generalized kinetic matrix

can be obtained via expression

T F F
( )( ) ( , )

~
( , )4 10 0k k t k z� � �� ,

so that one has
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T
( )( )

( ) ( )

( ) ( )

4

31 32

41 42

0 0 1 0

0 0 0 1

0 0

0 0

k
T k T k

T k T k

�

�

�
�

�

�
�
�
�

�

�

�
�
�
�

, (13)

with the matrix elements

T k
f

f

J J

J J
31( )

� �

� � �

� �

, T k
f

f

J J

J J
32( )

� �

� � �

� �

, T k
f

f

J J

J J
41( )

� �

� � �

� �

,

T k
f

f

J J

J J
42( )

� �

� � �

� �

.

The structure of T
( )( )4 k is rather simple for an analytical

treatment.

3. Results and discussion

3.1. Dispersion laws

For the generalized kinetic matrix (13) it is straightfor-

ward to obtain the dynamical eigenmodes, which can

propagate in the system:

z i T T T T T T1
0

31 42 31 42
2

32 41

1

21

2

1

2
4� � � � � ��

��
�

��
�( ) ( )

� � i k�1
0( ),

z i T T T T T T2
0

31 42 31 42
2

32 41

1

21

2

1

2
4� � � � � ��

��
�

��
�( ) ( )

� � i k�2
0( ) .

(14)

Note that these eigenvalues are purely imaginary, because

all the dissipation mechanisms are neglected in the adopt-

ed elastic approximation. For instance, nonzero damping

coefficients (real parts of eigenvalues) can appear if one

includes in addition the coupling of these «bare» propa-

gating modes with slow relaxation processes in liquids,

being connected with structural disorder.

The expressions (14) describe the dispersion of two

branches of collective excitations and can be used for

both cases of orthogonal currents considered, namely for

the partial { , }A B and total with mass-concentration

{T X, }. It is also important that in the whole range of

wavenumbers such a «toy» dynamical model takes into

account in appropriate way the effects of cross-correla-

tions between two propagating processes. Let us consider

now in more detail the k-dependence of frequencies (14).

To do so we need to know the explicit dependence of the

matrix elements T k31( ), T k32( ), T k41( ), T k42( ) on wave-

number k. By the definition for small k one has

� �

� �
�  

� �

|
J J

J J
c kt

L
t
L

t
L

t
L k 0

2 2
� , (15)

where c is a high-frequency sound velocity. The static

cross-correlations � �� �J Jt
L

x
L are also functions of k 2 in

the limit k � 0, while the matrix element T k42( ) defined

on the pair of orthogonal currents {T X, }, tends [20] in

long-wavelength limit to a nonzero value �0
2 that has a

sense of square of «bare» frequency for optic-like excita-

tions [13]. Let us look at the behavior of eigenvalues

z k1( ) and z k2( ) when k � 0 retaining under the square

root terms within the precision O k( )2 . One gets for small

k the expressions:

z ic k1
0

� �  , z i2
0

0� � � . (16)

This means that in the hydrodynamic limit the elastic ap-

proximation leads to two propagating collective modes

with different dispersion laws, namely: one branch of col-

lective excitations has the linear dispersion law with a co-

efficient being the high-frequency (elastic) speed of

sound and the second branch describes the propagating

optic-like modes with finite frequency.

In the opposite limit k �  the cross-correlations be-

tween the partial currents in different species can be ne-

glected and one has from (14) the following solutions:

z i
J J

J J
i kA

L
A
L

A
L

A
L1

0

1 2

1
0� �

� �

� �

�

�
�
�

�

�
�
�

� �
� �

( )

/

� ,

z i
J J

J J
i kB

L
B
L

B
L

B
L2

0

1 2

2
0� �

� �

� �

�

�
�
�

�

�
�
�

� �
� �

( )

/

� ,

(17)

i.e. two branches in the limit k �  reflect the dynamics

of non-interacting partial densities. One can estimate the

mutual location of two branches in the limit k �  . From

expressions for ratio of fourth and second frequency mo-

ments [1,20] it follows, that in this limit

� �

� �

� �J J

J J

k T

m
ki

L
i
L

i
L

i
L

B

i

�

3 2, i A B� , . (18)

so that the ratio of «bare» frequencies is given by

�

�

1
0

2
0

1 2
( )

( )

/
k

k

m

m

B

A

�

�

�
�

�

�
� , (19)

and is the same as the ratio of phonon frequencies of optic

and acoustic branches at the first Brillouin zone boundary

in binary A–B crystals within a harmonic approximation.

The high-frequency branch corresponds to a light parti-

cles in the liquid mixture and low-frequency one to the

heavy particles.

The elastic approximation has several advantages.

First of all, it allows us to estimate the role of coupling to
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the relaxation processes in different regions of wave-

numbers. Second, the analytical expressions obtained are

valid in the whole region of wavenumbers, i.e. the «bare»

frequencies (14) include already the hybridization effects

between the both branches. Third, as a toy model, the

elastic approximation can be applied for understanding

the tendencies of dispersion law formation in binary sys-

tems with different mass ratio of particles in both species.

Now the question arises how good is the elastic ap-

proximation in comparison with a complete picture of the

collective dynamics of a binary liquid. In Fig. 1 the re-

sults of our study, performed within the generalized col-

lective mode approach with the set of eight-variable (6),

a r e p r e s e n t e d f o r mo l t e n N a I a t T = 1 0 8 0 K .

Eigenfrequencies, calculated within the full treatment of

coupling with thermal fluctuations and other slow relax-

ation processes [21], are shown by symbols «+» con-

nected by lines. Open boxes correspond to the actual ana-

lytic elastic approximation. One can see in Fig. 1 that in

the whole range of wavenumbers considered the frequen-

cies, obtained within the elastic approximation, have a lit-

tle bit higher frequencies comparing to the result of full

treatment, but correctly describe all the main features in

the dispersion laws. This difference can be easily ex-

plained and is mainly caused by the coupling of «bare»

propagating modes with relaxation processes that results

usually to appearance of nonzero damping and reduction

of the «bare» frequencies. It is also seen in Fig. 1 that in

the region k ! 2 2. �
�1 both branches behave almost lin-

early with k, and the ratio of their slopes for k �  can be

evaluated as 2.57, while the square root of mass ratio

m mI Na/ � 2.35, that supports the analytical result (19).

3.2. Dispersion laws: dependence on mass ratio and

concentration

Let us consider the dependence of dispersion laws for

both branches of propagating collective excitations on

mass ratio of particles at constant mass-density of the sys-

tem. In Fig. 2 we show results obtained for the dispersion

laws of «bare» collective modes (14) for five systems

with identical static properties. A single distinct parame-

ter, used in our calculations, was the mass ratio R that is

responsible for solely dynamic response of the system.

Lennard–Jones systems with different R were sampled in

our previous molecular dynamics study [22], here we use

only relevant static averages T kij ( ), calculated directly in

molecular dynamics simulations. Our task now is to use

the analytical model developed for the explanation of the

general tendencies in spectra behavior when the mass ra-

tio R is changed.

For the short-wavelength limit we can immediately

use the expressions (18) and (19), showing that the fre-

quencies are inversely proportional to the masses and the

ratio of frequencies scales as R �1 2/ , where R m mh l� / ,

and mh , ml are masses of heavy and light atoms, respec-

tively.

In the long-wavelength region one can see in Fig. 3,

that the square of «bare» frequency of optic-like excita-

tions �
J Jx x

k2 ( ) is a linear function of R, while the square

of «bare» frequency of acoustic-like excitations �
J Jt t

k2 ( )

is independent on R, because it depends only on total den-

sity of the system. Now, let us look at the cross-correla-

tion effects between low- and high-frequency branches in

long-wavelength region as a function of R. Such a

cross-correlation is reflected by the ratio

�
J J

x t

x x
x t

J k J k

J k J k

2 �
� � �

� � �

� ( ) � ( )

( ) ( )
,
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Fig. 1. Imaginary parts (dispersion) of propagating eigenmo-

des, obtained by the 8-variable treatment of collective dyna-

mics in molten NaI at T = 1080 K (symbols «+» connected by

interpolation line) and as analytical solutions (14) within the

«elastic» four-variable model (open boxes).
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Fig. 2. Frequencies of «bare» propagating collective modes in

dependence on the mass ratio R for Lennard–Jones equimolar

systems with identical mass-density [22]. The dispersion lines,

corresponding to the same mass ratio, are shown by the same

line-connected symbols.



which is shown in the lower frame of Fig. 3 and decrease

linearly with increasing of R. Since�J Jt t
k2 ( ) and�J Jx t

k2 ( )

are functions of k 2 and �J Jx x
k2 ( ) tends to a constant in

small k limit, one can rewrite the expressions (14) for

«bare» frequencies as follows

z k i k
k k

k
J J

J J J J

J J
t t

t x x t

x x

1
0 2

2 2

2
( ) ( )

( ) ( )

( )
" � �

�

�

�
�
�

� �

�

�

�

�
�

1 2/

,

z k i k
k k

k
J J

J J J J

J J
x x

t x x t

x x

2
0 2

2 2

2
( ) ( )

( ) ( )

( )
" � �

�

�

�
�
�

� �

�

�

�

�
�

1 2/

.

(20)

It is seen, that due to the coupling with acoustic branch

the square of «bare» frequency of optic-like modes gets

positive correction ~k 4 , which is proportional to the mass

ratio R. Similar correction, but with opposite sign gets the

dispersion of acoustic-like branch. Hence, one may ex-

pect, that just beyond the hydrodynamic region in the sys-

tems with large R the high-frequency branch should have

a «positive dispersion», while for the low-frequency

branch a «negative dispersion» has to be observed. In Fig.

2 the dispersion curves, calculated for Lennard–Jones

systems with identical static properties but different mass

ratio R, are shown. At small wavenumbers one observes

an increase of «bare» frequencies of optic excitations. It

is seen also that the effects of «positive dispersion» be-

come more pronounced in this case as it was predicted

above. The low-frequency branch in complete agreement

with the analytical treatment displays «negative disper-

sion» effects. For large wavenumbers the distance be-

tween two branches scales as R1 2/ in full agreement with

our predictions. Note that the low-frequency branch

shows a convergence tendency with R due to a constraint

on the constant mass density of systems considered.

About the effect of concentration ch of heavy particles

on the «bare» frequencies one can conclude from Fig. 4.

It is clearly observed a gradually shifting down of the

high-frequency branch when the concentration ch de-

creases. Moreover, the shape of this branch becomes

more similar to the k-dependence of acoustic-like branch

in small k domain.

3.3. Crossover from «coherent» to «partial» type

of dynamics in binary liquids

There is still a lack in simple analytical theory, de-

scribing a crossover from «coherent» to «partial» dynam-

ics in binary disordered systems [3,4], in particular in de-

pendence on mass ratio R. Since our «toy» dynamical

model is rather simple and quite correct in description of

dispersion of two branches in the whole region of wave-

numbers, let us consider the contributions from both

«bare» excitations to different current-current time corre-

lation functions within the model proposed.
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Since the «bare» excitations represent free oscillations

in the system, it seems that their contributions to different

spectral functions do not have much sense, because the

damping effects are not taken into account. In the

time-domain the corresponding diagonal current-current

time correlation functions, found analytically within the

elastic dynamical model for the set A
( )( , )4 k t , have the

form:

F k t F kJ J J J� � � �
( , ) / ( , )0 �

� �B k t B k t�� ��� �1
1
0 2

2
0( ) cos { } ( ) cos { } . (21)

The pre-factors or mode amplitudes B k
j
��( ), describing

the harmonic contributions, reflect all the hybridization

effects between two branches of «bare» excitations and

can be very helpful for understanding of crossover be-

tween «coherent» and «partial» regions of collective dy-

namics in real binary liquid systems [3,4]. These ampli-

tudes correspond to solely symmetric contributions,

defined in Ref. 23, and are given by the expressions:

B k
T k

B k
T

��

��

��

���

� �

1 2
0 2

31

2
0 2

1
0 2

2 31( )
( ) ( )

( ) ( )
, ( )�

�

�
�

( ) ( )

( ) ( )

k �

�

�

� �

1
0 2

2
0 2

1
0 2

,

(22)

so that the sum of both amplitudes is equal to unity as it

should be. The upper indices in the matrix elements

T k31
�� ( ) correspond to the different choices of currents

from the sets {A B, } or {T X, }, used previously for estima-

tion of the matrix element. For the case of a KrAr Len-

nard–Jones fluid with the mass ratio R � 2.09 the cal-

culated values of both amplitudes, describing the mode

contributions to the spectral functions C ktt ( , )� and

C kArAr ( , )� , are shown in Figs. 5 and 6, respectively. One

can see in Fig. 5 that in the long-wavelength region the

contribution to the total current autocorrelation function

comes completely from the low-frequency acoustic-like

branch — its mode amplitude B ktt
l ( ) is almost equal to

unity, while the contribution from the high-frequency

branch is very small. For larger k the contributions from

both branches become comparable (see Fig. 5). The same

tendency was also observed for the mass-current auto-

correlation function with the only difference, that in the

long-wavelength region the high-frequency branch deter-

mines almost completely its shape. From the other side,

an opposite situation is observed in the case of partial cur-

rents autocorrelation functions. For instance, as it is seen

in Fig. 6, for the light subsystem (Ar particles) at

k ! 0 5. �
–1

this function can be reasonably described by

the contribution from high-frequency branch only, and

for k ! 2 5. �
–1

this is exactly correct. Hence, the cross-

over from «coherent» to «partial» type of dynamics in bi-

nary disordered systems can be explained in terms of the

mode contributions from «bare» eigenmodes of our «toy»

elastic model. In order to rationalize the mass ratio of

components affects the region of this crossover we show

in Fig. 7 the amplitudes of all contributions B kj
�� ( ) with

� � t x A B, , , calculated at two values of mass ratio R �
� 2.09 (solid lines) and R � 17.1 (dashed lines). It is seen

that for the larger mass ratio the cross-point of amplitudes

B k B ktt
h

AA
h( ) ( )cross cross� , where A denotes a light com-

ponent of the mixture, is at the same wavenumber as the

cross-point of the amplitudes B k B ktt
l

BB
l( ) ( )cross cross�

and in this case the value kcross is smaller, than similar

cross-point for the mass ratio R � 2.09. For k k! cross one

can accept, that the «partial» type of collective dynamics

prevails, while for k k$ cross collective dynamics can be

well decsribed in terms of acoustic- and optic-like «bare»

collective excitations, representing the «coherent» type

of dynamics [3,24]. Note also that for lager k, as it was

shown above, the main mechanism responsible for mode

formation is connected with the properties of partial cur-

rents (see (17)). Hence, we may use the condition for a
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cross-point of corresponding mode amplitudes and to de-

rive an analytical expression for kcross taking into account

the long-wavelength asymptotes of relevant frequency

moments. One gets

k
c x a

J J

tx

x x
cross �

� 

�2

2
1

0

2

( )
, (23)

where x1 is the mass-concentration of heavy particles and

atx is a constant taken from long-wavelength asymptote

of �J J txx t
k a k2 2( ) � . We have calculated the dependence

of kcross on the mass ratio, and the results are shown in

Fig. 8. As it follows from Fig. 8, one can conclude that the

region of «coherent» dynamics reduces with the increas-

ing mass ratio R. Note, however, that kcross tends to a non-

zero value even in the limit R�  , because of the con-

straint put on the total mass density of the systems

considered in our study.

4. Conclusions

Within the generalized collective mode approach, for

description of dispersion of propagating collective exci-

tations in binary disordered systems, we have proposed

and solved analytically in the whole range of wavenum-

bers a new four-variable «toy» dynamical model. The

most important results obtained are the following:

(i) we have obtained analytical expressions for the

«bare» frequencies of propagating collective excitations

in binary systems that can be applied in the whole range

of wavenumbers;

(ii) short-wavelength asymptote of the ratio of «bare»

frequencies scales as square root of mass ratio, similarly

as it is on the Brillouin zone boundary in a binary A–B

crystal. In small k limit the «bare» low-frequency eigen-

values follow linear dispersion law c k with a coefficient

being high-frequency (elastic) sound velocity c , while

the high-frequency branch tends to a nonzero frequency

�0 in complete analogy with optic-like phonon excita-

tions in solids;

(iii) the proposed model allows us to describe the

crossover from «coherent» to «partial» dynamics in bi-

nary liquids in terms of mode contributions to different

current autocorrelation functions;

(iv) it is shown that the crossover region between the

«coherent» and «partial» types of dynamics reduces when

the mass ratio R of particles in different species increases.

This supports, in particular, our recent numerical re-

sults [22].
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