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The propagation of spin waves in Q2D layered conductors placed in a magnetic field is studied. It is

shown, that at certain orientations of the magnetic field with respect to the layers the collisionless absorp-

tion is absent and weakly damping spin waves can propagate even under the strong spatial dispersion. We

have analyzed the spectrum of spin modes at an arbitrary form of Landau–Silin correlation function.

PACS: 72.15.Nj Collective modes (e.g., in one-dimensional conductors).
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A large family of tetrathiafulvalene-based ion-radical

salts of the form (BEDT- TTF) X2 (X stands for a set of

various anions) possess layered structure with a pro-

nounced anisotropy of electrical conductivity. Observa-

tion of Shubnikov–de Haas magnetoresistance oscilla-

tions [1,2] in a magnetic field about 10 T, prove that the

free path time � in these layered conductors can be suffi-

cient for charge carriers to manifest their dynamic proper-

ties and their cyclotron frequency�B may exceed signifi-

cantly ��1. Under that condition, varios type of weakly

attenuating collective mode may exist in Fermi liquid of

conduction electrons. At present paper we study the col-

lective modes arising from the oscillations of the spin

density in layered structures. The paramagnetic spin

waves in quasi-isotropic metals were predicted by Silin

[3] and observed in alkaline metals by Dunifer and

Schultz [4]. The wave processes in layered conductors are

characterized by a number of features associated with the

quasi-two-dimensional electron energy spectrum. The

electrons energy �( )p depends weakly on the momentum

projection p z � pn on the normal n to the layers and can

be represented in the Fourier series with respect to p z :
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Here � � � �n x y n x yp p p p� ��1( , , ) ( , , ). The coefficient at

the first harmonic � �1( , , )p px y is of the order of

�� �F F�� where �F is the Fermi energy, � is the parame-

ter of the quasi-two-dimensionality of the spectrum, � is

the Planck constant. The ratio of the conductivity across

the layers to the in-plane conductivity in the absence of a

magnetic field, is about �2. We assume that in an external

magnetic field B 0 0� � �( sin , , cos )B B0 0 cross-sections

S pF B( , )� of the Fermi surface by the plane pB �
� �( )pB 0 /B0 const are closed for � �/2 �� � .

Kinetic properties of the system of fermions should be

described by means of the kinetic equation for the density

matrix �� and the Maxwell equation. In the quasiclassical

case when ��B � T F�� �� the quantization of the charge

carriers energy in the magnetic field does not affect essen-

tially the magnetization M (T is the temperature). Under

these conditions the density matrix can be presented as an

operator in the space of spin variables and as a function

depending on coordinates and momentum. The Fermi liq-

uid interaction between electrons can be described with

the aid of the Landau-Silin correlation function [5,6]

�( , � , , � ) ( , ) ( , ) � �p p p p p p� � ��� � � � � � �L S , (2)

where � are Pauli matrices. The second term on the

right-hand part of (2) corresponds to the exchange inte-

raction of electrons.

The closed electron orbits in momentum space almost

the same for different values of the momentum projection

pB . So the area S pF B( , )� of the section of the Fermi sur-

face by the plane pB � const and the components vx and

vy of the velocity of conduction electrons in the plane of

the layers, depends weakly on pB , with the order of
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smallness � tan �. This results that the electrons energy

and the Landau correlation function can be expanded into

the asymptotic series about �, the leading term of the ex-

pansions being not dependent on pB . In the main approxi-

mation in the small parameter � the functions L( , )p p� and

S( , )p p� is independent of pB and can be presented as
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We have chosen the integrals of motion of an electron in a

magnetic field � and pB and the phase� �� B t1 at its orbit in

the magnetic field as variables in the p space. Here t1 is the

time of motion along the trajectory � �( ) ,p � F pB � const.

Because of the symmetry of the function �( , � , , � )p p� �� � with

respect to its arguments, the coefficients in (3) satisfy the

condition L Ln n� � , S Sn n� � . Allowing for next-order

terms of the expansion for the correlation function about �
does not lead to the noticeable correction of the results.

The paramagnetic spin waves represent the high-fre-

quency collective modes for which� � ��� �� �
1

1
2

1, where

�1 and � 2 are the relaxation times for the electron momen-

tum and spin density respectively. They result from the

oscillations of the electron spin density g r p( , , )t �
� Tr� �( � � )� . The function g should be presented as a sum of

the equilibrium spin density g B0 0 0� � � �� �( )f / and the

nonequilibrium correction � �� � �( ) , ,f / t0 � � r p , where

f 0( )� is the the Fermi function, � �� � �
0 01/ S( ), �0 is the

magnetic momentum of an electron, S Sn F n
� � � �( ) ,

� �( )F is the density of states at the Fermi level.

The components � � �( ) �  x yi
1

of the re-normal-

ized nonequilibrium correction
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where � � �x x z1
� � � �cos sin , the x1 axis is orthogonal

to both the y axis and vector B 0 1, ( )~ ~* p p pS / S� � ,

� �p
ip /! " ! "e – � 1 , ~ , ( )� � �� � � � �i / Ss0 1 0' , �s �

� �2 0 0� B /� is the frequency of spin paramagnetic reso-

nance v p p� � ��( ) / is the electron velocity. The wave pro-

cess is supposed to be harmonic, and we present the coor-

dinate and time dependencies of all variable quantities in

the form exp ( )i i tkr – � .

For the frequencies ��� kc, the alternating magnetic

field B B iBx y �  ~
1

, produced by the spin oscillations is

determined from the equation

B k M k
k

kM k
~ ~~( , ) [ ( , ) ( ( , ))]� � � �� �4

2k
, (5)

where M k p k
~ ( , ) ( , , )� � �� ! "0 � is the high-frequency

magnetization, c is the velocity of light.

After multiplying the equation (4) by e�in� and then in-

tegrating with respect to+ � �p /pB 0 cos and �, we obtain

the infinitesimal set of linear equations for the coeffi-

cients
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, np is the Kroneker symbol. The dependence of the cyclo-

tron frequency on pB should be taken into account in the

expression k v /x x B� in the exponent only provided that

�kvF � �B where vF is the Fermi velocity.

The coefficients of the Fourier series for the smooth

function S ~( , )p p� decrease significantly with their num-

ber increasing, so we will restrict ourselves to account of

a finite number of terms. Making use of this equation it is

easy to obtain the magnetic susceptibility, taking into ac-

count time and spatial dispersion
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The properties of the spin waves are determined by the

magnetic susceptibility tensor 4 �ik k( , ). For the frequen-

cies, that do not coincide with the frequency of eigen-os-

cillations of the spin density, the components 4 �ik k( , ) is

of the order of the static paramagnetic susceptibility

4 � � �0 0
2 610� ( ) ~F

� . For this reason, in order to find the

spectrum of the spin waves, it suffices to use the homoge-

neous system of equations corresponding to (6). In the ex-

pression (6) we can neglect the small non-uniform correc-

tion proportional to �0B 
~ which allows for influence of

the self-coordinated field B 
~. The dispersion equation for

«free» oscillations of the spin density is of the form

D fnp p
B

np( , ) det ( )� , *
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1
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The frequency of eigen-oscillations of the magnetization

to within the terms proportional to 4 � � �0 0
2~ ( )F coin-

cides with the frequency of the spin density «free» oscil-

lations. At this frequency the magnetic susceptibility has

a sharp maximum, and the determinant D( , )� k is of the

order of 4 0.

The collisionless absorption of the spin waves is ab-

sent if the following inequality is satisfied

5 5� � �� � ! "n B �' max | |kv . (10)

In the opposite case the integrand in the formula (7) has a

pole and after integration with respect to pB the dispersion

equation acquires an imaginary part responsible for the

strong absorption of the wave. In a layered conductor the

velocity v vB � ! " � of drift along the magnetic field of con-

duction electrons is an oscillatory function of the angle �
between B0 and the normal to the layers. For certain values

of the angle � � � i the velocity v B is close to zero. At

� � � i the collisionless absorption is absent and existence

of collective modes is possible [7,8] even under the condi-

tion �kvF � �B . For � and k such that kvF B�� ( , )� � , the

solution of the dispersion equation (9) takes the form
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The correction to the resonance frequency may be written as
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The summation in the formula (14) should be carried out

over all stationary points � ( ) ( ) ( )
( , )9 9

:
9� �� which are de-

termined from the equations v vx x( ) , ( )� � �� � �0 01 . Here

8 9( )( )� �1if the stationary point is inside the domain of in-

tegration 0 2 0 2
1

� � � �� � � �9 9( ) ( )
, and 8 9( )( )� � 1 2/ if

it is located on a boundary of the domain,

s R� �� �sign ��
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1

are the numbers of positive and negative eigenvalues of

the matrix
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respectively [9].

At kr kvF0 1�� � �, ,� ' the phase of exponent in (7)

has no stationary points. Integrating (7) by parts and sub-

stituting the result (9) we obtain follow asymptotic ex-

pression for the spectrum of spin mode
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Confining ourselves to account of two terms in the for-

mula (1) and neglecting the anisotropy in the layers plane,

we have � 0
2 2 2( ) ( )p � �p p / mx y , � �1 0( )p � v pF , where

v /mF F
2 2� � , m is the electron effective mass in the layers

plane.

Assuming that the wave vector k � ( , , )k kx z0 is ori-

ented in the xz plane, one can obtain, at kr0 1�� , �� kvF ,

following asymptotic expression for the coefficients f np
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Here , � �� arccos (~ ) ,� ' / k rB x 0 � � �� (~ ) ,� ' / k rB x 0 � + � � 9 +B B( ) ( tan ( ) cos )� � �1 1J is the cyclotron frequency of

quasi-particles in the first order approximation in � , J n ( )9 is the Bessel function.

For the direction of magnetic field in which 9 � ( ) tanmv /pF 0 � is equal one of the zeros of J 0( )9 , the average

! " � � �kv � � 9 +v k kF x zJ 0( ) ( tan ) sin (17)

is of the order of �2 and the Landau absorption is absent. Under condition � � ' �� k vx F , the spin waves with the fre-

quencies close to the resonance frequencies � �r Bn�  ' can propagate in layered conductors at an arbitrary orienta-

tion of the wave vector and selected directions of the external magnetic field. The solution of (9) can be represented in

the form (11),(12) where 7 should be determinated from equation
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Let us consider the propagation of spin waves along

the magnetic field direction in the case when the magnetic

field B 0 00 0� ( , , )B is orthogonal to the conducting lay-

ers. The integral equation (4) takes form
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and we can obtain the simple analytical expression for

spin wave spectrum at an arbitrary values of �k vz F . De-

termine ! "�� ( )
,+ � from (19), we find the high-frequency

magnetic susceptibility
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The frequency of spin magnetization oscillations are

given by
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In long-wave-length limit the frequency of spin waves co-

incides with frequency of spin paramagnetic resonance�s .

The specifics of Q2D electron energy spectrum of layered

conductors lead that in main approximation in the para-

meter of the quasi-two-dimensionality �, the Lan-

dau–Silin correlation function can be presented as Fou-
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rier series (3), the coefficients of which are independent

of the momentum projection pB on the magnetic field

direction. This circumstance simplifies essentially the in-

tegral equation for spin density and makes it possible to

obtain the dispersion equation for rather general form of

the correlation function.
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